JP3576432B2 - Silicon carbide film and method of manufacturing the same - Google Patents

Silicon carbide film and method of manufacturing the same Download PDF

Info

Publication number
JP3576432B2
JP3576432B2 JP28884499A JP28884499A JP3576432B2 JP 3576432 B2 JP3576432 B2 JP 3576432B2 JP 28884499 A JP28884499 A JP 28884499A JP 28884499 A JP28884499 A JP 28884499A JP 3576432 B2 JP3576432 B2 JP 3576432B2
Authority
JP
Japan
Prior art keywords
substrate
silicon carbide
carbide film
undulations
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28884499A
Other languages
Japanese (ja)
Other versions
JP2000178740A (en
Inventor
順太 中野
弘幸 長澤
邦明 八木
孝光 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP28884499A priority Critical patent/JP3576432B2/en
Priority to US09/515,134 priority patent/US6416578B1/en
Priority to EP00104123A priority patent/EP1130135B1/en
Priority claimed from US09/515,134 external-priority patent/US6416578B1/en
Publication of JP2000178740A publication Critical patent/JP2000178740A/en
Application granted granted Critical
Publication of JP3576432B2 publication Critical patent/JP3576432B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Micromachines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子材料としての単結晶炭化珪素膜等に関し、特に半導体装置を作製する上で好ましい低欠陥密度の炭化珪素及びその製造方法等に関する。
【0002】
【従来の技術】
従来、炭化珪素(SiC)の成長は、昇華法によるバルク成長と、基板上へのエピタキシャル成長による薄膜形成とに分類されてきた。
【0003】
昇華法によるバルク成長では高温相の結晶多形である6H−SiC、4H−SiCの成長が可能であり、かつ、SiC自体の基板作製が実現されてきた。しかしながら、結晶内に導入される欠陥(マイクロパイプ)が多く、かつ基板面積の拡大が困難であった。
【0004】
これに対し、単結晶基板上へのエピタキシャル成長法を用いると、不純物添加の制御性向上や基板面積の拡大、そして昇華法で問題となっていたマイクロパイプの低減が実現される。しかしながら、エピタキシャル成長法では、しばしば、基板材料と炭化珪素膜の格子定数の違いによる積層欠陥密度の増大が問題となっている。特に、被成長基板として一般に用いられているSiは、SiCとの格子不整合が大きいことから、SiC成長層内における双晶(Twin)や反位相領域境界面(APB:Anti Phase Boundary)の発生が著しく、これらがSiCの電子素子としての特性を損なわせている。
【0005】
SiC膜内の面欠陥を低減する方法として、例えば、被成長基板上に成長領域を設ける工程と、この成長領域に炭化珪素単結晶をその厚さが、基板の成長面方位に固有な厚さと同一又はそれ以上になるように成長させる工程とを有し、固有な厚さ以降の面欠陥を低減する技術が提案されている(特公平6−41400号公報)。しかしながら、SiC中に含まれる2種類の反位相領域どうしは、SiCの膜厚増加に対して、互いに直交した方向へと拡大する特性を有しているため、反位相領域境界面を効果的に低減することができない。さらに、成長したSiC表面に形成される超構造の向きを任意に制御することができないため、例えば、離散した成長領域どうしが成長に伴って結合した場合には、この結合部に新たに反位相領域境界面が形成されてしまい、電気的特性が損なわれる。
【0006】
【発明が解決しようとする課題】
効果的に反位相領域境界面を低減する方法として、K.Shibaharaらにより、表面法線軸を[001]から[110]方向にわずかに傾けた(オフ角を導入した)Si(100)表面基板上への成長法が提案された(アプライド フィジクス レター、50巻、1987年、1888頁)。この方法は、基板に微傾斜を付けることで、原子レベルのステップが一方向に等間隔で導入されるため、導入されたステップに平行な方向の面欠陥が伝搬し、一方、導入されたステップに垂直な方向(ステップを横切る方向)への面欠陥の伝搬を抑制する効果がある。このため、炭化珪素の膜厚増加に対して、膜中に含まれる2種類の反位相領域の内、導入されたステップに平行な方向へ拡大する反位相領域が、直交する方向へ拡大する反位相領域に比べて優先的に拡大するため、反位相領域境界面を効果的に低減することができる。しかしながら、図1に示すように、この方法は、SiC/Si界面のステップ密度の増大により、不本意な反位相領域境界面1の生成を引き起こしてしまい、反位相領域境界面の完全解消には至らないという問題がある。なお、図1において、1はSi基板の単原子ステップにて発生した反位相領域境界面、2は反位相領域境界面会合点、3はSi基板表面テラスにて発生した反位相領域境界面、θはオフ角度、φはSi(001)面と反位相領域境界面のなす角(54.7°)、を示しており、Si基板表面テラスにて発生した反位相領域境界面3は反位相領域境界面会合点2で消滅するが、Si基板の単原子ステップにて発生した反位相領域境界面1は会合相手がなく、消滅しない。
【0007】
本発明は上述した背景の下になされたものであり、反位相領域境界面を効果的に低減又は消滅させた炭化珪素膜等の提供を目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために本発明は、以下の構成としてある。
【0009】
(構成1)単結晶基板表面上にその結晶方位を引き継いで炭化珪素をエピタキシャル成長させる炭化珪素膜の製造方法であって、基板表面のステップにより不本意に導入された(ステップにて発生した)炭化珪素層内の反位相領域境界面同士を会合させるように、前記基板表面の全部又は一部に1方向に平行に伸びる複数の起伏を具備させ、この基板表面上に炭化珪素を成長させることを特徴とする炭化珪素膜の製造方法。
【0010】
(構成2)構成1において、炭化珪素膜の成長時に、膜中に発生した面欠陥の伝搬方位を特定の結晶面内に限定し得るエピタキシャル成長機構を用いることを特徴とする炭化珪素膜の製造方法。
【0011】
(構成3)前記基板表面の起伏頂部の間隔の平均値をWとした場合、炭化珪素膜の膜厚をW/√2(=21/2)以上の膜厚とすることを特徴とする構成1又は2記載の炭化珪素膜の製造方法。
【0012】
(構成4)前記基板表面の起伏頂部の間隔が0.01μm以上10μm以下であり、起伏の高低差が0.01μm以上20μm以下であり、かつ、起伏における斜面の斜度が1°以上55°以下であることを特徴とする構成1乃至3記載の炭化珪素膜の製造方法。
【0013】
(構成5)前記基板が単結晶SiCであり、該基板表面が(001)面であり、その表面に[110]方位に平行に伸びる起伏を具備していることを特徴とする構成1乃至4記載の炭化珪素膜の製造方法。
【0014】
(構成6)前記基板が単結晶3C−SiCであり、該基板表面が(001)面であり、その表面に[110]方位に平行に伸びる起伏を具備していることを特徴とする構成1乃至4記載の炭化珪素膜の製造方法。
【0015】
(構成7)前記基板が六方晶の単結晶SiCであり、該基板表面が(1,1,−2,0)面であり、その表面に[1,−1,0,0]方位又は[0,0,0,1]方位に平行に伸びる起伏を具備していることを特徴とする構成1乃至4記載の炭化珪素膜の製造方法。
【0016】
(構成8) 前記基板断面が波状の構造又は断面が鋸歯状の起伏となっていることを特徴とする構成1乃至7記載の炭化珪素膜の製造方法
構成9) 前記基板表面は、鏡面対称な方位に配向したステップが統計的に釣り合った密度で導入されていることを特徴とする構成1乃至8記載の炭化珪素膜の製造方法
(構成10)構成1乃至記載の方法を用いて製造したことを特徴とする炭化珪素膜。
【0017】
(構成11)単結晶基板表面の全部又は一部に形成した1方向に平行に伸びる複数の起伏をステップとし、膜内面欠陥の伝搬方位を特定の結晶面内に限定し得る方法でエピタキシャル成長した構造を有することを特徴とする炭化珪素膜。
【0018】
【作用】
【0019】
上記構成1によれば、炭化珪素の被成長基板表面に1方向に平行に伸びる複数の起伏を具備させることにより、各起伏の斜面においてK.Shibaharaらにより示されたオフ角の導入効果を得ることが可能となる。さらに、本発明では、炭化珪素の被成長基板表面は鏡面対称な方位に配向したステップが統計的に釣り合った密度で導入されるため、被成長基板表面のステップにより不本意に導入された炭化珪素層内の反位相領域境界面どうしは効果的に会合し、反位相領域境界面を完全に解消した炭化珪素膜が得られる。さらに、本発明は、オフ角の導入効果により、個々の成長領域はすべて同一方向に拡大する同位相領域となるため、離散した成長領域どうしが成長に伴って結合した場合でも結合部に反位相領域境界面が生じない利点がある。
なお、本発明でいう起伏は、数学的に厳密な意味での平行性や鏡面対称関係を要求されるわけではなく、反位相領域境界面を効果的に低減又は解消しうるのに十分な程度の形態を有していればよい。
【0020】
被成長基板に起伏形状を形成する方法は、光リソグラフィ技術、プレス加工技術、レーザー加工や超音波加工技術、研磨加工技術など複数のものが挙げられる。何れの方法を用いても、被成長基枚表面の最終形態が、反位相領域境面を効果的に低減または解消し得るのに十分な程度の形態を有していれば良い。
光リソグラフィ技術を用いれば、基板に転写するマスクパターンを任意に形成することで、任意の起伏形状を被成長基板に転写することが可能である。パターンの、例えば線幅を変えることで起伏形状の幅を制御することが可能であり、また、レジストと基板のエッチング選択比を制御することで起伏形状の深さや斜面の角度を制御することが可能である。矩形のパターン形状を嫌う場合でも、レジストにパターン転写した後、熱処理によりレジストを軟化させて波状形状の起伏パターンを形成することが可能である。
プレス加工技術を用いれば、プレス用の型を任意に形成することで、被成長基板上に任意の起伏形状を形成することが可能である。様々な形状の型を形成することで、様々な形状の起伏形状を被成長基板上に形成できる。
レーザー加工や超音波加工技術を用いれば、基板に直接起伏形状を加工形成するのでより微細な加工が可能である。
研磨加工を用いれば、研磨の砥粒径の大きさや加工圧力を変化することで、起伏形状の幅や深さを制御することが可能である。一方向起伏形状を設けた基板を作製しようとした場合には、研磨は一方向のみに行われる。
【0021】
上記構成2によれば、膜内面欠陥の伝搬方位を特定の結晶面内に限定し得る成長条件下にてエピタキシャル成長を行うことにより、構成1の効果を確実かつ十分なものとすることができる。この成長条件を満たす一つとして、例えば、ステップフロー成長が挙げられる。
【0022】
上記構成3によれば、炭化珪素の被成長基板表面の起伏頂部の間隔の平均値をWとした場合、炭化珪素膜の膜厚がW/√2(=21/2)となった時点で、すべての反位相領域境界面が消滅する。したがって、炭化珪素膜の膜厚はW/√2(=21/2)以上の膜厚とすることが好ましい。
なお、少ない膜厚で本発明の効果を得るには、起伏頂部の間隔がより狭いことが望ましい。
【0023】
上記構成4では、起伏頂部の間隔、起伏の高低差、起伏の斜度について規定している。
起伏頂部の間隔は、被成長基板への起伏作製における微細加工技術の限度の観点からは0.01μm以上が好ましい。また、起伏頂部の間隔が10μmを超えると反位相領域境界面どうしの会合の頻度が極端に低下するため、起伏頂部の間隔は10μm以下であることが望ましい。さらに望ましくは、0.1μm以上3μm以下の起伏頂部の間隔により、本発明の効果が十分に発揮される。
