JP4563609B2 - Method for producing silicon carbide - Google Patents

Method for producing silicon carbide Download PDF

Info

Publication number
JP4563609B2
JP4563609B2 JP2001107285A JP2001107285A JP4563609B2 JP 4563609 B2 JP4563609 B2 JP 4563609B2 JP 2001107285 A JP2001107285 A JP 2001107285A JP 2001107285 A JP2001107285 A JP 2001107285A JP 4563609 B2 JP4563609 B2 JP 4563609B2
Authority
JP
Japan
Prior art keywords
silicon carbide
substrate
undulations
substrate surface
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001107285A
Other languages
Japanese (ja)
Other versions
JP2002226300A (en
Inventor
孝光 河原
弘幸 長澤
邦明 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2001107285A priority Critical patent/JP4563609B2/en
Publication of JP2002226300A publication Critical patent/JP2002226300A/en
Application granted granted Critical
Publication of JP4563609B2 publication Critical patent/JP4563609B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子材料として有用な単結晶炭化珪素膜及びその製造方法に関する。特に本発明は、半導体装置を作製する上で好ましい低欠陥密度、または結晶格子歪みの少ない単結晶炭化珪素及びその製造方法に関する。
【0002】
【従来の技術】
従来、炭化珪素(SiC)の成長は、昇華法によるバルク成長と、基板上へのエピタキシャル成長による薄膜形成とに分類されてきた。
昇華法によるバルク成長では高温相の結晶多形である六方晶(6H、4H等)炭化珪素の成長が可能であり、かつ、SiC自体の基板作製が実現されてきた。しかしながら、結晶内に導入される欠陥(マイクロパイプ)が多く、かつ基板面積の拡大が困難であった。
【0003】
これに対し、単結晶基板上へのエピタキシャル成長法を用いると、不純物添加の制御性向上や基板面積の拡大、そして昇華法で問題となっていたマイクロパイプの低減が実現される。しかしながら、エピタキシャル成長法では、しばしば、基板材料と炭化珪素膜の格子定数の違いによる積層欠陥密度の増大が問題となっている。特に、被成長基板として一般に用いられている珪素は、炭化珪素との格子不整合が大きいことから、炭化珪素成長層内における双晶(Twin)や反位相領域境界面(APB:Anti Phase Boundary)の発生が著しく、これらが炭化珪素の電子素子としての特性を損なわせている。
【0004】
炭化珪素膜内の面欠陥を低減する方法として、例えば、被成長基板上に成長領域を設ける工程と、この成長領域に炭化珪素単結晶をその厚さが、基板の成長面方位に固有な厚さと同一又はそれ以上になるように成長させる工程とを有し、固有な厚さ以降の面欠陥を低減する技術が提案されている(特公平6−41400号公報)。しかしながら、炭化珪素中に含まれる2種類の反位相領域どうしは、炭化珪素の膜厚増加に対して、互いに直交した方向へと拡大する特性を有しているため、反位相領域境界面を効果的に低減することができない。さらに、成長した炭化珪素表面に形成される超構造の向きを任意に制御することができないため、例えば、離散した成長領域どうしが成長に伴って結合した場合には、この結合部に新たに反位相領域境界面が形成されてしまい、電気的特性が損なわれるという問題があった。
【0005】
【発明が解決しようとする課題】
効果的に反位相領域境界面を低減する方法として、K.Shibaharaらにより、表面法線軸を<001>方向から<110>方向にわずかに傾けた(オフ角を導入した)Si(001)表面基板上への成長法が提案された(アプライド フィジクス レター、50巻、1987年、1888頁)。この方法では、基板に微傾斜を付けることで、原子レベルのステップが一方向に等間隔で導入されるため、導入されたステップに平行な方向の面欠陥が伝搬し、一方、導入されたステップに垂直な方向(ステップを横切る方向)への面欠陥の伝搬を抑制する効果がある。このため、炭化珪素の膜厚増加に対して、膜中に含まれる2種類の反位相領域の内、導入されたステップに平行な方向へ拡大する反位相領域が、直交する方向へ拡大する反位相領域に比べて優先的に拡大するため、反位相領域境界面を効果的に低減することができる。しかしながら、図1に示すように、この方法は、炭化珪素/珪素基板界面のステップ密度の増大により、不本意な反位相領域境界面1および双晶の生成を引き起こしてしまい、反位相領域境界面の完全解消には至らないという問題がある。なお、図1において、1は珪素基板の単原子ステップにて発生した反位相領域境界面、2は反位相領域境界面会合点、3は珪素基板表面テラスにて発生した反位相領域境界面、θはオフ角度、φはSi(001)面と反位相領域境界面のなす角(54.7°)、を示している。珪素基板表面テラスにて発生した反位相領域境界面3は反位相領域境界面会合点2で消滅するが、珪素基板の単原子ステップにて発生した反位相領域境界面1は会合相手がなく、消滅しない。
【0006】
さらに、珪素基板上に炭化珪素を形成する場合、珪素と炭化珪素の熱膨張率の違い、あるいは格子定数の不整合、炭化珪素内に発生する欠陥、あるいは歪みの影響により、炭化珪素層には内部応力が発生する。炭化珪素層に発生した内部応力により、珪素基板上に形成した炭化珪素には反りや歪みが発生し、これを半導体素子材料として使用する事が難しい状況にある。
【0007】
そこで本発明の目的は、反位相領域境界面を効果的に低減できる炭化珪素の製造方法及び内部応力に伴う反りや歪みを低減できる炭化珪素の製造方法を提供することにある。
さらに本発明の目的は、反位相領域境界面及び/又は内部応力に伴う反りや歪みが低減された単結晶炭化珪素及び/又はその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために本発明は、以下のとおりである。
[請求項1]基板表面の少なくとも一部に炭化珪素を析出させる炭化珪素の製造方法において、前記炭化珪素を析出させる基板表面は略平行に延在する複数の起伏を有し、この起伏は中心線平均粗さが3〜1000nmの範囲にあり、この起伏の斜面の斜度は1°から54.7°の範囲にあり、かつこの起伏が延在する方向と直交する断面において、斜面同士が隣接する部分の形状が曲線状であることを特徴とする炭化珪素の製造方法。
[請求項2]基板表面の少なくとも一部に炭化珪素を析出させる炭化珪素の製造方法において、前記炭化珪素を析出させる基板表面は、珪素または炭化珪素の{001}面に略平行に延在する複数の起伏が形成されたものであり、この起伏は中心線平均粗さが3〜1000nmの範囲にあり、この起伏の斜面の斜度は1°から54.7°の範囲にあり、基板表面の面積に占める{001}面の割合が10%を超えないことを特徴とする炭化珪素の製造方法。
[請求項3]基板表面の少なくとも一部に炭化珪素を析出させる炭化珪素の製造方法において、前記炭化珪素を析出させる基板表面は、珪素または立方晶炭化珪素の{111}面に略平行に延在する複数の起伏が形成されたものであり、この起伏は中心線平均粗さが3〜1000nmの範囲にあり、この起伏の斜面の斜度は1°から54.7°の範囲にあり、基板表面の面積を占める{111}面の割合が3%を超えないことを特徴とする炭化珪素の製造方法。
[請求項4]基板表面の少なくとも一部に炭化珪素を析出させる炭化珪素の製造方法において、前記炭化珪素を析出させる基板表面は、六方晶炭化珪素の{1,1,−2,0}面に略平行に延在する複数の起伏が形成されたものであり、この起伏は中心線平均粗さが3〜1000nmの範囲にあり、この起伏の斜面の斜度は1°から54.7°の範囲にあり、基板表面の面積に占める{1,1,−2,0}面の割合が10%を超えないことを特徴とする炭化珪素の製造方法。
[請求項5]基板表面の少なくとも一部に炭化珪素を析出させる炭化珪素の製造方法において、前記炭化珪素を析出させる基板表面は、六方晶炭化珪素の{0,0,0,1}面に略平行に延在する複数の起伏が形成されたものであり、この起伏は中心線平均粗さが3〜1000nmの範囲にあり、この起伏の斜面の斜度は1°から54.7°の範囲にあり、基板表面の面積に占める{0,0,0,1}面の割合が3%を超えないことを特徴とする炭化珪素の製造方法。
[請求項6]炭化珪素の析出が気相または液相より行われる請求項1〜5のいずれか1項に記載の製造方法。
[請求項7]基板表面の起伏が延在する方向と直交する断面において、斜面同士が隣接する部分の形状が曲線状である請求項2〜6のいずれか一項に記載の製造方法。括[請求項]炭化珪素の析出を、基板表面の結晶性を引き継ぎつつエピタキシャル成長させることで、面欠陥密度が1000/cm 2 以下である単結晶炭化珪素を製造する、請求項1〜7のいずれか一項に記載の製造方法。
[請求項9]炭化珪素の析出を、基板表面の結晶性を引き継ぎつつエピタキシャル成長させることで、内部応力が100MPa以下である単結晶炭化珪素を製造する、請求項1〜7のいずれか一項に記載の製造方法。
[請求項10]炭化珪素の析出を、基板表面の結晶性を引き継ぎつつエピタキシャル成長させることで、面欠陥密度が1000/cm 2 以下であり、かつ内部応力が100MPa以下である単結晶炭化珪素を製造する、請求項1〜7のいずれか一項に記載の製造方法。
[請求項11]炭化珪素の析出を、基板表面の結晶性を引き継ぎつつエピタキシャル成長させることで、エッチピット密度が10/cm 2 以下であり、かつ双晶密度が4×10 -4 Vol.%以下である単結晶炭化珪素を製造する、請求項1〜7のいずれか一項に記載の製造方法。
【0009】
【発明の実施の形態】
[請求項1に記載の発明]
請求項1に記載の発明においては、炭化珪素を析出させる基板表面に、略平行に延在する複数の起伏を有する基板を用いる。このように複数の起伏をその表面に有する基板を用いることで、各起伏の斜面においてK.Shibaharaらにより示されたオフ角の導入効果を得ることができる。また、複数の起伏をその表面に有する基板を用いることで、その基板上に析出される炭化珪素内の面欠陥を改善し、歪みを小さくし、炭化珪素内部応力を小さくする事が可能となる。
【0010】