起伏の高低差及び間隔は起伏の傾斜度、つまりステップ密度を左右する。好ましいステップ密度は結晶成長条件によって変化するため一概には言えないが、通常必要な起伏高低差は起伏頂部間隔と同程度、つまり0.01μm以上20μm以下である。
本発明では、被成長基板表面における原子レベルのステップ近傍での炭化珪素の成長を促進することにより、その効果が発揮されることから、起伏の斜度は、斜面全面が単一ステップに覆われる(111)面の斜度54.7°以下の傾斜において本発明が実現される。また、1°未満の斜度においては起伏斜面のステップ密度が著しく減少するため、起伏の斜面の傾斜は1°以上であることが望ましい。さらに望ましくは、起伏の斜面の傾斜角が2°以上10°以下であると、本発明の効果が十分に発揮される。
なお、本発明でいう「起伏の斜面」は、平面、曲面などのあらゆる形態を含む。また、本発明でいう「起伏における斜面の斜度」は、本発明の効果に寄与する実質的な斜面の斜度を意味し、斜面の形態に応じ、最大斜度、平均斜度などを「起伏の斜度」として採用できる。
【0024】
上記構成5乃至7は、炭化珪素の被成長基板表面の面方位、及び、起伏の方位について規定したものである。
立方晶又は六方晶の炭化珪素を成長させる被成長基板表面の面方位として、単結晶Si(001)面又は単結晶の立方晶炭化珪素(001)面を用いる場合、反位相領域の拡大方向は[110]であることから、図2に示すごとく、表面の起伏はこの内のどれかの方向(図2の場合[1,−1,0]方向)に平行とすることで、図3に示したように起伏と直交する軸上で反位相領域境界面の効果的な解消が実現された炭化珪素膜が得られる(構成5、6)。なお、図3において、Wは起伏頂部の間隔を示す。
立方晶又は六方晶の炭化珪素を成長させる被成長基板表面の面方位として、単結晶の六方晶SiC(1,1,−2,0)面を用いる場合、反位相領域の拡大方向は[1,−1,0,0]、[−1,1,0,0]、[0,0,0,1][0,0,0,−1]であることから、表面の起伏はこの内のどれかの方向に平行とすることで、上記と同様に反位相領域境界面の効果的な解消が実現された炭化珪素膜が得られる(構成7)。
【0025】
上記構成8によれば、上記構成1乃至7に記載の方法を用いることで、反位相領域境界面を効果的に低減又は消滅させた炭化珪素膜が得られる。
本発明の炭化珪素膜は、結晶境界密度が小さいため非常に優れた電気的特性を有し、半導体基板や結晶成長用基板(種結晶を含む)、その他の電子素子として好適に使用できる。
【0026】
上記構成9によれば、このような基板構造及び結晶成長法とすることで、反位相領域境界面を効果的に低減又は消滅させた炭化珪素膜が得られる。
【0027】
【実施例】
以下、実施例に基づき本発明をさらに具体的に説明する。
【0028】
比較例
まず、オフ角導入による効果を確認するため、オフ角のないSi(001)面、及びオフ角がそれぞれ4°、10°付いたSi(001)面を被成長基板として、SiC(3C−SiC)の成長を行った。SiCの成長は、基板表面の炭化工程と、原料ガスの交互供給によるSiC成長工程に分けられる。炭化工程では、アセチレン雰囲気中で上記加工済みの基板を室温から1050℃まで120分間かけて加熱した。炭化工程の後に、1050℃にてジクロルシランとアセチレンとを交互に基板表面に暴露して、SiCの成長を実施した。炭化工程の詳細条件を表1に、SiC成長工程の詳細条件を表2にそれぞれ示す。
【0029】
【表1】

Figure 0003576432
【0030】
【表2】
Figure 0003576432
【0031】
各基板上に成長させたSiCについて、反位相領域境界面の密度を測定したところ、表3に示す結果を得た。
なお、反位相領域境界面の密度は、炭化珪素表面をAFM観察して求めた。この際、炭化珪素の表面を熱酸化処理しさらに熱酸化膜を除去することにより反位相境界を顕在化させたあとに観察を行った。
【0032】
【表3】
Figure 0003576432
【0033】
表3に示すオフ角度と反位相領域境界面密度との関係から、オフ角導入による反位相領域境界面密度の減少が確認されるものの、完全な解消には至っていないことがわかる。
【0034】
オフ角4°の基板上に成長させたSiC膜表面の走査型電子顕微鏡写真を図4に示し、オフ角無しの基板上に成長させたSiC膜表面の走査型電子顕微鏡写真を図5に示す。
図4及び図5から、オフ角導入によりテラス面積の拡大が確認されてステップフローモードでのSiC成長が支配的となっており、面欠陥の伝搬方位が特定の結晶面内に限定されていることがわかる。
【0035】
実施例1
Si(001)面を被成長基板とし、基板表面を熱酸化後、フォトリソグラフィー技術を用いて基板表面上に1.5μm幅、長さ60mm、厚さ1μmのライン&スペースパターンをレジストにて形成した。ただし、ライン&スペースパターンの方向は[110]方位に平行にした。この基板を表4に示す条件でホットプレートを用いて加熱することにより、ライン&スペースレジストパターンがラインと直交する方向に広がって変形し、起伏の頂点と底が滑らかな曲線で繋がった波面状の断面のレジストパターン形状を得た。このレジストパターンの断面形状(起伏)及び平面形状(ライン&スペース)をドライエッチングにてSi基板に転写した。
レジストを過酸化水素と硫酸の混合液中で除去した後(図6)、3C−SiCの成長を実施した。SiCの成長は、基板表面の炭化工程と、原料ガスの交互供給によるSiC成長工程に分けられる。SiC成長工程の詳細条件を表5に示す。なお、炭化工程の詳細条件は表1と同様とした。
【0036】
【表4】
Figure 0003576432
【0037】
【表5】
Figure 0003576432
【0038】
SiC成長工程において、原料ガスの供給サイクル数を変化させることにより、SiCの膜厚を変化させて、最表面に現れる反位相領域境界面の密度を上記と同様にして測定したところ、表6に示す結果を得た。
【0039】
【表6】
Figure 0003576432
【0040】
表6に示すSiC膜厚と反位相領域境界面密度との関係から、起伏形状を有するSi基板上にエピタキシャル成長するSiCの膜厚が、起伏頂部の間隔3.0μmの1/√2倍である2.1μmを超えたところでの反位相領域境界面の減少が大きく、従来法である表3の数値と比較して本発明の有効性が顕著であることがわかる。
【0041】
実施例2
Si(001)面を被成長基板とし、フォトリソグラフィー技術を用いて基板表面上に1.5μm幅、長さ60mm、厚さ1μmのライン&スペースパターンをレジストにて形成した。ただし、ライン&スペースパターンの方向は[110]方位に平行にした。この基板を表7に示す条件でホットプレートを用いて加熱しレジストを軟化させてレジストパターンの断面形状を変化させた。このレジストパターンの断面形状(起伏)及び平面形状(ライン&スペース)をドライエッチングにてSi基板に転写した。
レジストを過酸化水素と硫酸の混合液中で除去した後、3C−SiCの成長を実施した。SiCの成長は、基板表面の炭化工程と、原料ガスの交互供給によるSiC成長工程に分けられる。なお、炭化工程の詳細条件は表1と同様とし、SiC成長工程の詳細条件は表5と同様とした。
【0042】
【表7】
Figure 0003576432
【0043】
レジストパターンの加熱温度を150℃〜200℃の間で変化させて、起伏の傾斜角θを変化させた各基板上にそれぞれ成長させた3C−SiCについて、最表面に現れる反位相領域境界面の密度を上記と同様にして測定したところ、表8に示す結果を得た。
【0044】
【表8】
Figure 0003576432
【0045】
表8に示す起伏の斜度と反位相領域境界面密度との関係から、起伏の傾斜角θが、特に(111)面のなす角である54.7°未満であって1°以上である場合に反位相領域境界面の密度の減少が確認できる。さらに、従来法である表3の数値と比較して、同じオフ角であっても本発明の如く起伏加工基板上へ成長させた3C−SiCは反位相領域境界面密度が大幅に減少又は解消しており、本発明の有効性が顕著であることがわかる。
【0046】
実施例3
Si(001)面を被成長基板とし、フォトリソグラフィー技術を用いて基板表面上に1.5μm幅、長さ60mm、厚さ1μmのライン&スペースパターンをレジストにて形成した。ただし、ライン&スペースパターンの方向に関して、[110]方位とライン&スペースパターンの方向との交差角度ω(図7参照)を表9に示すように変化させた。その後、表4に示す加熱条件でホットプレートを用いて基板を加熱しレジストを軟化させてレジストパターンの断面形状を変形させた。このレジストパターン形状をドライエッチングにてSi基板に転写した。
レジストを過酸化水素と硫酸の混合液中で除去した後、3C−SiCの成長を実施した。SiCの成長は、基板表面の炭化工程と、原料ガスの交互供給によるSiC成長工程に分けられる。なお、炭化工程の詳細条件は表1と同様とし、SiC成長工程の詳細条件は表2と同様とした。
【0047】
交差角度ωを変化させた各基板上にそれぞれ成長させた3C−SiCについて、最表面に現れる反位相領域境界面の密度を上記と同様にして測定したところ、表9に示す結果を得た。
【0048】
【表9】
Figure 0003576432
【0049】
表9に示す交差角度ωと反位相領域境界面密度との関係から、ライン&スペースパターンの方向が、[110]方位に配向するにしたがい、反位相領域境界面の密度の減少が確認できる。さらに、従来法である表3の数値と比較して、反位相領域境界面密度が大幅に減少又は解消しており、本発明の有効性が顕著であることがわかる。
【0050】
実施例4
実施例1〜3ではライン幅とスペース幅の等しいライン&スペースパターンを有するマスクを使用して、凹部、凸部の割合が等しい起伏断面パターン持つ基板を作製し、その上に3C−SiCの成長を行った。そこで実施例4では、凸部の密度を減少させたパターンとして、ライン幅1.5μm、スペース幅がライン幅のそれぞれ2倍、4倍、8倍、16倍であるライン&スペースパターンをそれぞれ用いて基板加工を行い、その上に3C−SiCの成長を行った。基板加工条件、SiC成長条件は、ともに実施例3と同一である。ただし、起伏の傾斜角は4°とした。
起伏凹部の密度を変化させたそれぞれのパターンに対する反位相領域境界面の密度を上記と同様にして測定したところ、表10に示す結果を得た。なお、比較として、ライン幅、スペース幅がともに1.5μmのパターンを用いた場合の反位相領域境界面密度、及びライン幅が無限大(∞)に広がった極限とみなせる起伏無しのSi(001)基板(オフ角度0°)を用いた場合の反位相領域境界面密度についても同様にして測定し表10に示した。
【0051】
【表10】
Figure 0003576432
【0052】
表10から、起伏凸部の間隔が広くなり、起伏密度が減少するほど反位相領域境界面密度の増大が確認できる。さらに、従来法である表3の数値と比較して、反位相領域境界面密度が大幅に減少又は解消しており、本発明の有効性が顕著であることがわかる。
【0053】
実施例5
実施例1〜4では基板断面が波状の構造に関してのみ説明を行ってきた。本発明の有効性が波状型以外の構造に関しても保持されることは図3の説明からも明らかである。実際に以下の方法により、断面が鋸歯状の起伏加工をSi(001)面上に施し、その基板上への3C−SiCの成長を行った。
詳しくは、Si(001)面を被成長基板とし、フォトリソグラフィー技術を用いて基板表面上に1.5μm幅、長さ60mm、厚さ1μmのライン&スペースパターンをレジストにて形成した。ただし、ライン&スペースパターンの方向は[110]方位と平行とした。このレジストパターン形状をドライエッチングにてSi基板に転写した。レジストを過酸化水素と硫酸の混合液中で除去した後、基板をKOH水溶液に浸漬してウエットエッチングを行った。ウエットエッチングの条件を表11に示す。ウエットエッチングの結果、傾斜角1°、10°、55°の鋸歯状の起伏を有する単結晶Si(001)面が得られた(図8参照)。なお、図8において、4はウエットエッチング前の基板断面構造を示し、5はウエットエッチング後の鋸歯状の基板断面構造を示す。
【0054】
【表11】
Figure 0003576432
【0055】
上記基板上に3C−SiCの成長を実施した。SiCの成長は、基板表面の炭化工程と、原料ガスの交互供給によるSiC成長工程に分けられる。なお、炭化工程の詳細条件は表1と同様とし、SiC成長工程の詳細条件は表2と同様とした。
各基板上にそれぞれ成長させたSiCについて、最表面に現れる反位相領域境界面の密度を上記と同様にして測定したところ、表12に示す結果を得た。
【0056】
【表12】