なお、本発明でいう起伏は、数学的に厳密な意味での平行性や鏡面対称関係を要求されるわけではなく、反位相領域境界面を効果的に低減又は解消しうるのに十分な程度の形態を有していればよい。
また、本発明でいう起伏は、山部と谷部の繰り返しにより形成され、所謂原子ステップ(atomic steps)ではなく、後述のように、原子ステップよりマクロな中心線平均粗さが3〜1000nmの範囲にある起伏である。 さらに、上記山部は、基底面に対して1〜54.7°の傾きを持った斜面を有している。さらに、隣接する山部の斜面は、谷部を挟んで、対向するように形成されている。好ましくは、基底面に対する起伏表面の傾き角を全表面にわたり積分した場合、積分値は実質的に0°になるような形状に形成される。
【0011】
上記基板表面の起伏は中心線平均粗さが3〜1000nmの範囲にある。中心線平均粗さが3nm未満では、効果的なオフ角が得られにくく、面欠陥の発生密度が高くなり十分でない。また、中心線平均粗さが1000nmを超えると面欠陥同士が衝突し解消する確率が低くなり、本発明の効果は得られない。よって基板表面は中心線平均粗さが3nm以上であり、かつ1000nm以下である。本発明の効果をさらに効果的に得るためには、中心線平均粗さは10nm以上であること、及び100nm以下であることが望ましい。
【0012】
尚、基板表面の中心線平均粗さは、B0601-1982(JISハンドブック1990)で定義される中心線平均粗さ(Ra)であり、粗さ曲線からその中心線の方向に測定長さLの部分を抜き取り、この抜き取り部分の中心線をX軸、縦倍率の方向をY軸とし、粗さ曲線をy=f(x)で表したとき、次式で表される値を(μm)で表したものをいう。
【0013】
【数1】
Ra=(1/L)∫1 0│f(x)│dx
【0014】
尚、上記JIS B0601-1982での定義では、中心線平均粗さの単位はμmであるが、本発明ではナノメーター(nm)を使用する。また、中心線平均粗さ(Ra)を求めるための粗さ曲線は、原子間力顕微鏡(AFM)を用いて測定される。
【0015】
さらに、上記基板表面に延在する起伏の斜面の斜度は1°以上、及び54.7°以下の範囲内である。
本発明の方法では、被成長基板表面における原子レベルのステップ近傍での炭化珪素の成長を促進することにより、その効果が発揮されることから、起伏の斜度は、斜面全面が単一ステップに覆われる(111)面の斜度54.7°以下の傾斜において本発明が実現される。また、1°未満の斜度においては起伏斜面のステップ密度が著しく減少するため、起伏の斜面の傾斜は1°以上である。さらに、本発明の効果がより効果的に発揮されるという観点から、起伏の斜面の傾斜角は2°以上であること、及び10°以下であることが好ましい。
なお、本発明において「起伏の斜面」は、平面、曲面などのあらゆる形態を含む。また、本発明において「起伏の斜面の斜度」は、本発明の効果に寄与する実質的な斜面の斜度を意味し、斜面の平均斜度を意味する。平均斜度とは、基板表面の結晶方位面と斜面の交わる角度(評価領域の平均値)を意味する。
【0016】
さらに、上記起伏が延在する方向と直交する断面において、基板表面に存在する斜面同士が隣接する部分の形状が曲線状である。斜面同士が隣接する部分とは、表面に延在する起伏の溝の部分と尾根の部分であり、溝の底の部分も尾根の頂上も断面の形状が曲線状である。この状態は、図4に示す電子顕微鏡写真からも分かる。即ち、起伏が延在する方向と直交する断面における起伏の断面形状は、波長及び波高は一定である必要はないが、1種の正弦波のような形状を有する。このように溝の底の部分も尾根の頂上も断面の形状が曲線状であることで、面欠陥密度を低減することが可能である。
【0017】
上記のように、炭化珪素の被成長基板表面に複数の起伏を具備させることにより、各起伏の斜面においてK.Shibaharaらにより示されたオフ角の導入効果を得ることが可能となる。起伏頂部の間隔は、被成長基板への起伏作製における微細加工技術の限度の観点からは0.01μm以上が好ましい。また、起伏頂部の間隔が1000μmを超えると反位相領域境界面どうしの会合の頻度が極端に低下するため、起伏頂部の間隔は1000μm以下であることが望ましい。さらに、本発明の効果が十分に発揮されるという観点から望ましい起伏頂部の間隔は、0.1μm以上であり、100μm以下である。
【0018】
起伏の高低差及び間隔は起伏の傾斜度、つまりステップ密度を左右する。好ましいステップ密度は結晶成長条件によって変化するため一概には言えないが、通常必要な起伏高低差は起伏頂部間隔と同程度、つまり0.01μm以上20μm以下である。
【0019】
本発明では、上記のような基板全体、又は基板の一部の領域(但し、この領域は前記複数の起伏を有する)を、一つの成長域として、その上に、炭化珪素膜を連続的に形成させる。基板にこのような形状の起伏を設けたことにより、炭化珪素の成長に従って、斜面に存在するステップから発生し、成長する反位相領域境界面を前記複数の起伏間で互いに会合させることが可能である。そのため、反位相領域境界面を効果的に消滅させて取り除くことが出来、欠陥の少ない単結晶炭化珪素を得ることができる。
【0020】
請求項1に記載の発明においては、基板の材料としては、例えば、珪素または炭化珪素、サファイヤなどの単結晶基板を用いることが出来る。
これらの点は、本発明の他の請求項に記載の発明においても共通する。
【0021】
[請求項2に記載の発明]
請求項2に記載の発明においても、請求項1に記載の発明と同様に、炭化珪素を析出させる基板として、その表面が略平行に延在する複数の起伏を有し、この起伏は中心線平均粗さが3〜1000nmの範囲にあり、かつこの起伏の斜面の斜度は1°から54.7°の範囲内である基板を用いる。前記起伏の中心線平均粗さの数値限定理由及び好ましい数値範囲、起伏の斜面の斜度の数値限定理由及び好ましい数値範囲、並びにその他、製造方法等に関する共通点についての説明は、請求項1に記載の発明と同様である。但し、請求項2に記載の発明においては、前記炭化珪素を析出させる基板表面は、珪素または炭化珪素の{001}面に、前記略平行に延在する複数の起伏が形成されたものであり、基板表面の面積に占める{001}面の割合が10%を超えないことを特徴とする。このように、基板表面に起伏を設け、かつ基板表面に残る平滑な面の割合を制御する事で、その上に析出形成する炭化珪素の内部応力の制御が可能となる。
【0022】
(001)面は<001>方向に結晶相が成長し、膜に対して引っ張りの方向に応力を発生するが、基板表面に起伏を形成し(111)面の割合を増やすことで(001)面の引っ張り応力を相殺する圧縮応力を故意に発生させ、結果として面内の応力を緩和することができる。例えば(001)面の割合を基板面内の10%以下に制御し、(111)面等を含む起伏斜面を形成して、成長する結晶相同士が互いにぶつかり合うような起伏基板を用いると、基板上に成長した炭化珪素層内で<001>方向へ働く引っ張り応力と<001>方向に対して直行の方向に働く圧縮応力が発生し、応力同士が相殺し合う。これを利用して、応力の制御が可能となる。基板表面の面積に占める{001}面の割合の下限は、理想的には0%である。
【0023】
[請求項3に記載の発明]
請求項3に記載の発明においても、請求項1に記載の発明と同様に、炭化珪素を析出させる基板として、その表面が略平行に延在する複数の起伏を有し、この起伏は中心線平均粗さが3〜1000nmの範囲にあり、かつこの起伏の斜面の斜度は1°から54.7°の範囲内である基板を用いる。前記起伏の中心線平均粗さの数値限定理由及び好ましい数値範囲、起伏の斜面の斜度の数値限定理由及び好ましい数値範囲、並びにその他、製造方法等に関する共通点についての説明は、請求項1に記載の発明と同様である。但し、請求項3に記載の発明においては、前記炭化珪素を析出させる基板表面は、珪素または立方晶炭化珪素の{111}面に、前記略平行に延在する複数の起伏が形成されたものであり、基板表面の面積を占める{111}面の割合が3%を超えないことを特徴とする。このように、基板表面に起伏を設け、かつ基板表面に残る平滑な面の割合を制御する事で、請求項2に記載の発明の場合と同様に、その上に析出形成する炭化珪素の内部応力の制御が可能となる。基板表面の面積を占める{111}面の割合の下限は、理想的には0%である。
【0024】
[請求項4に記載の発明]
請求項4に記載の発明においても、請求項1に記載の発明と同様に、炭化珪素を析出させる基板として、その表面が略平行に延在する複数の起伏を有し、この起伏は中心線平均粗さが3〜1000nmの範囲にあり、かつこの起伏の斜面の斜度は1°から54.7°の範囲内である基板を用いる。前記起伏の中心線平均粗さの数値限定理由及び好ましい数値範囲、起伏の斜面の斜度の数値限定理由及び好ましい数値範囲、並びにその他、製造方法等に関する共通点についての説明は、請求項1に記載の発明と同様である。但し、請求項4に記載の発明においては、前記炭化珪素を析出させる基板表面は、六方晶炭化珪素の{1,1,−2,0}面に、前記略平行に延在する複数の起伏が形成されたものであり、基板表面の面積に占める{1,1,−2,0}面の割合が10%を超えないことを特徴とする。このように、基板表面に起伏を設け、かつ基板表面に残る平滑な面の割合を制御する事で、請求項2に記載の発明の場合と同様に、その上に析出形成する炭化珪素の内部応力の制御が可能となる。基板表面の面積に占める{1,1,−2,0}面の割合の下限は、理想的には0%である。
[請求項5に記載の発明]
請求項5に記載の発明においても、請求項1に記載の発明と同様に、炭化珪素を析出させる基板として、その表面が略平行に延在する複数の起伏を有し、この起伏は中心線平均粗さが3〜1000nmの範囲にあり、かつこの起伏の斜面の斜度は1°から54.7°の範囲内である基板を用いる。前記起伏の中心線平均粗さの数値限定理由及び好ましい数値範囲、起伏の斜面の斜度の数値限定理由及び好ましい数値範囲、並びにその他、製造方法等に関する共通点についての説明は、請求項1に記載の発明と同様である。但し、請求項5に記載の発明においては、前記炭化珪素を析出させる基板表面は、六方晶炭化珪素の{0,0,0,1}面に、前記略平行に延在する複数の起伏が形成されたものであり、基板表面の面積に占める{0,0,0,1}面の割合が3%を超えないことを特徴とする。このように、基板表面に起伏を設け、かつ基板表面に残る平滑な面の割合を制御する事で、請求項2に記載の発明の場合と同様に、その上に析出形成する炭化珪素の内部応力の制御が可能となる。基板表面の面積に占める{0,0,0,1}面の割合の下限は、理想的には0%である。
【0025】
[請求項6に記載の発明]
また、請求項1〜5に記載の発明においては、基板表面の少なくとも一部に気相または液相より炭化珪素を析出させる。気相または液相より炭化珪素を析出させる方法は公知の方法をそのまま用いることができる。
気相より炭化珪素を析出させる方法における珪素の原料ガスとしては、ジクロルシラン(SiH2Cl2)、SiH4、SiCl4、SiHCl3などのシラン系化合物ガスを使用することができる。また、炭素の原料ガスとしては、アセチレン(C22)、CH4、C26、C38などの炭化水素ガスを使用することができる。