Figure 0003576432
【0057】
表12から、基板断面が鋸歯状の起伏構造であっても本発明が有効性であることがわかる。また、この基板作製方法が本発明の有効性を発揮するのに適することがわかる。
【0058】
実施例6
実施例1〜5はいずれもSi(001)面基板上に立方晶炭化珪素膜を成長させたものである。実施例6では被成長基板として、単結晶の立方晶炭化珪素(単結晶3C−SiC)の(001)面上に[110]方位に平行に伸びる起伏を具備した基板、及び、単結晶の六方晶炭化珪素の(1,1,−2,0)面上に[0,0,0,1]方位に平行に伸びる起伏を具備した基板、をそれぞれ用いて、それぞれの基板表面上に立方晶炭化珪素膜もしくは六方晶炭化珪素膜の成長を行った。
その結果、実施例1〜5と同様に本発明の有効性が確認された。
【0059】
実施例7
実施例1〜6はいずれも起伏の作製方法としてSi基板(001)表面をリソグラフィー技術を用いてエッチングする方法を採用しているが、本発明の有効性をもたらす被成長基板表面の起伏作製方法はエッチング以外の他の手法にて行うことができる。実施例7ではその一例を挙げる。
Si(001)面を基板とし、この表面を熱酸化して3000オングストロームのSi酸化膜(SiO膜)を形成した。そしてこの熱酸化膜上にフォトリソグラフィー技術を用いて1.5μm幅、長さ60mm、厚さ1μmのライン&スペースパターンをレジストにて形成した。ただし、ライン&スペースパターンの方向は[110]方位と平行とした。このレジストパターン形状をドライエッチングにて熱酸化膜に転写し、ストライプ状のSiOパターン及びSi露出部を設けた。レジストを過酸化水素と硫酸の混合液中で除去した後、この基板上に図9に示すようにSiの選択的ホモエピタキシャル成長を実施した。SiC成長工程の詳細条件を表13に示す。なお、図9において、6はストライプ状のSiOパターン、7は選択的ホモエピタキシャル成長したSi層を示す。
【0060】
【表13】
Figure 0003576432
【0061】
Si成長の結果、傾斜角55°の起伏を具備する単結晶Si(001)面が得られた。この基板表面へ3C−SiCの成長を行い、反位相領域境界面密度が大幅に減少することを確認した。
【0062】
実施例8
実施例8では、Si(100)基板表面に、[110]方向に平行に研磨処理を施す方法で、[110]方向に平行な起伏形成基板を作製することを試みた。研磨には、市販されている約15mmφ径のダイヤモンドスラリー(エンギス社製:ハイプレス)と市販の研磨パッド(エンギス社製:M414)を用いた。
パッド上にダイヤモンドスラリーを一様に浸透させ、パッド上にSi(100)基板を置き、0.1〜0.2kg/cmの圧力をSi(100)基板全体に加えながら、[110]方向に平行にパッド上約20cmの距離を300回往復させて一方向研磨処理を施した。Si(100)基板表面には[110]方向に平行な研磨傷(スクラッチ)が無数に形成された。
一方向研磨処理を施したSi(100)基板表面に研磨砥粒などが付着しているので、NHOH+H+HO混合溶液(NHOH:H:HO=4:4:1の割合で液温60℃)にて洗浄し、HSO+H溶液(HSO:H=1:1の割合で液温80℃)とHF(10%)溶液に交互に3回ずつ浸して洗浄し、最後に純水でリンスした。
洗浄した後、一方向研磨処理基板上に熱酸化膜を約5000オングストローム厚形成した。熱酸化膜をHF10%溶液により除去した。研磨を施しただけであると、基板表面はスクラッチ以外にも細かい凹凸や欠陥が多く被成長基板としては用い難い。しかし、熱酸化膜を一度形成して、改めて酸化膜を除去することで、基板表面の細かい凹凸が除去されて非常にスムーズなアンジュレーション(起伏)面を得ることができた。波状断面を見ると波状凹凸の大きさは不安定で不規則であるが、密度は高い。少なくとも水平な面はない。常に起伏の状態にある。平均すると、溝の深さは30〜50nm、幅は0.5〜1.5μm程度であった。斜度は3〜5度であった。
この基板を用いてSiC膜を基板上に作製した。結果は、[110]に平行な起伏形成基板の効果が得らた。すなわち、反位相境界面の欠陥は大幅に減少する。
例えば、未研磨のSi基板上に成長したSiC膜の反位相境界面密度は8×10個/cmであるのに対し、今回の一方向研磨を施したSi基板上に成長したSiC膜の反位相境界面欠陥密度は0〜1個/cmとなる.砥粒サイズに対しての起伏形状と反位相境界面欠陥密度は表14に示す通りになる。また、研磨回数に対しての起伏の密度と反位相境界面欠陥密度は表15に示す通りになる。
【0063】
【表14】
Figure 0003576432
【表15】
Figure 0003576432
【0064】
なお実施例8では、研磨剤としてダイヤモンドスラリー15μmφサイズのものを用いたが、砥粒のサイズや砥粒の種類はこの限りではない。パッドも上記の限りではない。研磨時の基板とパッド間の負荷圧力、研磨速度や回数なども上記に限らない。また、実施例8ではSi(100)を用いたが、立方晶SiC、六方晶SiCを用いても、上記と同様の結果が得られることは言うまでもない。
【0065】
以上実施例をあげて本発明を説明したが、本発明は上記実施例に限定されるものではない。
【0066】
例えば、炭化珪素膜の成膜条件や膜厚等は実施例のものに限定されない。
【0067】
また、被成長基板としては、例えば、炭化珪素、サファイヤなどの単結晶基板等を使用できる。
【0068】
珪素の原料ガスとしては、ジクロルシラン(SiHCl)を使用したが、SiH、SiCl、SiHClなどのシラン系化合物ガスを使用することもできる。また、炭素の原料ガスとしては、アセチレン(C)を使用したが、CH、C、Cなどの炭化水素ガスを使用することもできる。
【0069】
なお、炭化珪素のエピタキシャル成長法は、膜内面欠陥の伝搬方位を特定の結晶面内に限定し得る方法であれば良く、気相化学堆積(CVD)法の他に、液相エピタキシャル成長法、スパッタリング法、分子線エピタキシー(MBE)法などを使用することもできる。また、CVD法の場合、原料ガスの交互供給法でなく、原料ガスの同時供給法を使用することもできる。
【0070】
上記本発明方法によって被成長基板上に形成された炭化珪素膜は、この炭化珪素膜表面を絶縁体と接合し、被成長基板を除去した後、炭化珪素膜の欠陥層(被成長基板側の反位相領域境界面密度を有する部分)を除去することで、絶縁体上に半導体薄膜を形成した構造のSOI(semiconductor−on−insulator)構造とすることができる。
【0071】
ここで、炭化珪素膜と絶縁体との接合は、例えば、陽極接合、低融点ガラスによる接着、直接接合、又は、接着剤による接合などの方法によって行うことができる。陽極接合は、電荷移動可能なイオンを含むガラス(例えば、ケイ酸塩ガラス、ホウケイ酸塩ガラス、ホウ酸塩ガラス、アルミノケイ酸塩ガラス、リン酸塩ガラス、フッリン酸塩ガラスなど)と炭化珪素膜とを接触させた後、電界を印加することで接合する方法である。この場合、接合温度は200〜300℃、印加電圧は500〜1000V、荷重は500〜1000g/cm程度である。低融点ガラスによる接着は、炭化珪素膜表面上にスパッタリング法などにより低融点ガラスを堆積させ、荷重及び熱を加えて、ガラス同士を接着する方法である。直接接合は、炭化珪素膜を直接ガラスに静電気力により接触、結合させ、その後、荷重及び熱を加えて界面における結合を強化する方法である。
【0072】
被成長基板の除去は、例えば、ウエットエッチングなどにより行うことができる。例えば、珪素基板の除去は、HFとHNOの混酸(HF:HNO=7:1)に浸漬することで行うことができる。
【0073】
欠陥層の除去は、炭化珪素膜の基板界面近傍に反位相境界が高密度で存在している欠陥層を除去する目的で行う。欠陥層の除去は、例えば、ドライエッチングなどにより行うことができる。例えば、CF(40sccm)、O(10sccm)をエッチングガスとし、RFパワー300Wで反応性イオンエッチングを行うことで欠陥層を除去できる。
【0074】
SOI構造体(基板)の用途としては、例えば、半導体用基板、TFT液晶用基板などにおける透明導電膜、光磁気記録媒体におけるカー効果用の誘電層、マイクロマシン、各種センサー(応力センサーなど)、X線透過膜などが挙げられる。
【0075】
【発明の効果】
以上説明したように本発明の炭化珪素の製造方法によれば、反位相領域境界面を効果的に低減又は消滅させた炭化珪素膜が得られる。
また、本発明の炭化珪素膜は、結晶境界密度が小さいため非常に優れた電気的特性を有し、各種電子素子などとして広く有用である。
【図面の簡単な説明】
【図1】オフ角を付与したSi基板上への3C−SiC成長に伴う反位相領域境界面の発生、消滅を説明するための模式的断面図である。
【図2】[1,−1,0]方位に平行な起伏を付与した単結晶Si(001)面基板を示す斜視図である。
【図3】起伏を付与したSi(001)面基板上への3C−SiC成長に伴う反位相領域境界面の消滅を説明するための模式的断面図である。
【図4】オフ角4°の基板上に成長させたSiC膜表面の走査型電子顕微鏡写真である。
【図5】オフ角無しの基板上に成長させたSiC膜表面の走査型電子顕微鏡写真である。
【図6】起伏を付与したSi基板の走査型電子顕微鏡写真である。
【図7】起伏パターンの方向を[110]方位からずらして加工したSi基板を模式的に示す斜視図である。
【図8】鋸歯状の起伏を付与したSi基板表面を模式的に示す断面図である。
【図9】エッチング以外の方法で起伏を作製する方法を説明するための模式的断面図である。
【符号の説明】
1 Si基板の単原子ステップにて発生した反位相領域境界面
2 反位相領域境界面会合点
3 Si基板表面テラスにて発生した反位相領域境界面
θ オフ角度
φ Si(001)面と反位相領域境界面のなす角(55°)
W 起伏頂部の間隔
ω 交差角度
4 ウエットエッチング前の基板断面構造
5 ウエットエッチング後の鋸歯状の基板断面構造
6 ストライプ状のSiOパターン
7 選択的ホモエピタキシャル成長したSi層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a single crystal silicon carbide film or the like as an electronic material, and more particularly to a silicon carbide having a low defect density which is preferable for manufacturing a semiconductor device, a method for manufacturing the same, and the like.
[0002]
[Prior art]
Conventionally, the growth of silicon carbide (SiC) has been classified into bulk growth by sublimation and formation of a thin film by epitaxial growth on a substrate.
[0003]
In bulk growth by the sublimation method, 6H-SiC and 4H-SiC, which are crystal polymorphs of a high-temperature phase, can be grown, and a substrate of SiC itself has been realized. However, there are many defects (micropipes) introduced into the crystal, and it is difficult to increase the substrate area.
[0004]
On the other hand, when the epitaxial growth method on a single crystal substrate is used, the controllability of impurity addition is improved, the substrate area is increased, and the micropipes, which are problems in the sublimation method, are reduced. However, in the epitaxial growth method, there is often a problem that the stacking fault density increases due to a difference in lattice constant between the substrate material and the silicon carbide film. In particular, since Si generally used as a substrate to be grown has a large lattice mismatch with SiC, generation of twins (Twin) and anti-phase region boundary (APB) in the SiC growth layer occurs. , Which impair the characteristics of SiC as an electronic element.