液相法としては、多結晶若しくはアモルファスの炭化珪素を溶融する方法、または珪素源と炭素源より炭化珪素を作成する方法を挙げることが出来る。
[請求項7に記載の発明]
請求項7に記載の発明は、請求項2〜6のいずれか一項に記載の発明において、基板表面の起伏が延在する方向と直交する断面において、斜面同士が隣接する部分の形状が曲線状であることを特徴とするものである。斜面同士が隣接する部分とは、表面に延在する起伏の溝の部分と尾根の部分であり、溝の底の部分も尾根の頂上も断面の形状が曲線状である。この状態は、図4に示す電子顕微鏡写真からも分かる。即ち、起伏の断面形状は、波長及び波高は一定である必要はないが、1種の正弦波のような形状を有する。このように溝の底の部分も尾根の頂上も断面の形状が曲線状であることで、面欠陥密度を低減することが可能である。
【0026】
基板の表面に上記のような形状を有する起伏を形成するには、例えば、光リソグラフィ技術、プレス加工技術、レーザー加工や超音波加工技術、研磨加工技術などを用いることができる。何れの方法を用いる場合でも、被成長基板表面の最終形態が、各請求項に記載のように、反位相領域境面を効果的に低減または解消し得るのに十分な程度の形態を有していれば良い。
【0027】
光リソグラフィ技術を用いれば、基板に転写するマスクパターンを任意に形成することで、任意の起伏形状を被成長基板に転写することが可能である。パターンの、例えば線幅を変えることで起伏形状の幅を制御することが可能であり、また、レジストと基板のエッチング選択比を制御することで起伏形状の深さや斜面の角度を制御することが可能である。基板表面の起伏が延在する方向と直交する断面において、斜面同士が隣接する部分の形状が曲線状である基板を形成する場合には、レジストにパターン転写した後、熱処理によりレジストを軟化させることで、断面曲線状(波状形状)の起伏パターンを形成することが可能である。
【0028】
プレス加工技術を用いれば、プレス用の型を任意に形成することで、被成長基板上に任意の起伏形状を形成することが可能である。様々な形状の型を形成することで、様々な形状の起伏形状を被成長基板上に形成できる。
【0029】
レーザー加工や超音波加工技術を用いれば、基板に直接起伏形状を加工形成するのでより微細な加工が可能である。
研磨加工を用いれば、研磨の砥粒径の大きさや加工圧力を変化することで、起伏形状の幅や深さを制御することが可能である。一方向起伏形状を設けた基板を作製しようとする場合には、研磨は一方向のみに行われる。
【0030】
ドライエッチング加工を用いれば、エッチングの条件とエッチング用マスクの形状を変化させることで、起伏形状の幅や深さを制御する事が可能である。基板表面の起伏が延在する方向と直交する断面において、斜面同士が隣接する部分の形状が曲線状である基板を形成する場合は、エッチングマスクを被パターン転写基板から離して配置することにより、マスクと基板の間でエッチングが拡散して行われるために、曲線状断面を有する波状のパターンを転写させることができる。また、マスクの窓の断面が被パターン転写基板側に末広がりの形の台形を有しているマスクでもよい。
【0031】
本発明により、面欠陥密度が1000/cm2以下であることを特徴とする単結晶炭化珪素(以下、「単結晶炭化珪素I」ともいう)を製造することができる。従来から単結晶炭化珪素は知られている。しかし、従来の単結晶炭化珪素は、面欠陥密度が104/cm2を超えるものであった(例えば、A.L.,Syrkinら,Inst. Phys. Conf. Ser.No.142, p189)。それに対して、本発明により製造可能な単結晶炭化珪素は、面欠陥密度が1000/cm2以下、好ましくは100/cm2以下である。面欠陥密度の下限は、理想的には0/cm2であり、現実的には0.1/cm2程度である。このような単結晶炭化珪素は、結晶境界密度が小さいため非常に優れた電気的特性を有し、半導体基板や結晶成長用基板(種結晶を含む)、その他の電子素子として好適に使用できる。
【0032】
本発明により、内部応力が100MPa以下であることを特徴とする単結晶炭化珪素(以下、「単結晶炭化珪素II」ともいう)を製造することができる。従来から単結晶炭化珪素は知られている。しかし、従来の多結晶炭化珪素は、内部応力が100MPaを超えるものであった(例えば、T.Shokiら, SPIE. Int. Soc. Opt. Eng. Vol.3748 p456)。それに対して、本発明により製造可能な単結晶炭化珪素は、内部応力が100MPa以下、好ましくは50MPa以下である。内部応力の下限は、理想的には0MPaであり、現実的には50MPaである。このような単結晶炭化珪素は、炭化珪素の反りおよび歪みが小さく、平滑な炭化珪素を提供する事が可能となる。炭化珪素が内部応力により反っている状態では、炭化珪素表面に歪みが生じている事になる。例えば、この炭化珪素を基板としてその上に新たに炭化珪素を析出しようとする場合、歪みを引き継ぎながら炭化珪素が析出されてしまう。しかし、基板として内部応力が100MPa以下である、歪みの無い平滑な本発明により製造可能な単結晶炭化珪素を用いると、このような問題を回避することができる。
【0033】
本発明により、面欠陥密度が1000/cm2以下であり、かつ内部応力が100MPa以下であることを特徴とする単結晶炭化珪素(以下、「単結晶炭化珪素III」ともいう)を製造することができる。上述のように、従来の単結晶炭化珪素は、面欠陥密度が104/cm2を超えており、単結晶のもので内部応力が100MPa程度のものはなかった。それに対して、本発明により製造可能な単結晶炭化珪素は、面欠陥密度が1000/cm2以下、好ましくは100/cm2以下であり、内部応力が100MPa以下、好ましくは50MPa以下である。面欠陥密度の下限は、理想的には0/cm2であり、現実的には0.1/cm2程度である。また、内部応力の下限は、理想的には0MPaであり、現実的には50MPaである。このような単結晶炭化珪素は、結晶境界密度が小さいため非常に優れた電気的特性を有し、半導体基板や結晶成長用基板(種結晶を含む)、その他の電子素子として好適に使用できるとともに、炭化珪素の反りおよび歪みが小さく、平滑な炭化珪素を提供する事が可能となる。
【0034】
本発明により、エッチピット密度が10/cm2以下であり、かつ双晶密度が4×10-4Vol.%以下であることを特徴とする単結晶炭化珪素(以下、「単結晶炭化珪素IV」ともいう)を製造することができる。エッチピット密度は本発明の単結晶炭化珪素を用いたデバイスの歩留りに影響し、エッチピット密度が10/cm2以下であれば、デバイス面積が0.01cm2の場合、90%以上の歩留りが得られる。エッチピット密度は、デバイスの歩留りをより高めるという観点からは1/cm2以下であることが好ましい。また、双晶密度は4×10-4Vol.%以下であることが、デバイス面積が0.01cm2の場合、90%以上の歩留りが得られるという観点から好ましく、4×10-5Vol.%以下であることがより好ましい。
【0035】
[請求項8〜11に記載の発明]
請求項8〜11に記載の発明は、請求項1〜7のいずれか一項に記載の製造方法において、炭化珪素の析出を、基板表面の結晶性を引き継ぎつつエピタキシャル成長させることで行う前記単結晶炭化珪素I〜IVのいずれかの製造方法である。炭化珪素の析出を、基板表面の結晶性を引き継ぎつつエピタキシャル成長させる方法は、膜内面欠陥の伝搬方位を特定の結晶面内に限定し得る方法であれば良く、気相化学堆積(CVD)法、液相エピタキシャル成長法、スパッタリング法、分子線エピタキシー(MBE)法などを使用することができる。また、CVD法の場合、原料ガスの交互供給法でなく、原料ガスの同時供給法を使用することもできる。
【0036】
請求項12に記載の発明では、炭化珪素の被成長基板表面は鏡面対称な方位に配向したステップが統計的に釣り合った密度で導入されるため、被成長基板表面のステップにより不本意に導入された炭化珪素層内の反位相領域境界面同士が効果的に会合し、反位相領域境界面を完全に解消した炭化珪素膜を得ることが可能となる。さらに、オフ角の導入効果により、個々の成長領域はすべて同一方向に拡大する同位相領域となるため、離散した成長領域同士が成長に伴って結合した場合でも結合部に反位相領域境界面が生じないという利点もある。
即ち、この方法によれば、珪素基板上に炭化珪素を析出する際の課題とされている珪素と炭化珪素界面の格子定数の不整合が解消され、欠陥の発生を抑制し、高品質な炭化珪素の形成が可能となる。
【0037】
【実施例】
以下に本発明を実施例に基づいてさらに詳細に説明する。
参考例
オフ角導入による効果を確認するため、オフ角のない6インチΦの珪素基板(以下Si)の(001)面、及びオフ角がそれぞれ4°、10°付いたSi(001)面を被成長基板として、炭化珪素(以下3C−SiC)の成長を行った。3C−SiCの成長は、基板表面の炭化工程と、原料ガスの交互供給による3C−SiC成長工程に分けられる。炭化工程では、アセチレン雰囲気中で上記加工済みの基板を室温から1050℃まで120分間かけて加熱した。炭化工程の後に、1050℃にてジクロルシランとアセチレンとを交互に基板表面に暴露して、3C−SiCの成長を実施した。炭化工程の詳細条件を表1に、3C−SiC工程の詳細条件を表2にそれぞれ示す。
各基板上に成長させた炭化珪素について、反位相領域境界面の密度を測定したところ、表3に示す結果を得た。
【0038】
【表1】

Figure 0004563609
【0039】
【表2】
Figure 0004563609
【0040】
【表3】
Figure 0004563609
【0041】
なお、反位相領域境界面の密度は、3C−SiC表面をAFM観察して求めた。この際、3C−SiCの表面を熱酸化処理しさらに熱酸化膜を除去することにより反位相境界を顕在化させたあとに観察を行った。
表3に示すオフ角度と反位相領域境界面密度との関係から、オフ角導入による反位相領域境界面密度の減少が確認されるものの、完全な解消には至っていないことがわかる。
オフ角4°の基板上に成長させた3C−SiC膜表面の走査型電子顕微鏡写真を図2に示し、オフ角無しの基板上に成長させた3C−SiC膜表面の走査型電子顕微鏡写真を図3に示す。
図2及び図3から、オフ角導入によりテラス面積の拡大が確認されてステップフローモードでの3C−SiC成長が支配的となっており、面欠陥の伝搬方位が特定の結晶面内に限定されていることがわかる。しかし、これらの欠陥伝播方位は全て平行となり、消滅する事無く残存する。したがって反位相境界面欠陥等を完全に消滅することは不可能である。
【0042】
実施例1
直径6インチのSi(001)面を被成長基板とし、基板表面を熱酸化後、フォトリソグラフィー技術を用いて基板表面上に1.5μm幅、長さ60mm、厚さ1μmのライン&スペースパターンをレジストにて形成した。ただし、ライン&スペースパターンの方向は<110>方位に平行にした。この基板を表4に示す条件でホットプレートを用いて加熱することにより、ライン&スペースレジストパターンがラインと直交する方向に広がって変形し、起伏の頂点と底が滑らかな曲線で繋がった波面状の断面のレジストパターン形状を得た。このレジストパターンの断面形状(起伏)及び平面形状(ライン&スペース)をドライエッチングにて珪素基板に転写した。