[0005]
As a method of reducing plane defects in the SiC film, for example, a step of providing a growth region on a substrate to be grown, and a step of forming a silicon carbide single crystal in the growth region to a thickness specific to the growth plane orientation of the substrate. A technique has been proposed that includes a step of growing the same or more, and reduces the surface defects after a specific thickness (Japanese Patent Publication No. 6-41400). However, since the two types of anti-phase regions included in SiC have a characteristic of expanding in directions orthogonal to each other with an increase in the thickness of SiC, the anti-phase region boundary surface can be effectively formed. It cannot be reduced. Furthermore, since the orientation of the superstructure formed on the grown SiC surface cannot be arbitrarily controlled, for example, when discrete growth regions are coupled with each other during growth, a new antiphase An area boundary surface is formed, and electrical characteristics are impaired.
[0006]
[Problems to be solved by the invention]
As a method of effectively reducing the anti-phase region boundary surface, K.K. Shibahara et al. Proposed a growth method on a Si (100) surface substrate whose surface normal axis was slightly inclined from [001] to [110] direction (introducing an off-angle) (Applied Physics Letter, vol. 50). 1987, p. 1888). In this method, since the atomic-level steps are introduced at equal intervals in one direction by imparting a slight inclination to the substrate, a plane defect in a direction parallel to the introduced steps propagates, while the introduced steps are formed. This has the effect of suppressing the propagation of surface defects in a direction perpendicular to the plane (a direction crossing the step). Therefore, of the two types of anti-phase regions included in the film, the anti-phase region that expands in a direction parallel to the introduced step is one of the two types of anti-phase regions that expands in the orthogonal direction. Since the enlargement is performed preferentially as compared with the phase region, the boundary surface of the anti-phase region can be effectively reduced. However, as shown in FIG. 1, this method causes an undesired generation of the anti-phase region boundary surface 1 due to an increase in the step density of the SiC / Si interface. There is a problem that does not reach. In FIG. 1, reference numeral 1 denotes an antiphase region boundary generated at a single atom step of the Si substrate, 2 denotes an antiphase region boundary meeting point, 3 denotes an antiphase region boundary generated at the Si substrate surface terrace, θ indicates the off-angle, and φ indicates the angle (54.7 °) formed between the Si (001) plane and the anti-phase region boundary surface. The anti-phase region boundary surface 3 generated on the Si substrate surface terrace has the anti-phase Although it disappears at the region boundary surface meeting point 2, the antiphase region boundary surface 1 generated in the single atom step of the Si substrate has no association partner and does not disappear.
[0007]
The present invention has been made under the above-described background, and has as its object to provide a silicon carbide film or the like in which an anti-phase region boundary surface is effectively reduced or eliminated.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following constitution.
[0009]
(Configuration 1) A method for producing a silicon carbide film in which silicon carbide is epitaxially grown on a single crystal substrate surface while inheriting its crystal orientation,The anti-phase region boundary surfaces in the silicon carbide layer introduced unintentionally (generated at the step) by the step on the substrate surface are brought into association with each other.A method of manufacturing a silicon carbide film, comprising: providing a plurality of undulations extending in one direction parallel to all or a part of the substrate surface, and growing silicon carbide on the substrate surface.
[0010]
(Structure 2) A method for manufacturing a silicon carbide film according to structure 1, wherein an epitaxial growth mechanism capable of limiting the propagation orientation of a plane defect generated in the silicon carbide film to a specific crystal plane during growth is used. .
[0011]
(Configuration 3) When the average value of the distance between the tops of the undulations on the substrate surface is W, the thickness of the silicon carbide film is W / W2 (= 21/23.) The method for manufacturing a silicon carbide film according to Configuration 1 or 2, wherein the thickness is not less than the above.
[0012]
(Structure 4) The interval between the tops of the undulations on the substrate surface is 0.01 μm or more and 10 μm or less, the height difference of the undulations is 0.01 μm or more and 20 μm or less, and the slope of the undulations is 1 ° or more and 55 °. 4. The method for manufacturing a silicon carbide film according to Configurations 1 to 3, wherein:
[0013]
(Structure 5) Structures 1 to 4, wherein the substrate is single crystal SiC, the surface of the substrate is a (001) plane, and the surface has undulations extending parallel to the [110] direction. The method for producing a silicon carbide film according to the above.