【0043】
レジストを過酸化水素と硫酸の混合液中で除去して基板を得た。この基板は、電子顕微鏡観察の結果、図4に示すと同様に、基板表面に略平行に延在する複数の起伏を有しており、かつこの起伏が延在する方向と直交する断面において、斜面同士が隣接する部分の形状は曲線状であった。さらに、この起伏は中心線平均粗さが100nmであり、この起伏の斜面の平均斜度は4°であった。尚、中心線平均粗さ及び起伏斜面の斜度の測定は、原子間力顕微鏡(AFM)により行った。
【0044】
この基板に3C−SiCの成長を実施した。3C−SiCの成長は、基板表面の炭化工程と、原料ガスの交互供給による3C−SiC成長工程に分けられる。3C−SiC成長工程の詳細条件を表5に示す。なお、炭化工程の詳細条件は表1と同様とした。
3C−SiC成長工程において、原料ガスの供給サイクル数を変化させることにより、3C−SiCの膜厚を変化させて、最表面に現れる反位相領域境界面の密度を上記と同様にして測定したところ、表6に示す結果を得た。
【0045】
【表4】
Figure 0004563609
【0046】
【表5】
Figure 0004563609
【0047】
【表6】
Figure 0004563609
【0048】
表6に示す3C−SiC膜厚と反位相領域境界面密度との関係から、3C−SiCの成長が進むにしたがって面欠陥同士が衝突し、消滅していることがわかる。従来法である表3の数値と比較して本発明の有効性が顕著であることがわかる。また、本実施例で得られた6インチΦ3C−SiCのエッチピット密度と双晶密度を以下の如く調べた。3C−SiCを溶融KOH(500℃、5分)に曝した後、表面を光学顕微鏡で観察したところ、積層欠陥密度に相当するエッチピット数は6インチ全面で1,700個以下、そして密度は10/cm2以下であった。さらに、3C−SiC<111>方位に対するX線回折ロッキングカーブ(XRD)の極点観察を行い、双晶面に相当する{115}面方位の信号強度と通常の単結晶面{111}面方位の信号強度比から双晶密度を算出した。その結果、双晶密度は測定限界である4×10-4Vol.%以下であることが分かった。
【0049】
実施例2
直径6インチのSi(001)面を被成長基板とし、フォトリソグラフィー技術を用いて基板表面上に1.5μm幅、長さ60mm、厚さ1μmのライン&スペースパターンをレジストにて形成した。ただし、ライン&スペースパターンの方向は<110>方位に平行にした。この基板を表7に示す条件でホットプレートを用いて加熱しレジストを軟化させてレジストパターンの断面形状を変化させた。このレジストパターンの断面形状(起伏)及び平面形状(ライン&スペース)をドライエッチングにてSi基板に転写した。尚、レジストパターンの加熱温度は150℃〜200℃の間で変化させて、起伏の傾斜角θを表8に示すように変化させた。
レジストを過酸化水素と硫酸の混合液中で除去して基板を得た。この基板は、電子顕微鏡観察の結果、図4に示すと同様に、基板表面に略平行に延在する複数の起伏を有しており、かつこの起伏が延在する方向と直交する断面において、斜面同士が隣接する部分の形状は曲線状であった。さらに、この起伏は中心線平均粗さが100nmであり、この起伏の斜面の平均斜度は表8に示すとおりであった。尚、中心線平均粗さ及び起伏斜面の斜度の測定は、実施例1と同様に行った。
【0050】
これらの基板に3C−SiCの成長を実施した。3C−SiCの成長は、基板表面の炭化工程と、原料ガスの交互供給による3C−SiC成長工程に分けられる。なお、炭化工程の詳細条件は表1と同様とし、3C−SiC成長工程の詳細条件は表5と同様とした。
各基板上にそれぞれ成長させた3C−SiCについて、最表面に現れる反位相領域境界面の密度を上記と同様にして測定したところ、表8に示す結果を得た。
【0051】
【表7】
Figure 0004563609
【0052】
【表8】
Figure 0004563609
【0053】
表8に示す起伏の斜度と反位相領域境界面密度との関係から、起伏の傾斜角θが、特に(111)面のなす角である54.7°未満であって1°以上である場合に反位相領域境界面の密度の減少が確認できる。さらに、従来法である表3の数値と比較して、同じオフ角であっても本発明の如く起伏加工基板上へ成長させた3C−SiCは反位相領域境界面密度が大幅に減少又は解消しており、本発明の有効性が顕著であることがわかる。また、本実施例で得られた起伏の傾斜角4度の起伏加工基板上に成長させた3C−SiCのエッチピット密度と双晶密度を以下の如く調べた。3C−SiCを溶融KOH(500℃、5分)に曝した後、表面を光学顕微鏡で観察したところ、積層欠陥密度に相当するエッチピット数は6インチ全面で1,528個、そして密度は8.65/cm2であった。さらに、3C−SiC<111>方位に対するX線回折ロッキングカーブ(XRD)の極点観察を行い、双晶面に相当する{115}面方位の信号強度と通常の単結晶面{111}面方位の信号強度比から双晶密度を算出した。その結果、双晶密度は測定限界である4×10-4Vol.%以下であることが分かった。
【0054】
実施例3
実施例1、2はいずれもSi(001)面基板上に立方晶SiC膜を成長させたものである。実施例3では被成長基板として、直径6インチの単結晶の立方晶炭化珪素(3C−SiC)の(001)面上に<110>方位に平行に伸びる起伏を具備した基板、または単結晶の六方晶炭化珪素の(1,1,−2,0)面上に<0,0,0,1>方位に平行に伸びる起伏を具備した基板を用いて、各基板表面上に立方晶炭化珪素膜もしくは六方晶炭化珪素膜の成長を実施例1と同様の条件で行った。
尚、いずれの基板も、電子顕微鏡観察の結果、図4に示すと同様に、基板表面に略平行に延在する複数の起伏を有しており、かつこの起伏が延在する方向と直交する断面において、斜面同士が隣接する部分の形状は曲線状であった。さらに、この起伏は中心線平均粗さが100nmであり、この起伏の斜面の平均斜度は4°であった。
その結果、上記基板を用いた場合にも実施例1と同様に本発明の有効性が確認された。
【0055】
実施例4
直径6インチのSi(001)基板表面に、<110>方向に平行に研磨処理を施す方法で、<110>方向に平行な起伏形成基板を作製することを試みた。研磨には、市販されている約φ15μm径のダイヤモンドスラリー(エンギス社製:ハイプレス)と市販の研磨クロス(エンギス社製:M414)を用いた(表9)。 クロス上にダイヤモンドスラリーを一様に浸透させ、パッド上にSi(001)基板を置き、0.2kg/cm2の圧力をSi(001)基板全体に加えながら、<110>方向に平行にクロス上約20cmの距離を300回往復させて一方向研磨処理を施した。Si(001)基板表面には<110>方向に平行な研磨傷(スクラッチ)が無数に形成された。
【0056】
【表9】
Figure 0004563609
【0057】
一方向研磨処理を施したSi(001)基板表面に研磨砥粒などが付着しているので、NH4OH+H22+H2O混合溶液(NH4OH:H22:H2O=4:4:1の割合で液温60℃)にて洗浄し、H2SO4+H22溶液(H2SO4:H22=1:1の割合で液温80℃)とHF(10%)溶液に交互に3回ずつ浸して洗浄し、最後に純水でリンスした。
洗浄した後、熱処理装置を用い、表10に示す条件で一方向研磨処理基板上に熱酸化膜を約1μm形成した。そして熱酸化膜をHF10%溶液により除去した。研磨を施しただけであると、基板表面は得たい起伏以外にも細かい凹凸や欠陥が多く残存し、被成長基板としては用い難い。しかし、熱酸化膜1μmほど形成して改めて酸化膜を除去することで、基板表面を約2000Åエッチングし、細かい凹凸が除去されて非常にスムーズなアンジュレーション(起伏)面を得ることができた。波状断面を見ると波状凹凸の大きさは不安定で不規則であるが、密度は高い。少なくとも(001)面は10%以下であった。常に起伏の状態にある。平均すると、中心線平均粗さは20nmであった。また、溝の深さは30〜50nm、幅は0.5〜1.5μm程度であった。斜度は3〜5°であった。代表的なAFM像を図4に示す。
【0058】
【表10】
Figure 0004563609
【0059】
この基板を用いて3C−SiC膜を基板上に作製した。3C−SiCの成長は、基板表面の炭化工程と、原料ガスの交互供給による3C−SiC成長工程に分けられる。なお、炭化工程の詳細条件は表1と同様とし、3C−SiC成長工程の詳細条件は表5と同様とした。
【0060】
結果は、<110>に平行な起伏形成基板の効果が得られた。すなわち、反位相境界面の欠陥は大幅に減少することを確認した。
例えば、未研磨のSi基板上に成長した3C−SiC膜の反位相境界面密度は8×109/cm2であるのに対し、今回の一方向研磨を施したSi基板上に成長した3C−SiC膜の反位相境界面欠陥密度は0〜1/cm2となった。砥粒サイズに対しての起伏形状と反位相境界面欠陥密度は表11に示す通りになった。また、研磨回数に対しての起伏の密度と反位相境界面欠陥密度は表12に示す通りになった。
【0061】
【表11】
Figure 0004563609
【0062】
【表12】
Figure 0004563609
【0063】
砥粒サイズ15μm、研磨往復回数300回の起伏加工基板上に成長させた3C−SiCのエッチピット密度と双晶密度を以下の如く調べた。3C−SiCを溶融KOH(500℃、5分)に曝した後、表面を光学顕微鏡で観察したところ、積層欠陥密度に相当するエッチピット数は6インチ全面で1,414個、そして密度は8.00/cm2であった。さらに、3C−SiC<111>方位に対するX線回折ロッキングカーブ(XRD)の極点観察を行い、双晶面に相当する{115}面方位の信号強度と通常の単結晶面{111}面方位の信号強度比から双晶密度を算出した。その結果、双晶密度は測定限界である4×10-4Vol.%以下であることが分かった。
本実施例では、研磨剤としてダイヤモンドスラリーφ15μmサイズのものを用いたが、砥粒のサイズや砥粒の種類はこの限りではない。粒径を大きくすれば起伏の幅は広くなり、緩やかとなる。粒径を小さくすれば起伏の幅は狭くなる事は容易に想像できる。φ1〜300μm程度の粒径であれば、効果的な起伏を形成する事が可能である。パッドも上記の限りではない。研磨時の基板とクロス間の負荷圧力、研磨速度や回数なども上記に限らない。また、実施例ではSi(001)を用いたが、立方晶、六方晶の炭化珪素を用いても、上記と同様の結果が得られることは言うまでもない。また、Si(001)基板上にて<110>方向に平行な方向へ伸びる起伏を形成したが、方向はこの限りではない。
【0064】
実施例5
炭化珪素層に発生する歪みや反りを解消するために、直径6インチのSi(001)基板表面上の<110>方向に平行に研磨処理を施す方法で、<110>方向に平行な起伏形成基板を作製することを試みた。本実施例では、研磨処理回数によってSi(001)面の存在確率を制御し、本発明の効果を確認した。表9と同条件にて、研磨回数を30回から300回と変化させてSi(001)面上に一方向研磨処理を施した。Si(001)基板表面には<110>方向に平行な研磨傷(スクラッチ)が無数に形成された。