[0014]
(Structure 6) The structure 1 wherein the substrate is single crystal 3C-SiC, the surface of the substrate is a (001) plane, and the surface has undulations extending parallel to the [110] direction. 5. The method for producing a silicon carbide film according to any one of items 1 to 4.
[0015]
(Structure 7) The substrate is hexagonal single-crystal SiC, the substrate surface is a (1,1, -2,0) plane, and the surface has a [1, -1,0,0] orientation or [ 5. The method for manufacturing a silicon carbide film according to Configurations 1 to 4, wherein the silicon carbide film has undulations extending parallel to the [0,0,0,1] direction.
[0016]
(Structure 8) The method for manufacturing a silicon carbide film according to any one of structures 1 to 7, wherein the cross section of the substrate has a wavy structure or the cross section has a serrated shape..
(Configuration 9) The method of manufacturing a silicon carbide film according to Configurations 1 to 8, wherein steps of orienting the substrate surface in a mirror-symmetric direction are introduced at a statistically balanced density..
(Constitution10) Configurations 1 to9A silicon carbide film manufactured using the method described in the above.
[0017]
(Constitution11A) having a structure in which a plurality of undulations extending parallel to one direction formed on the whole or a part of the surface of the single crystal substrate are used as steps, and epitaxial growth is performed by a method capable of limiting the propagation direction of film inner surface defects to a specific crystal plane; A silicon carbide film characterized by the following.
[0018]
[Action]
[0019]
According to Configuration 1, the surface of the silicon carbide growth substrate is provided with a plurality of undulations extending in parallel in one direction, so that the K.V. The effect of introducing the off-angle shown by Shibahara et al. Can be obtained. Furthermore, in the present invention, since the steps of the silicon carbide growth substrate surface oriented in a mirror-symmetrical orientation are introduced at a statistically balanced density, the silicon carbide unintentionally introduced by the growth substrate surface steps Anti-phase region boundaries in the layer are effectively associated with each other, and a silicon carbide film in which the anti-phase region boundary is completely eliminated can be obtained. Furthermore, according to the present invention, since the individual growth regions are all in-phase regions that expand in the same direction due to the effect of introducing the off-angle, even if discrete growth regions are coupled with each other as they grow, anti-phase is generated in the coupling portion. There is an advantage that a region boundary does not occur.
The undulations according to the present invention are not required to have mathematically strictly parallelism or mirror symmetry, and are of a degree sufficient to effectively reduce or eliminate the antiphase region boundary surface. What is necessary is just to have the form of.
[0020]
As a method of forming the undulating shape on the growth target substrate, a plurality of methods such as an optical lithography technique, a press working technique, a laser working, an ultrasonic working technique, and a polishing working technique are exemplified. Whichever method is used, the final form of the surface of the substrate to be grown only needs to have a form sufficient to effectively reduce or eliminate the anti-phase region boundary surface.
If the photolithography technique is used, it is possible to transfer an arbitrary undulating shape to the substrate to be grown by arbitrarily forming a mask pattern to be transferred to the substrate. It is possible to control the width of the undulating shape by changing the line width of the pattern, for example, and to control the depth of the undulating shape and the angle of the slope by controlling the etching selectivity between the resist and the substrate. It is possible. Even when a rectangular pattern shape is disliked, it is possible to form a wavy undulation pattern by softening the resist by heat treatment after pattern transfer to the resist.
If a press working technique is used, an arbitrary undulation shape can be formed on the substrate to be grown by arbitrarily forming a press die. By forming molds of various shapes, various undulating shapes can be formed on the growth target substrate.
When laser processing or ultrasonic processing technology is used, finer processing is possible because the undulating shape is formed directly on the substrate.
If the polishing process is used, the width and depth of the undulating shape can be controlled by changing the size of the abrasive grain and the processing pressure of the polishing. When a substrate having a one-way undulation is to be manufactured, polishing is performed only in one direction.
[0021]
According to the above configuration 2, the effect of the configuration 1 can be ensured and sufficient by performing the epitaxial growth under the growth condition capable of limiting the propagation direction of the film inner surface defect to a specific crystal plane. One of the methods that satisfies this growth condition is, for example, step flow growth.
[0022]
According to Configuration 3, assuming that the average value of the interval between the tops of the undulations on the surface of the growth substrate of silicon carbide is W, the thickness of the silicon carbide film is W / √2 (= 21/2), All the anti-phase region boundaries disappear. Therefore, the thickness of the silicon carbide film is W / √2 (= 21/2))
In order to obtain the effects of the present invention with a small film thickness, it is desirable that the distance between the tops of the undulations is narrower.
[0023]
In the above configuration 4, the distance between the tops of the undulations, the height difference of the undulations, and the gradient of the undulations are specified.
The distance between the tops of the undulations is preferably 0.01 μm or more from the viewpoint of the limit of the fine processing technique in the production of undulations on the substrate to be grown. If the interval between the tops of the undulations exceeds 10 μm, the frequency of association between the boundary surfaces of the anti-phase regions extremely decreases. Therefore, the interval between the tops of the undulations is desirably 10 μm or less. More preferably, the effect of the present invention is sufficiently exhibited by the interval between the tops of the undulations of 0.1 μm or more and 3 μm or less.
The undulation height difference and interval influence the undulation inclination, that is, the step density. Although the preferred step density varies depending on the crystal growth conditions, it cannot be unconditionally determined.
In the present invention, the effect is exhibited by promoting the growth of silicon carbide in the vicinity of the step at the atomic level on the surface of the substrate to be grown. Therefore, the slope of the undulation is such that the entire slope is covered by a single step. The present invention is realized when the inclination of the (111) plane is 54.7 ° or less. Further, when the inclination is less than 1 °, the step density of the undulating slope is significantly reduced. Therefore, the inclination of the undulating slope is desirably 1 ° or more. More preferably, the effect of the present invention is sufficiently exhibited when the inclination angle of the undulating slope is 2 ° or more and 10 ° or less.
The “undulating slope” in the present invention includes all forms such as a flat surface and a curved surface. Further, the “slope of the slope in the undulation” according to the present invention means a substantial slope of the slope that contributes to the effect of the present invention, and the maximum slope, the average slope, and the like according to the form of the slope. It can be adopted as the "gradient of undulation".
[0024]
Configurations 5 to 7 define the plane orientation of the surface of the silicon carbide growth substrate and the undulation orientation.
When a single-crystal Si (001) plane or a single-crystal cubic silicon carbide (001) plane is used as the plane orientation of the surface of the growth target substrate on which cubic or hexagonal silicon carbide is grown, the direction of expansion of the antiphase region is [110], as shown in FIG. 2, the undulation of the surface is made parallel to any one of these directions (the [1, -1, 0] direction in FIG. 2). As shown, a silicon carbide film is obtained in which the antiphase region boundary surface is effectively eliminated on the axis perpendicular to the undulations (Configurations 5 and 6). In addition, in FIG. 3, W shows the space | interval of an undulation top part.
When a single-crystal hexagonal SiC (1, 1, -2, 0) plane is used as the plane orientation of the surface of the growth target substrate on which cubic or hexagonal silicon carbide is grown, the antiphase expansion direction is [1 , −1, 0, 0], [−1, 1, 0, 0], [0, 0, 0, 1] [0, 0, 0, −1]. Thus, a silicon carbide film in which the anti-phase region boundary surface is effectively eliminated as described above can be obtained (Configuration 7).
[0025]
According to Configuration 8, a silicon carbide film in which the anti-phase region boundary surface is effectively reduced or eliminated can be obtained by using the method described in any of Configurations 1 to 7.
The silicon carbide film of the present invention has very low electrical characteristics because of its low crystal boundary density, and can be suitably used as a semiconductor substrate, a substrate for crystal growth (including a seed crystal), and other electronic elements.
[0026]
According to the above-described Configuration 9, by employing such a substrate structure and a crystal growth method, a silicon carbide film in which the anti-phase region boundary surface is effectively reduced or eliminated can be obtained.
[0027]
【Example】
Hereinafter, the present invention will be described more specifically based on examples.
[0028]
Comparative example
First, in order to confirm the effect of the introduction of the off-angle, SiC (3C-SiC) was used with the Si (001) plane having no off-angle and the Si (001) plane having off-angles of 4 ° and 10 ° as growth substrates. ) Grew. The growth of SiC is divided into a carbonization process on the substrate surface and a SiC growth process by alternate supply of source gases. In the carbonization step, the processed substrate was heated from room temperature to 1050 ° C. for 120 minutes in an acetylene atmosphere. After the carbonization step, dichlorosilane and acetylene were alternately exposed to the substrate surface at 1050 ° C. to grow SiC. Table 1 shows the detailed conditions of the carbonization step, and Table 2 shows the detailed conditions of the SiC growth step.
[0029]
[Table 1]
Figure 0003576432
[0030]
[Table 2]
Figure 0003576432
[0031]
For the SiC grown on each substrate, the density of the anti-phase region boundary surface was measured, and the results shown in Table 3 were obtained.
Note that the density of the anti-phase region boundary surface was obtained by AFM observation of the silicon carbide surface. At this time, the surface of the silicon carbide was subjected to a thermal oxidation treatment, and the thermal oxide film was removed to make the antiphase boundary apparent, and then observation was performed.
[0032]
[Table 3]
Figure 0003576432
[0033]
From the relationship between the off-angle and the anti-phase region boundary surface density shown in Table 3, although the decrease in the anti-phase region boundary surface density due to the introduction of the off-angle is confirmed, it has been found that it has not been completely resolved.
[0034]
FIG. 4 shows a scanning electron micrograph of the surface of the SiC film grown on the substrate having an off-angle of 4 °, and FIG. 5 shows a scanning electron micrograph of the surface of the SiC film grown on the substrate having no off-angle. .
4 and 5, it is confirmed that the terrace area is increased by the introduction of the off-angle, and the SiC growth in the step flow mode is dominant, and the propagation direction of the plane defect is limited to a specific crystal plane. You can see that.
[0035]
Example 1
Using a Si (001) surface as a substrate to be grown, and thermally oxidizing the surface of the substrate, forming a 1.5 μm wide, 60 mm long, 1 μm thick line & space pattern on the surface of the substrate by photolithography using a resist. did. However, the direction of the line & space pattern was parallel to the [110] direction. By heating this substrate using a hot plate under the conditions shown in Table 4, the line & space resist pattern spreads and deforms in the direction orthogonal to the lines, and the top and bottom of the undulation are connected by a smooth curve. The resist pattern shape of the cross section was obtained. The cross-sectional shape (undulation) and planar shape (line & space) of this resist pattern were transferred to a Si substrate by dry etching.
After the resist was removed in a mixed solution of hydrogen peroxide and sulfuric acid (FIG. 6), 3C-SiC was grown. The growth of SiC is divided into a carbonization process on the substrate surface and a SiC growth process by alternate supply of source gases. Table 5 shows the detailed conditions of the SiC growth process. The detailed conditions of the carbonization step were the same as in Table 1.
[0036]
[Table 4]
Figure 0003576432
[0037]
[Table 5]
Figure 0003576432
[0038]
In the SiC growth step, the density of the anti-phase region boundary surface appearing on the outermost surface was measured in the same manner as above by changing the film thickness of SiC by changing the number of supply cycles of the source gas. The results shown were obtained.
[0039]
[Table 6]
Figure 0003576432
[0040]
From the relationship between the SiC film thickness and the anti-phase region boundary surface density shown in Table 6, the film thickness of SiC epitaxially grown on the Si substrate having the undulating shape is 1 / √2 times the interval between the tops of the undulations of 3.0 μm. It can be seen that the reduction of the anti-phase region boundary surface at a point exceeding 2.1 μm is large, and the effectiveness of the present invention is remarkable as compared with the numerical value in Table 3 which is a conventional method.
[0041]
Example 2
Using a Si (001) surface as a substrate to be grown, a line & space pattern having a width of 1.5 μm, a length of 60 mm and a thickness of 1 μm was formed on the surface of the substrate by photolithography using a resist. However, the direction of the line & space pattern was parallel to the [110] direction. The substrate was heated using a hot plate under the conditions shown in Table 7 to soften the resist and change the cross-sectional shape of the resist pattern. The cross-sectional shape (undulation) and the planar shape (line & space) of the resist pattern were transferred to a Si substrate by dry etching.
After removing the resist in a mixed solution of hydrogen peroxide and sulfuric acid, 3C-SiC was grown. The growth of SiC is divided into a carbonization process on the substrate surface and a SiC growth process by alternate supply of source gases. The detailed conditions of the carbonization step were the same as in Table 1, and the detailed conditions of the SiC growth step were the same as in Table 5.
[0042]
[Table 7]
Figure 0003576432
[0043]
The heating temperature of the resist pattern was changed between 150 ° C. and 200 ° C., and 3C-SiC grown on each of the substrates having the undulation inclination angle θ was changed. When the density was measured in the same manner as above, the results shown in Table 8 were obtained.
[0044]
[Table 8]
Figure 0003576432
[0045]
From the relationship between the gradient of the undulation and the density of the anti-phase region boundary surface shown in Table 8, the inclination angle θ of the undulation is particularly less than 54.7 °, which is the angle formed by the (111) plane, and is 1 ° or more. In this case, a decrease in the density of the antiphase region boundary surface can be confirmed. Furthermore, as compared with the values in Table 3 which are the conventional methods, 3C-SiC grown on the undulating substrate as in the present invention has a significantly reduced or eliminated anti-phase region boundary surface density even at the same off-angle. This indicates that the effectiveness of the present invention is remarkable.
[0046]
Example 3
Using a Si (001) surface as a substrate to be grown, a line & space pattern having a width of 1.5 μm, a length of 60 mm and a thickness of 1 μm was formed on the surface of the substrate by photolithography using a resist. However, with respect to the direction of the line & space pattern, the intersection angle ω (see FIG. 7) between the [110] direction and the direction of the line & space pattern was changed as shown in Table 9. Thereafter, the substrate was heated using a hot plate under the heating conditions shown in Table 4 to soften the resist and deform the cross-sectional shape of the resist pattern. This resist pattern shape was transferred to a Si substrate by dry etching.
After removing the resist in a mixed solution of hydrogen peroxide and sulfuric acid, 3C-SiC was grown. The growth of SiC is divided into a carbonization process on the substrate surface and a SiC growth process by alternate supply of source gases. The detailed conditions of the carbonization step were the same as those in Table 1, and the detailed conditions of the SiC growth step were the same as in Table 2.
[0047]
With respect to 3C-SiC grown on each of the substrates where the crossing angle ω was changed, the density of the antiphase region boundary surface appearing on the outermost surface was measured in the same manner as described above, and the results shown in Table 9 were obtained.
[0048]
[Table 9]
Figure 0003576432
[0049]
From the relationship between the intersection angle ω and the anti-phase region boundary surface density shown in Table 9, it can be confirmed that the density of the anti-phase region boundary surface decreases as the direction of the line & space pattern is oriented in the [110] direction. Furthermore, the anti-phase region boundary surface density is significantly reduced or eliminated as compared with the numerical values in Table 3 which is the conventional method, and it can be seen that the effectiveness of the present invention is remarkable.
[0050]
Example 4
In Examples 1 to 3, using a mask having a line and space pattern having the same line width and space width, a substrate having an undulating cross-sectional pattern having the same ratio of concave portions and convex portions was manufactured, and 3C-SiC was grown thereon. Was done. Therefore, in the fourth embodiment, a line and space pattern in which the line width is 1.5 μm and the space width is twice, four times, eight times, and sixteen times the line width is used as the pattern in which the density of the protrusions is reduced. Substrate processing, and 3C-SiC was grown thereon. The substrate processing conditions and the SiC growth conditions are the same as those of the third embodiment. However, the inclination angle of the undulation was 4 °.
When the density of the anti-phase region boundary surface for each pattern in which the density of the undulating concave portions was changed was measured in the same manner as described above, the results shown in Table 10 were obtained. As a comparison, the anti-phase region boundary surface density when a pattern having both a line width and a space width of 1.5 μm is used, and a non-undulating Si (001) which can be regarded as an extreme in which the line width is expanded to infinity (∞) The anti-phase region boundary surface density when a substrate (off angle 0 °) was used was measured in the same manner and shown in Table 10.
[0051]
[Table 10]
Figure 0003576432
[0052]
From Table 10, it can be confirmed that the density of the anti-phase region boundary surface increases as the distance between the undulation convex portions increases and the undulation density decreases. Furthermore, the anti-phase region boundary surface density is significantly reduced or eliminated as compared with the numerical values in Table 3 which is the conventional method, and it can be seen that the effectiveness of the present invention is remarkable.
[0053]
Example 5
In the first to fourth embodiments, only the structure in which the cross section of the substrate is wavy has been described. It is clear from the description of FIG. 3 that the effectiveness of the present invention is maintained for structures other than the wavy type. Actually, undulation processing having a sawtooth cross section was performed on the Si (001) surface by the following method, and 3C-SiC was grown on the substrate.
More specifically, a line & space pattern having a width of 1.5 μm, a length of 60 mm and a thickness of 1 μm was formed on the surface of the substrate by photolithography using a Si (001) surface as a substrate to be grown. However, the direction of the line & space pattern was parallel to the [110] direction. This resist pattern shape was transferred to a Si substrate by dry etching. After the resist was removed in a mixed solution of hydrogen peroxide and sulfuric acid, the substrate was immersed in an aqueous KOH solution to perform wet etching. Table 11 shows the wet etching conditions. As a result of the wet etching, a single-crystal Si (001) plane having sawtooth undulations at inclination angles of 1 °, 10 °, and 55 ° was obtained (see FIG. 8). In FIG. 8, reference numeral 4 denotes a substrate cross-sectional structure before wet etching, and reference numeral 5 denotes a sawtooth-shaped substrate cross-sectional structure after wet etching.
[0054]
[Table 11]
Figure 0003576432
[0055]
3C-SiC was grown on the substrate. The growth of SiC is divided into a carbonization process on the substrate surface and a SiC growth process by alternate supply of source gases. The detailed conditions of the carbonization step were the same as those in Table 1, and the detailed conditions of the SiC growth step were the same as in Table 2.
The density of the anti-phase region boundary surface appearing on the outermost surface of the SiC grown on each substrate was measured in the same manner as described above, and the results shown in Table 12 were obtained.
[0056]
[Table 12]
Figure 0003576432
[0057]
From Table 12, it can be seen that the present invention is effective even when the substrate cross section has a saw-toothed undulating structure. Further, it can be seen that this substrate manufacturing method is suitable for exhibiting the effectiveness of the present invention.
[0058]
Example 6
In each of Examples 1 to 5, a cubic silicon carbide film was grown on a Si (001) plane substrate. In Example 6, as a substrate to be grown, a substrate having undulations extending parallel to the [110] direction on the (001) plane of single-crystal cubic silicon carbide (single-crystal 3C-SiC), and a single-crystal hexagon A substrate having undulations extending parallel to the [0,0,0,1] direction on the (1,1, -2,0) plane of crystalline silicon carbide, and cubic A silicon carbide film or a hexagonal silicon carbide film was grown.
As a result, the effectiveness of the present invention was confirmed as in Examples 1 to 5.
[0059]
Example 7
In all of Examples 1 to 6, the method of etching the surface of the Si substrate (001) by using the lithography technique is employed as the method of forming the undulation. Can be performed by a method other than etching. A seventh embodiment will be given as an example.
A Si (001) surface was used as a substrate, and this surface was thermally oxidized to form a 3000 Å Si oxide film (SiO 2 film).2Film) was formed. A line and space pattern having a width of 1.5 μm, a length of 60 mm, and a thickness of 1 μm was formed on the thermal oxide film by using a photolithography technique. However, the direction of the line & space pattern was parallel to the [110] direction. This resist pattern shape is transferred to a thermal oxide film by dry etching and striped SiO 22A pattern and an exposed Si portion were provided. After removing the resist in a mixed solution of hydrogen peroxide and sulfuric acid, selective homoepitaxial growth of Si was performed on the substrate as shown in FIG. Table 13 shows detailed conditions of the SiC growth process. In FIG. 9, reference numeral 6 denotes a stripe-shaped SiO2Pattern 7 indicates a Si layer that has been selectively homoepitaxially grown.