一方向研磨処理を施したSi(001)基板に研磨砥粒などが付着しているので、NH4OH+H22+H2O混合溶液(NH4OH:H22:H2O=4:4:1の割合で液温60℃)にて洗浄し、H2SO4+H22溶液(H2SO4:H22=1:1の割合で液温80℃)とHF(10%)溶液に交互に3回ずつ浸して洗浄し、最後に純水でリンスした。
洗浄した後、熱処理装置を用い、表10の条件にて一方向研磨処理基板上に熱酸化膜を約1μm形成した。そして熱酸化膜をHF10%溶液により除去した。
【0065】
この基板を用いて3C−SiC膜を基板上に作製した。3C−SiCの成長は、基板表面の炭化工程と、原料ガスの交互供給による3C−SiC成長工程に分けられる。なお、炭化工程の詳細条件は表1と同様とし、3C−SiC成長工程の詳細条件は表5と同様とした。Si(001)面の存在率と3C−SiCの内部応力ならびに反位相境界面欠陥密度の関係を表13に示す。
【0066】
【表13】
Figure 0004563609
【0067】
3C−SiC成長下地基板であるSi(001)基板上のSi(001)面が10%以下の時、SiC層内の内部応力は圧縮の方向で35MPa以下という結果が得られた。Si(001)面が10%以上であるときは、表を見て明らかな通り、非常に高い応力を示す結果となった。Si(001)面に起伏を設け、Si(001)面を10%以下に制御した効果が現れたといえる。また、Si(001)面の割合が高くなるに連れて欠陥密度が高くなる傾向を示した。欠陥密度もSi(001)面の割合が少ないほど良いことが明らかとなった。また、Si(001)面を10%以下に制御した起伏加工基板上に成長させた3C−SiCのエッチピット密度と双晶密度を以下の如く求めた。3C−SiCを溶融KOH(500℃、5分)に曝した後、表面を光学顕微鏡で観察したところ、積層欠陥密度に相当するエッチピット数は6インチ全面で1,548個、そして密度は8.76/cm2であった。さらに、3C−SiC<111>方位に対するX線回折ロッキングカーブ(XRD)の極点観察を行い、双晶面に相当する{115}面方位の信号強度と通常の単結晶面{111}面方位の信号強度比から双晶密度を算出した。その結果、双晶密度は測定限界である4×10-4Vol.%以下であることが分かった。
尚、いずれの基板も、電子顕微鏡観察の結果、図4に示すと同様に、基板表面に略平行に延在する複数の起伏を有しており、かつこの起伏が延在する方向と直交する断面において、斜面同士が隣接する部分の形状は曲線状であった。さらに、この起伏は中心線平均粗さが20〜40nmであり、この起伏の斜面の平均斜度は3〜5°であった。
【0068】
本実施例では上記のようにSi(001)面で実施した。これと同様に、Si(111)面では(111)面を3%以下とすることで、六方晶炭化珪素(1,1,−2,0)面では(1,1,−2,0)面を10%以下とすることで、六方晶炭化珪素(0,0,0,1)面では(0,0,0,1)面を3%以下とすることで、それぞれ析出させたSiC層内の内部応力が100MPa以下にできるという結果も得られた。
【0069】
実施例6
炭化珪素層に発生する歪みや反りを解消するために、直径6インチのSi(001)基板表面上の<110>方向に平行に研磨処理を施す方法で、<110>方向に平行な起伏形成基板を作製することを試みた。本実施例では、研磨砥粒の粒径によってSi(001)面の中心線平均粗さを制御し、本発明の効果を確認した。表9と同条件にて研磨を行った。Si(001)基板表面には<110>方向に平行な研磨傷(スクラッチ)が無数に形成された。
一方向研磨処理を施したSi(001)基板に研磨砥粒などが付着しているので、NH4OH+H22+H2O混合溶液(NH4OH:H22:H2O=4:4:1の割合で液温60℃)にて洗浄し、H2SO4+H22溶液(H2SO4:H22=1:1の割合で液温80℃)とHF(10%)溶液に交互に3回ずつ浸して洗浄し、最後に純水でリンスした。
洗浄した後、熱処理装置を用い、表10の条件にて一方向研磨処理基板上に熱酸化膜を約1μm形成した。そして熱酸化膜をHF10%溶液により除去した。
【0070】
この基板を用いて3C−SiC膜を基板上に作製した。3C−SiCの成長は、基板表面の炭化工程と、原料ガスの交互供給による3C−SiC成長工程に分けられる。なお、炭化工程の詳細条件は表1と同様とし、3C−SiC成長工程の詳細条件は表5と同様とした。Si(001)面の中心線平均粗さと3C−SiCの内部応力ならびに反位相境界面欠陥密度の関係を表14に示す。
【0071】
【表14】
Figure 0004563609
【0072】
中心線平均粗さが3nm以下では、内部応力は高く、面欠陥密度も高い。中心線平均粗さが3nm〜100nmの間では、内部応力も低くなり、面欠陥密度も解消される。中心線平均粗さが100nmを超えると、また面欠陥密度が高くなる傾向を示した。また、Si(001)面の中心線平均粗さを30〜50nmに制御した起伏加工基板上に成長させた3C−SiCのエッチピット密度と双晶密度を以下の如く求めた。3C−SiCを溶融KOH(500℃、5分)に曝した後、表面を光学顕微鏡で観察したところ、積層欠陥密度に相当するエッチピット数は6インチ全面で1,683個、そして密度は9.52/cm2であった。さらに、3C−SiC<111>方位に対するX線回折ロッキングカーブ(XRD)の極点観察を行い、双晶面に相当する{115}面方位の信号強度と通常の単結晶面{111}面方位の信号強度比から双晶密度を算出した。その結果、双晶密度は測定限界である4×10-4Vol.%以下であることが分かった。Si(001)面に起伏を設け、中心線平均粗さを3nm〜100nmへと制御したことで本発明の効果が現れたといえる。
尚、いずれの基板も、電子顕微鏡観察の結果、図4に示すと同様に、基板表面に略平行に延在する複数の起伏を有しており、かつこの起伏が延在する方向と直交する断面において、斜面同士が隣接する部分の形状は曲線状であった。さらに、この起伏の斜面の平均斜度は3〜5°であった。
【0073】
本実施例ではSi(001)面で実施したが、Si(111)面、六方晶炭化珪素(1,1,−2,0)、六方晶炭化珪素(0,0,0,1)でも同様の結果が得られることを確認している。
【0074】
実施例7
直径6インチのSi(001)基板の表面、および裏面に起伏を設け、3C−SiCの歪みを低減する事を試みた。起伏は表9の条件により研磨で形成した。中心線平均粗さは表裏面ともに50nm程度とした。本基板上に3C−SiCを成長した。3C−SiCの成長は、基板表面の炭化工程と、原料ガスの交互供給による3C−SiC成長工程に分けられる。なお、炭化工程の詳細条件は表1と同様とし、3C−SiC成長工程の詳細条件は表5と同様とした。成長した3C−SiC内部応力は、圧縮の方向で10MPaと非常に低応力を得た。表裏面に発生する応力が相殺し、反りや歪みが小さくなり、良好な3C−SiCの成長がもたらされた。基板表裏面に起伏を形成した効果が得られたといえよう。
本実施例はSi(100)面で行ったが、Si(111)面、六方晶炭化珪素(1,1,−2,0)、六方晶炭化珪素(0,0,0,1)でも同様の結果が得られることを確認している。
【0075】
実施例8
以上の実施例では、所定の形状を有する起伏を基板表面に形成することで高品質な3C−SiCが得られる事がわかった。本実施例では、ドライエッチングにより起伏形状を作製する方法を示す。まず、図5のような石英製のマスクを作製した。本実施例のマスクに設けたラインアンドスペースパターンは100μm間隔である。マスクの窓の長辺を珪素基板の<110>に平行に配置する。そして、珪素基板とマスクの間隔を1mmとした(図6)。これは間隔を0とすると、珪素基板には矩形のライン&スペースパターンが転写されるからである。ドライエッチングはRIE装置を用いた。エッチングには、CF4を40sccmとO2を10sccmのガスを用いた。RF電源のパワーを250Wとし、電極間の真空度を8Paとしてエッチングを4時間行った(表15)。その結果、珪素基板表面には周期200μm、深さ8μm(中心線平均粗さ60nm〜100nm)で斜度が3〜5°の安定した波状起伏が転写された。本基板上に形成した3C−SiCは、面欠陥密度が0〜1/cm2という良好な結果が得られた。また、RIE(Reactive Ion Etching(反応性イオンエッチング))で加工した波形起伏基板上に成長させた3C−SiCのエッチピット密度と双晶密度を以下の如く求めた。3C−SiCを溶融KOH(500℃、5分)に曝した後、表面を光学顕微鏡で観察したところ、積層欠陥密度に相当するエッチピット数は6インチ全面で1,290個、そして密度は7.30/cm2であった。さらに、3C−SiC<111>方位に対するX線回折ロッキングカーブ(XRD)の極点観察を行い、双晶面に相当する{115}面方位の信号強度と通常の単結晶面{111}面方位の信号強度比から双晶密度を算出した。その結果、双晶密度は測定限界である4×10-4Vol.%以下であることが分かった。
【0076】
【表15】
Figure 0004563609
【0077】
実施例では石英のマスクを用いたが、材質はこの限りではない。また、ラインアンドスペースは100μm間隔としたが、10〜1000μmと任意に設定できる。より細い窓を開けるとマスクの強度が課題となるが、ラインとスペースの間隔を1:2や1:3としてマスク強度を確保し、ドライエッチングをマスクの位置をずらしながら複数回行う事によってより密度の高い起伏を形成してもよい。マスクと被パターン転写基板の間隔を1mmとしたが、転写パターンを波状にするためであって、距離は必ずしもこの限りではない。転写されるパターンが波状になる程度の距離を有していれば十分である。マスクの窓の断面を台形にする事で、波状の起伏をエッチングにより転写する事も可能である。
【0078】
実施例9
作製したアンジュレーション基板の表面形状が鋸型である場合、図7(a)のように、急峻な凹部にエッチピットなどの欠陥が時折発生し、表面まで欠陥が伝播してしまうことが問題となる。
そこで、アンジュレーションの表面形状を波形にし、この急峻な凹部を減らすことで欠陥の発生を抑制することを試みた。
鋸型のアンジュレーションは、一方向研磨により作製した。(方法は実施例の一 方向研磨と同じであるが、最後の酸化処理は行わない)直径6インチのSi(001)基板表面に、<110>方向に平行に研磨処理を施す方法で、<110>方向に平行な起伏形成基板を作製することを試みた。研磨には、市販されている約φ15μm径のダイヤモンドスラリー(エンギス社製:ハイプレス)と市販の研磨クロス(エンギス社製:M414)を用いた(表9)。クロス上にダイヤモンドスラリーを一様に浸透させ、パッド上にSi(001)基板を置き、0.2kg/cm2の圧力をSi(001)基板全体に加えながら、<110>方向に平行にクロス上約20cmの距離を300回往復させて一方向研磨処理を施した。Si(001)基板表面には<110>方向に平行な研磨傷(スクラッチ)が無数に形成された。