[0060]
[Table 13]
Figure 0003576432
[0061]
As a result of the Si growth, a single crystal Si (001) plane having undulations with a tilt angle of 55 ° was obtained. 3C-SiC was grown on the substrate surface, and it was confirmed that the density of the anti-phase region boundary surface was significantly reduced.
[0062]
Example 8
In Example 8, an attempt was made to fabricate an undulating substrate parallel to the [110] direction by polishing the surface of the Si (100) substrate in parallel to the [110] direction. For polishing, a commercially available diamond slurry having a diameter of about 15 mmφ (manufactured by Engis: High Press) and a commercially available polishing pad (manufactured by Engis: M414) were used.
The diamond slurry is uniformly infiltrated on the pad, a Si (100) substrate is placed on the pad, and 0.1 to 0.2 kg / cm2Was applied to the entire Si (100) substrate, and reciprocated 300 times a distance of about 20 cm above the pad in parallel with the [110] direction to perform a unidirectional polishing treatment. Innumerable polishing scratches (scratches) parallel to the [110] direction were formed on the surface of the Si (100) substrate.
Since abrasive grains and the like are attached to the surface of the Si (100) substrate subjected to the one-way polishing, NH4OH + H2O2+ H2O mixed solution (NH4OH: H2O2: H2O = 4: 4: 1 at a liquid temperature of 60 ° C.)2SO4+ H2O2Solution (H2SO4: H2O2(1: 1: 1 liquid temperature of 80 ° C.) and HF (10%) solution alternately three times to wash, and finally rinsed with pure water.
After the cleaning, a thermal oxide film was formed on the one-way polished substrate to a thickness of about 5000 angstroms. The thermal oxide film was removed with a HF 10% solution. If only polishing is performed, the substrate surface has many fine irregularities and defects other than scratches, and it is difficult to use as a substrate to be grown. However, by forming a thermal oxide film once and removing the oxide film again, fine irregularities on the substrate surface were removed, and a very smooth undulation (undulating) surface could be obtained. Looking at the wavy cross section, the size of the wavy irregularities is unstable and irregular, but the density is high. At least there is no horizontal surface. It is always undulating. On average, the groove had a depth of about 30 to 50 nm and a width of about 0.5 to 1.5 μm. The slope was 3-5 degrees.
Using this substrate, a SiC film was formed on the substrate. As a result, the effect of the undulating substrate parallel to [110] was obtained. That is, defects at the antiphase boundary surface are greatly reduced.
For example, the anti-phase boundary surface density of a SiC film grown on an unpolished Si substrate is 8 × 109Pieces / cm2On the other hand, the anti-phase boundary surface defect density of the SiC film grown on the unidirectionally polished Si substrate is 0 to 1 defect / cm.2Becomes The undulation shape and the anti-phase boundary surface defect density with respect to the abrasive grain size are as shown in Table 14. Table 15 shows the undulation density and the antiphase boundary surface defect density with respect to the number of times of polishing.
[0063]
[Table 14]
Figure 0003576432
[Table 15]
Figure 0003576432
[0064]
In Example 8, a diamond slurry having a size of 15 μmφ was used as an abrasive, but the size and type of abrasive grains are not limited thereto. The pad is not limited to the above. The load pressure between the substrate and the pad during polishing, the polishing rate and the number of times are not limited to those described above. Further, although Si (100) was used in Example 8, it goes without saying that the same result as described above can be obtained by using cubic SiC or hexagonal SiC.
[0065]
Although the present invention has been described with reference to the embodiments, the present invention is not limited to the above embodiments.
[0066]
For example, the film forming conditions and the film thickness of the silicon carbide film are not limited to those of the embodiment.
[0067]
As the substrate to be grown, for example, a single crystal substrate such as silicon carbide or sapphire can be used.
[0068]
As a raw material gas for silicon, dichlorosilane (SiH2Cl2) But SiH4, SiCl4, SiHCl3For example, a silane-based compound gas such as this can be used. In addition, acetylene (C2H2) But CH4, C2H6, C3H8Hydrocarbon gas such as can be used.
[0069]
The silicon carbide epitaxial growth method may be any method as long as the propagation direction of the inner surface defect of the film can be limited to a specific crystal plane. Alternatively, a molecular beam epitaxy (MBE) method or the like can be used. Further, in the case of the CVD method, a simultaneous supply method of the source gas can be used instead of the alternate supply method of the source gas.
[0070]
The silicon carbide film formed on the substrate to be grown by the method of the present invention is formed by bonding the surface of the silicon carbide film to an insulator, removing the substrate to be grown, and then forming a defect layer on the silicon carbide film. By removing the portion having the anti-phase region boundary surface density), an SOI (semiconductor-on-insulator) structure in which a semiconductor thin film is formed over an insulator can be obtained.
[0071]
Here, the bonding between the silicon carbide film and the insulator can be performed by a method such as anodic bonding, bonding with low-melting glass, direct bonding, or bonding with an adhesive. The anodic bonding is performed by using a glass containing charge-transferable ions (for example, silicate glass, borosilicate glass, borate glass, aluminosilicate glass, phosphate glass, or fluorophosphate glass) and a silicon carbide film. Are brought into contact with each other, and then an electric field is applied to join them. In this case, the bonding temperature is 200 to 300 ° C., the applied voltage is 500 to 1000 V, and the load is 500 to 1000 g / cm.2It is about. Bonding with low-melting glass is a method in which low-melting glass is deposited on the surface of a silicon carbide film by sputtering or the like, and a load and heat are applied to bond the glasses together. Direct bonding is a method in which a silicon carbide film is directly contacted and bonded to glass by electrostatic force, and then a load and heat are applied to strengthen the bonding at the interface.
[0072]
The removal of the growth target substrate can be performed by, for example, wet etching. For example, removal of a silicon substrate is performed by using HF and HNO3Mixed acid (HF: HNO3= 7: 1).
[0073]
The removal of the defect layer is performed for the purpose of removing a defect layer in which an antiphase boundary exists at a high density near the substrate interface of the silicon carbide film. The removal of the defective layer can be performed by, for example, dry etching. For example, CF4(40sccm), O2(10 sccm) is used as an etching gas, and the defect layer can be removed by performing reactive ion etching at an RF power of 300 W.
[0074]
Applications of the SOI structure (substrate) include, for example, a transparent conductive film in a semiconductor substrate, a TFT liquid crystal substrate, a Kerr effect dielectric layer in a magneto-optical recording medium, a micromachine, various sensors (such as a stress sensor), X And a line-permeable film.
[0075]
【The invention's effect】
As described above, according to the method for manufacturing silicon carbide of the present invention, a silicon carbide film in which the anti-phase region boundary surface is effectively reduced or eliminated can be obtained.
In addition, the silicon carbide film of the present invention has very low electrical characteristics due to a low crystal boundary density, and is widely useful as various electronic devices.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view for explaining the occurrence and disappearance of an anti-phase region boundary surface accompanying 3C-SiC growth on a Si substrate having an off angle.
FIG. 2 is a perspective view showing a single-crystal Si (001) plane substrate provided with undulations parallel to the [1, -1, 0] direction.
FIG. 3 is a schematic cross-sectional view for explaining disappearance of an anti-phase region boundary surface accompanying 3C-SiC growth on an undulating Si (001) plane substrate.
FIG. 4 is a scanning electron micrograph of the surface of a SiC film grown on a substrate having an off angle of 4 °.
FIG. 5 is a scanning electron micrograph of the surface of a SiC film grown on a substrate having no off-angle.
FIG. 6 is a scanning electron micrograph of an undulated Si substrate.
FIG. 7 is a perspective view schematically showing an Si substrate processed by shifting the direction of a relief pattern from a [110] direction.
FIG. 8 is a cross-sectional view schematically showing a surface of a Si substrate having a serrated undulation.
FIG. 9 is a schematic cross-sectional view for explaining a method of forming undulations by a method other than etching.
[Explanation of symbols]
1 Anti-phase region boundary generated in single atom step of Si substrate
2 Anti-phase region boundary junction
3 Anti-phase region boundary surface generated on the surface terrace of the Si substrate
θ off angle
Angle (55 °) between φ Si (001) plane and boundary surface of antiphase region
W Spacing between undulating tops
ω intersection angle
4 Cross-sectional structure of substrate before wet etching
5. Sawtooth-shaped substrate cross-sectional structure after wet etching
6 Striped SiO2pattern
7 Selective homoepitaxially grown Si layer

Claims (15)

単結晶基板表面上にその結晶方位を引き継いで炭化珪素をエピタキシャル成長させる炭化珪素膜の製造方法であって、
前記基板として、
前記基板表面の全部又は一部に1方向に平行に伸びる複数の起伏を具備した基板であって前記各起伏の両側面が斜面状である基板を用い、
この基板表面上に炭化珪素を成長させることを特徴とする炭化珪素膜の製造方法。
A method for producing a silicon carbide film in which silicon carbide is epitaxially grown on a single crystal substrate surface by inheriting its crystal orientation,
As the substrate,
A substrate having a plurality of undulations extending in one direction parallel to all or a part of the substrate surface, wherein both side surfaces of each undulation are inclined surfaces,
A method for manufacturing a silicon carbide film, comprising growing silicon carbide on the substrate surface.