【0079】
一方向研磨処理を施したSi(001)基板表面に研磨砥粒などが付着しているので、NH4OH+H22+H2O混合溶液(NH4OH:H22:H2O=4:4:1の割合で液温60℃)にて洗浄し、H2SO4+H22溶液(H2SO4:H22=1:1の割合で液温80℃)とHF(10%)溶液に交互に3回ずつ浸して洗浄し、最後に純水でリンスした。
研磨直後の表面は非常に鋭利なアンジュレーション形状(鋸型)が得られた(図7(b))。
波型のアンジュレーションは、一方向研磨により鋸型のアンジュレーションを作製した後、アンジュレーション表面に対して熱酸化処理を行うことにより、表面を波形に緩和した。
研磨後のアンジュレーション基板を洗浄した後、熱処理装置を用い、表10に示す条件で一方向研磨処理基板上に熱酸化膜を約1μm形成した。そして熱酸化膜をHF10%溶液により除去した。研磨を施しただけであると、基板表面は得たい起伏以外にも細かい凹凸や欠陥が多く残存し、被成長基板としては用い難い。しかし、熱酸化膜1μmほど形成して改めて酸化膜を除去することで、基板表面を約2000Åエッチングし、細かい凹凸が除去されて非常にスムーズなアンジュレーション(起伏)面を得ることができた。波状断面を見ると波状凹凸の大きさは不安定で不規則であるが、密度は高い。少なくとも(001)面は10%以下である。常に起伏の状態にある。平均すると、中心線平均粗さで20nm。溝の深さは30〜50nm、幅は0.5〜1.5μm程度であった。斜度は3〜5°であった。代表的なAFM像を図4に示す。
【0080】
この基板を用いて3C−SiC膜を基板上に作製した。3C−SiCの成長は、基板表面の炭化工程と、原料ガスの交互供給による3C−SiC成長工程に 分けられる。なお、炭化工程の詳細条件は表1と同様とし、3C−SiC成長工程の詳細条件は表5と同様とした。
波型のアンジュレーションは、一方向研磨により鋸型のアンジュレーションを作製した後、アンジュレーション表面に対して熱酸化処理を行うことにより、表面を波形に緩和した。
波形のアンジュレーション基板を作製し、急峻な凹部は緩やかに改善された。
また、ドライエッチングにより波形のアンジュレーションも形成し、比較を行った。
波型のアンジュレーション基板上にSiCを成長した結果、鋸型アンジュレーション基板上SiCのように、急峻な凹部に発生する欠陥は観察されなかった。(図7(c))
表に欠陥の発生密度を示す。
【0081】
【表16】
Figure 0004563609
【0082】
また、波形アンジュレーション基板上に成長させた3C−SiCのエッチピット密度と双晶密度を以下の如く求めた。3C−SiCを溶融KOH(500℃、5分)に曝した後、表面を光学顕微鏡で観察したところ、積層欠陥密度に相当するエッチピット数は6インチ全面で1,700個以下、そして密度は10/cm2以下であった。さらに、3C−SiC<111>方位に対するX線回折ロッキングカーブ(XRD)の極点観察を行い、双晶面に相当する{115}面方位の信号強度と通常の単結晶面{111}面方位の信号強度比から双晶密度を算出した。その結果、双晶密度は測定限界である4×10-4Vol.%以下であることが分かった。一方、鋸型アンジュレーション基板上に成長させた3C−SiCのエッチピット数は6インチ全面で284,356個、密度は1609/cm2となり、双晶密度は6×10-3Vol.%であった。
このように、波形アンジュレーションを作製することで、基板界面に発生する欠陥の発生密度は大幅に改善することができた。本発明によれば、基板表面に発生するエッチピット密度を10/cm2以下、双晶の混入を4×10-4Vol.%以下とすることが可能となる。さらに、直径6インチという大面積に渡って基板表面のエッチピット密度を10/cm2以下、双晶の混入を4×10-4Vol.%以下とすることができる。
以上、実施例を挙げて本発明を説明したが、本発明は上記実施例に限定されるものではない。例えば、3C−SiC膜の成膜条件や膜厚等は実施例のものに限定されない。実施例では直径6インチの基板について説明したが、本発明の効果は直径6インチの基板に限定されるものではなく、例えば、直径8インチ以上の大口径基板や直径4インチ以下の小口径基板においても同様に得ることができる。
【0083】
【発明の効果】
以上説明したように本発明の炭化珪素の製造方法によれば、反位相領域境界面を効果的に低減又は消滅させ、炭化珪素層の内部応力や歪みを低減させた炭化珪素膜が得られる。
また、本発明の炭化珪素膜は、結晶境界密度が小さいため非常に優れた電気的特性を有し、各種電子素子などとして広く有用である。
【図面の簡単な説明】
【図1】炭化珪素/珪素基板界面のステップ密度の増大による反位相領域境界面1および双晶の生成の説明図。
【図2】オフ角4°の基板上に成長させた3C−SiC膜表面の走査型電子顕微鏡写真。
【図3】オフ角無しの基板上に成長させた3C−SiC膜表面の走査型電子顕微鏡写真。
【図4】本発明で用いる、起伏が延在する方向と直交する断面において、基板表面に存在する斜面同士が隣接する部分の形状が曲線状である基板表面の電子顕微鏡写真。
【図5】実施例8で用いた石英製のマスクの概略図。
【図6】珪素基板とマスクとき関係を示す説明図。
【図7】実施例9で得られた表面形状が鋸型であるアンジュレーション基板(a)、非常に鋭利なアンジュレーション形状を有する基板(b)または表面形状が波型のアンジュレーション基板(c)に成長させた3C−SiC膜表面の走査型電子顕微鏡写真。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a single crystal silicon carbide film useful as an electronic material and a method for manufacturing the same. In particular, the present invention relates to a single crystal silicon carbide having a low defect density or a small crystal lattice distortion, which is preferable for manufacturing a semiconductor device, and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, the growth of silicon carbide (SiC) has been classified into bulk growth by sublimation and thin film formation by epitaxial growth on a substrate.
Bulk growth by sublimation allows growth of hexagonal (6H, 4H, etc.) silicon carbide, which is a crystalline polymorph of the high temperature phase, and the fabrication of a substrate of SiC itself has been realized. However, there are many defects (micropipes) introduced into the crystal and it is difficult to expand the substrate area.
[0003]
On the other hand, when the epitaxial growth method on a single crystal substrate is used, the controllability of impurity addition, the expansion of the substrate area, and the reduction of micropipes that have been problematic in the sublimation method are realized. However, in the epitaxial growth method, an increase in stacking fault density due to a difference in lattice constant between the substrate material and the silicon carbide film is often a problem. In particular, silicon generally used as a substrate to be grown has a large lattice mismatch with silicon carbide, so twins (Twin) and antiphase boundary (APB) in the silicon carbide growth layer. The generation of silicon is remarkable, and these damage the characteristics of silicon carbide as an electronic device.
[0004]
As a method for reducing surface defects in a silicon carbide film, for example, a step of providing a growth region on a substrate to be grown, and a thickness of a silicon carbide single crystal in the growth region is a thickness inherent to the growth surface orientation of the substrate. And a process of reducing the surface defects after the inherent thickness has been proposed (Japanese Patent Publication No. 6-41400). However, the two types of anti-phase regions contained in silicon carbide have the property of expanding in directions orthogonal to each other with respect to the increase in the thickness of the silicon carbide, so the anti-phase region boundary surface is effective. Cannot be reduced. In addition, since the orientation of the superstructure formed on the grown silicon carbide surface cannot be controlled arbitrarily, for example, when discrete growth regions are coupled with each other as they grow, a new reaction against the coupling portion is performed. There is a problem that a phase region boundary surface is formed, and electrical characteristics are impaired.
[0005]
[Problems to be solved by the invention]
As an effective method of reducing the anti-phase region boundary surface, K. Shibahara et al., Si (001) surface with the surface normal axis slightly tilted from the <001> direction to the <110> direction (with an off angle introduced) A growth method on the substrate was proposed (Applied Physics Letter, 50, 1987, 1888). In this method, since the atomic level steps are introduced at equal intervals in one direction by giving a slight tilt to the substrate, surface defects in the direction parallel to the introduced steps propagate, whereas the introduced steps are introduced. This has the effect of suppressing the propagation of surface defects in the direction perpendicular to the direction (the direction across the step). For this reason, the anti-phase region that expands in the direction parallel to the introduced step out of the two types of anti-phase regions included in the film increases in the direction orthogonal to the increase in the thickness of the silicon carbide film. Since the enlargement is preferentially performed compared to the phase region, the anti-phase region boundary surface can be effectively reduced. However, as shown in FIG. 1, this method causes unintentional antiphase region boundary surface 1 and twins to be generated due to an increase in the step density at the silicon carbide / silicon substrate interface. There is a problem that it cannot be completely resolved. In FIG. 1, 1 is an antiphase region boundary surface generated at a monoatomic step of a silicon substrate, 2 is an antiphase region boundary surface meeting point, 3 is an antiphase region boundary surface generated at a silicon substrate surface terrace, θ represents the off-angle, and φ represents the angle (54.7 °) formed by the Si (001) plane and the antiphase region boundary surface. The antiphase region boundary surface 3 generated on the silicon substrate surface terrace disappears at the antiphase region boundary surface meeting point 2, but the antiphase region boundary surface 1 generated in the monoatomic step of the silicon substrate has no associated partner, It will not disappear.
[0006]
In addition, when silicon carbide is formed on a silicon substrate, the silicon carbide layer is affected by the difference in thermal expansion coefficient between silicon and silicon carbide, the mismatch of lattice constants, defects generated in silicon carbide, or the influence of strain. Internal stress is generated. Due to the internal stress generated in the silicon carbide layer, the silicon carbide formed on the silicon substrate is warped and strained, and it is difficult to use this as a semiconductor element material.
[0007]
Accordingly, an object of the present invention is to provide a method for manufacturing silicon carbide that can effectively reduce the antiphase region boundary surface and a method for manufacturing silicon carbide that can reduce warpage and distortion associated with internal stress.
It is a further object of the present invention to provide a single crystal silicon carbide in which warpage and distortion associated with an antiphase region boundary surface and / or internal stress are reduced and / or a method for manufacturing the same.
[0008]
[Means for Solving the Problems]
  In order to achieve the above object, the present invention is as follows.
[Claim 1] In the method of manufacturing silicon carbide in which silicon carbide is deposited on at least a part of the substrate surface, the substrate surface on which the silicon carbide is deposited has a plurality of undulations extending substantially in parallel. The line average roughness is in the range of 3 to 1000 nm, the slope of the undulating slope is in the range of 1 ° to 54.7 °, and in the cross section perpendicular to the direction in which the undulation extends, the slopes are A method for producing silicon carbide, wherein the adjacent portions are curved.
[Claim 2] In the silicon carbide manufacturing method of depositing silicon carbide on at least a part of the substrate surface, the substrate surface on which the silicon carbide is deposited isOn the {001} face of silicon or silicon carbideMultiple undulations extending approximately parallelIs formedThis undulation has a centerline average roughness in the range of 3 to 1000 nm, and the slope of this undulation slope is in the range of 1 ° to 54.7 °., GroupA method for producing silicon carbide, wherein the ratio of the {001} plane in the area of the plate surface does not exceed 10%.