請求項1において、炭化珪素膜の成長時に、膜中に発生した面欠陥の伝搬方位を特定の結晶面内に限定し得るエピタキシャル成長機構を用いることを特徴とする炭化珪素膜の製造方法。2. The method for manufacturing a silicon carbide film according to claim 1, wherein an epitaxial growth mechanism capable of limiting the propagation direction of a plane defect generated in the silicon carbide film to a specific crystal plane during growth is used. 前記面欠陥が、反位相領域境界面であることを特徴とする請求項2に記載の炭化珪素膜の製造方法。The method according to claim 2, wherein the surface defect is an anti-phase region boundary surface. 前記起伏は、前記基板に直接起伏形状を加工して形成されたことを特徴とする請求項1乃至3のいずれかに記載の炭化珪素膜の製造方法。4. The method of manufacturing a silicon carbide film according to claim 1, wherein the undulation is formed by directly processing an undulation shape on the substrate. 前記起伏は、前記基板表面に研磨処理を施すことにより形成されたことを特徴とする請求項1乃至4のいずれかに記載の炭化珪素膜の製造方法。The method according to claim 1, wherein the undulations are formed by performing a polishing process on the surface of the substrate. 前記基板表面の起伏頂部の間隔の平均値をWとした場合、炭化珪素膜の膜厚をW/√2(=21/2)以上の膜厚とすることを特徴とする請求項1乃至5のいずれかに記載の炭化珪素膜の製造方法。The thickness of the silicon carbide film is equal to or more than W / √2 (= 2 1/2 ), where W is the average value of the interval between the tops of the undulations on the substrate surface. 5. The method for manufacturing a silicon carbide film according to any one of 5. 前記基板表面の起伏頂部の間隔が0.01μm以上10μm以下であり、起伏の高低差が0.01μm以上20μm以下であり、かつ、起伏における斜面の斜度が1°以上55°以下であることを特徴とする請求項1乃至6のいずれかに記載の炭化珪素膜の製造方法。The interval between the tops of the undulations on the substrate surface is 0.01 μm or more and 10 μm or less, the height difference between the undulations is 0.01 μm or more and 20 μm or less, and the slope of the slope in the undulations is 1 ° or more and 55 ° or less. The method for manufacturing a silicon carbide film according to claim 1, wherein: 前記基板がSiであり、該基板表面がThe substrate is Si, and the surface of the substrate is (( 001001 )) 面であることを特徴とする請求項1乃至7のいずれかに記載の炭化珪素膜の製造方法。The method for manufacturing a silicon carbide film according to claim 1, wherein the surface is a surface. 前記基板は、前記基板表面であるThe substrate is the substrate surface (( 001001 )) 表面に、On the surface, [[ 110110 ]] 方位に平行に延びる起伏を具備していることを特徴とする請求項8に記載の炭化珪素の製造方法。The method for producing silicon carbide according to claim 8, further comprising undulations extending parallel to the direction. 前記基板が単結晶SiCであり、該基板表面が(001)面であり、その表面に[110]方位に平行に伸びる起伏を具備していることを特徴とする請求項1乃至7のいずれかに記載の炭化珪素膜の製造方法。The substrate according to claim 1, wherein the substrate is single-crystal SiC, the substrate surface is a (001) plane, and the surface has undulations extending in parallel to the [110] direction. 3. The method for producing a silicon carbide film according to item 1. 前記基板が単結晶3C−SiCであり、該基板表面が(001)面であり、その表面に[110]方位に平行に伸びる起伏を具備していることを特徴とする請求項1乃至7のいずれかに記載の炭化珪素膜の製造方法。The substrate according to claim 1, wherein the substrate is single crystal 3C—SiC, the surface of the substrate is a (001) plane, and the surface has undulations extending parallel to the [110] direction. The method for producing a silicon carbide film according to any one of the above. 前記基板が六方晶の単結晶SiCであり、該基板表面が(1,1,−2,0)面であり、その表面に[1,−1,0,0]方位又は[0,0,0,1]方位に平行に伸びる起伏を具備していることを特徴とする請求項1乃至7のいずれかに記載の炭化珪素膜の製造方法。The substrate is hexagonal single-crystal SiC, the substrate surface is a (1,1, -2,0) plane, and the surface has a [1, -1,0,0] orientation or [0,0, 8. The method for manufacturing a silicon carbide film according to claim 1, wherein the silicon carbide film has undulations extending parallel to the [0, 1] direction. 前記基板断面が波状の構造又は断面が鋸歯状の起伏となっていることを特徴とする請求項1乃至12のいずれかに記載の炭化珪素膜の製造方法。The method for manufacturing the silicon carbide film according to any one of claims 1 to 12, wherein the substrate section is undulating structure or cross section has a sawtooth relief. 炭素および珪素の原料ガスを交互供給することにより、基板表面上に炭化珪素を成長させることを特徴とする請求項1乃至13のいずれかに記載の炭化珪素膜の製造方法。14. The method of manufacturing a silicon carbide film according to claim 1, wherein silicon carbide is grown on the substrate surface by alternately supplying carbon and silicon source gases. 基板表面上に炭化珪素を成長させる前に、前記基板表面を炭化する工程を有することを特徴とする請求項1乃至14のいずれかに記載の炭化珪素膜の製造方法。The method of manufacturing a silicon carbide film according to claim 1, further comprising a step of carbonizing the surface of the substrate before growing the silicon carbide on the surface of the substrate.
JP28884499A 1998-10-10 1999-10-08 Silicon carbide film and method of manufacturing the same Expired - Lifetime JP3576432B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP28884499A JP3576432B2 (en) 1998-10-10 1999-10-08 Silicon carbide film and method of manufacturing the same
US09/515,134 US6416578B1 (en) 1999-10-08 2000-02-29 Silicon carbide film and method for manufacturing the same
EP00104123A EP1130135B1 (en) 1999-10-08 2000-02-29 Silicon carbide film and method for manufacturing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP30334998 1998-10-10
JP10-303349 1998-10-10
JP28884499A JP3576432B2 (en) 1998-10-10 1999-10-08 Silicon carbide film and method of manufacturing the same
US09/515,134 US6416578B1 (en) 1999-10-08 2000-02-29 Silicon carbide film and method for manufacturing the same
EP00104123A EP1130135B1 (en) 1999-10-08 2000-02-29 Silicon carbide film and method for manufacturing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004072809A Division JP4255866B2 (en) 1998-10-10 2004-03-15 Silicon carbide film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000178740A JP2000178740A (en) 2000-06-27
JP3576432B2 true JP3576432B2 (en) 2004-10-13

Family

ID=27439935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28884499A Expired - Lifetime JP3576432B2 (en) 1998-10-10 1999-10-08 Silicon carbide film and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3576432B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2312023A2 (en) 2009-10-15 2011-04-20 Hoya Corporation Compound single crystal and method for producing the same
US11177123B2 (en) 2017-02-16 2021-11-16 Shin-Etsu Chemical Co., Ltd. Compound semiconductor laminate substrate, method for manufacturing same, and semiconductor element

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143033B1 (en) 2000-04-07 2004-09-01 Hoya Corporation Silicon carbide and method for producing the same
JP2002220299A (en) * 2001-01-19 2002-08-09 Hoya Corp SINGLE CRYSTAL SiC AND METHOD OF PRODUCING THE SAME AND SiC SEMI CONDUCTOR DEVICE AND SiC COMPOSITE MATERIAL
JP2002363751A (en) * 2001-06-06 2002-12-18 Osaka Prefecture Method and device for producing single crystal silicon carbide thin film
JP4098568B2 (en) * 2001-06-25 2008-06-11 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
JP2003068655A (en) * 2001-08-27 2003-03-07 Hoya Corp Production method for compound single crystal
JP2003068654A (en) 2001-08-27 2003-03-07 Hoya Corp Production method for compound single crystal
JP4856350B2 (en) 2002-12-16 2012-01-18 Hoya株式会社 diode
US7109521B2 (en) * 2004-03-18 2006-09-19 Cree, Inc. Silicon carbide semiconductor structures including multiple epitaxial layers having sidewalls
JP2006196631A (en) 2005-01-13 2006-07-27 Hitachi Ltd Semiconductor device and its manufacturing method
JP4628189B2 (en) * 2005-06-07 2011-02-09 Hoya株式会社 Method for producing silicon carbide single crystal
TW201232772A (en) 2010-11-15 2012-08-01 Hoya Corp Silicon carbide substrate, semiconductor device and method for manufacturing silicon carbide substrate
TWI783497B (en) * 2021-05-25 2022-11-11 鴻創應用科技有限公司 Silicon carbide composite wafer and manufacturing method thereof
EP4312248A1 (en) 2022-07-27 2024-01-31 Siltronic AG A heteroepitaxial wafer for the deposition of gallium nitride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2312023A2 (en) 2009-10-15 2011-04-20 Hoya Corporation Compound single crystal and method for producing the same
US11177123B2 (en) 2017-02-16 2021-11-16 Shin-Etsu Chemical Co., Ltd. Compound semiconductor laminate substrate, method for manufacturing same, and semiconductor element

Also Published As

Publication number Publication date
JP2000178740A (en) 2000-06-27

Similar Documents

Publication Publication Date Title
JP3576432B2 (en) Silicon carbide film and method of manufacturing the same
US6596080B2 (en) Silicon carbide and method for producing the same
US6736894B2 (en) Method of manufacturing compound single crystal
US6416578B1 (en) Silicon carbide film and method for manufacturing the same
EP3352198A1 (en) SiC COMPOSITE SUBSTRATE AND METHOD FOR MANUFACTURING SAME
JP5345499B2 (en) Compound single crystal and method for producing the same
US8133321B2 (en) Process for producing silicon carbide single crystal
US6475456B2 (en) Silicon carbide film and method for manufacturing the same
US7101774B2 (en) Method of manufacturing compound single crystal
JP4563609B2 (en) Method for producing silicon carbide
JP4255866B2 (en) Silicon carbide film and manufacturing method thereof
JP3754294B2 (en) Method for manufacturing silicon carbide single crystal substrate and method for manufacturing semiconductor device
JPH11181567A (en) Production of silicon carbide
JP2002201099A (en) Method of manufacturing silicon carbide and method of manufacturing semiconductor device
EP1840249A2 (en) Silicone carbide film and method for manufacturing the same
Nagano et al. Preparation of silicon-on-insulator substrate on large free-standing carbon nanotube film formation by surface decomposition of SiC film
JPH0324719A (en) Forming method of single crystal film and crystal products
JP2004336079A (en) Manufacturing method for compound single crystal
JPH03292734A (en) Formation of si single crystal thin film
JPH04219392A (en) Formation of crystal
JPH03292722A (en) Manufacture of silicon single crystal thin film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3576432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term