[Claim 3] In the method of manufacturing silicon carbide in which silicon carbide is deposited on at least a part of the substrate surface, the substrate surface on which the silicon carbide is deposited isOn the {111} face of silicon or cubic silicon carbideMultiple undulations extending approximately parallelIs formedThis undulation has a centerline average roughness in the range of 3 to 1000 nm, and the slope of this undulation slope is in the range of 1 ° to 54.7 °., GroupA method for producing silicon carbide, wherein a ratio of {111} planes occupying an area of a plate surface does not exceed 3%.
[Claim 4] In the method of manufacturing silicon carbide in which silicon carbide is deposited on at least a part of the substrate surface, the substrate surface on which the silicon carbide is deposited isOn the {1,1, -2,0} face of hexagonal silicon carbideMultiple undulations extending approximately parallelIs formedThis undulation has a centerline average roughness in the range of 3 to 1000 nm, and the slope of this undulation slope is in the range of 1 ° to 54.7 °., GroupA method for producing silicon carbide, characterized in that a ratio of {1, 1, -2, 0} plane occupying an area of a plate surface does not exceed 10%.
[Claim 5] In the method of manufacturing silicon carbide in which silicon carbide is deposited on at least a part of the substrate surface, the substrate surface on which the silicon carbide is deposited isOn the {0,0,0,1} face of hexagonal silicon carbideMultiple undulations extending approximately parallelIs formedThis undulation has a centerline average roughness in the range of 3 to 1000 nm, and the slope of this undulation slope is in the range of 1 ° to 54.7 °., GroupA method for producing silicon carbide, wherein a ratio of {0, 0, 0, 1} plane occupying an area of a plate surface does not exceed 3%.
[Claim 6] The method according to any one of claims 1 to 5, wherein the precipitation of silicon carbide is performed from a gas phase or a liquid phase.
[7] The manufacturing method according to any one of [2] to [6], wherein the shape of the portion where the inclined surfaces are adjacent to each other is a curved line in a cross section perpendicular to the direction in which the undulations of the substrate surface extend. Summary [claims8] By epitaxially growing silicon carbide precipitates while taking over the crystallinity of the substrate surfaceThe surface defect density is 1000 / cm 2 The manufacturing method as described in any one of Claims 1-7 which manufactures the single crystal silicon carbide which is the following.
[Claim 9] According to any one of claims 1 to 7, single crystal silicon carbide having an internal stress of 100 MPa or less is produced by epitaxially growing silicon carbide precipitation while taking over the crystallinity of the substrate surface. The manufacturing method as described.
[10] A surface defect density of 1000 / cm can be obtained by epitaxially growing silicon carbide precipitation while taking over the crystallinity of the substrate surface. 2 The manufacturing method as described in any one of Claims 1-7 which manufactures the single crystal silicon carbide which is below and an internal stress is 100 Mpa or less.
[11] An etch pit density of 10 / cm can be obtained by epitaxially growing silicon carbide precipitation while taking over the crystallinity of the substrate surface. 2 And the twin density is 4 × 10 -Four Vol. The manufacturing method as described in any one of Claims 1-7 which manufactures the single crystal silicon carbide which is% or less.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
[Invention of Claim 1]
In the first aspect of the present invention, a substrate having a plurality of undulations extending substantially in parallel is used on the surface of the substrate on which silicon carbide is deposited. Thus, by using a substrate having a plurality of undulations on its surface, the effect of introducing an off angle shown by K. Shibahara et al. Can be obtained on each undulation slope. Further, by using a substrate having a plurality of undulations on its surface, it becomes possible to improve surface defects in silicon carbide deposited on the substrate, reduce strain, and reduce silicon carbide internal stress. .
[0010]
Note that the undulations referred to in the present invention do not require mathematically strict parallelism or mirror symmetry, and are sufficient to effectively reduce or eliminate the anti-phase region boundary surface. It suffices to have the form.
Further, the undulations referred to in the present invention are formed by repetition of peaks and valleys, and are not so-called atomic steps, but have a centerline average roughness of 3 to 1000 nm, which is macroscopic than atomic steps, as will be described later. The relief is in range. Further, the mountain portion has an inclined surface having an inclination of 1 to 54.7 ° with respect to the base surface. Furthermore, the slopes of the adjacent mountain parts are formed so as to face each other across the valley part. Preferably, when the inclination angle of the undulating surface with respect to the basal plane is integrated over the entire surface, the integrated value is formed to be substantially 0 °.
[0011]
The undulations on the substrate surface have a center line average roughness of 3 to 1000 nm. If the center line average roughness is less than 3 nm, it is difficult to obtain an effective off angle, and the generation density of surface defects is increased, which is not sufficient. On the other hand, if the center line average roughness exceeds 1000 nm, the probability that the surface defects collide with each other and are reduced is lowered, and the effect of the present invention cannot be obtained. Therefore, the center surface average roughness of the substrate surface is 3 nm or more and 1000 nm or less. In order to obtain the effect of the present invention more effectively, it is desirable that the center line average roughness is 10 nm or more and 100 nm or less.
[0012]
The center line average roughness of the substrate surface is the center line average roughness (Ra) defined in B0601-1982 (JIS Handbook 1990), and the measured length L is in the direction of the center line from the roughness curve. When the part is extracted, the center line of the extracted part is the X axis, the direction of the vertical magnification is the Y axis, and the roughness curve is expressed by y = f (x), the value expressed by the following formula is (μm) Say what you represent.
[0013]
[Expression 1]
Ra = (1 / L) ∫1 0│f (x) │dx
[0014]
In the definition in the above JIS B0601-1982, the unit of the center line average roughness is μm, but nanometer (nm) is used in the present invention. Further, the roughness curve for obtaining the center line average roughness (Ra) is measured using an atomic force microscope (AFM).
[0015]
Furthermore, the slope of the undulating slope extending on the substrate surface is in the range of 1 ° or more and 54.7 ° or less.
In the method of the present invention, the effect is exerted by promoting the growth of silicon carbide in the vicinity of the atomic level step on the surface of the substrate to be grown. The present invention is realized when the slope of the (111) plane to be covered is inclined at 54.7 ° or less. Further, when the slope is less than 1 °, the step density of the undulating slope is remarkably reduced, so the slope of the undulating slope is 1 ° or more. Furthermore, from the viewpoint that the effects of the present invention are more effectively exhibited, the inclination angle of the undulating slope is preferably 2 ° or more and 10 ° or less.
In the present invention, the “undulating slope” includes all forms such as a plane and a curved surface. Further, in the present invention, “the slope of the undulating slope” means the substantial slope of the slope contributing to the effect of the present invention, and means the average slope of the slope. The average inclination means the angle (average value of the evaluation region) at which the crystal orientation plane of the substrate surface and the inclined surface intersect.
[0016]
Furthermore, in the cross section perpendicular to the direction in which the undulations extend, the shape of the portion where the inclined surfaces existing on the substrate surface are adjacent is curved. The portions where the slopes are adjacent are the undulating groove portion and the ridge portion extending on the surface, and the shape of the cross section of both the bottom portion of the groove and the top of the ridge is curved. This state can also be seen from the electron micrograph shown in FIG. That is, the cross-sectional shape of the undulation in the cross-section perpendicular to the direction in which the undulation extends extends, but the wavelength and the wave height do not need to be constant, but have a shape like a kind of sine wave. As described above, since the cross-sectional shape of both the bottom portion of the groove and the top of the ridge is curved, it is possible to reduce the surface defect density.
[0017]
As described above, by providing a plurality of undulations on the surface of the substrate to be grown of silicon carbide, it is possible to obtain the effect of introducing the off angle shown by K. Shibahara et al. The interval between the undulation tops is preferably 0.01 μm or more from the viewpoint of the limit of the microfabrication technique in producing the undulations on the growth substrate. In addition, since the frequency of association between the antiphase region boundaries extremely decreases when the interval between the undulation peaks exceeds 1000 μm, the interval between the undulation peaks is preferably 1000 μm or less. Furthermore, the distance between the undulating peaks is preferably 0.1 μm or more and 100 μm or less from the viewpoint that the effects of the present invention are sufficiently exhibited.
[0018]
The height difference and interval of the undulations influence the slope of the undulations, that is, the step density. Although the preferable step density varies depending on the crystal growth conditions, it cannot be generally stated. However, the required undulation height difference is generally the same as the undulation top interval, that is, 0.01 μm or more and 20 μm or less.
[0019]
In the present invention, the entire substrate as described above or a partial region of the substrate (however, this region has the plurality of undulations) is used as one growth region, and a silicon carbide film is continuously formed thereon. Let it form. By providing the substrate with such undulations, it is possible to associate the growing antiphase region boundary surfaces with each other between the plurality of undulations, which are generated from the steps existing on the slope according to the growth of silicon carbide. is there. Therefore, the antiphase region boundary surface can be effectively eliminated and removed, and single crystal silicon carbide with few defects can be obtained.
[0020]
In the invention described in claim 1, as a material of the substrate, for example, a single crystal substrate such as silicon, silicon carbide, or sapphire can be used.
These points are common to the inventions described in other claims of the present invention.
[0021]
[Invention of Claim 2]
  In the invention according to claim 2, similarly to the invention according to claim 1, the substrate on which silicon carbide is deposited has a plurality of undulations whose surfaces extend substantially in parallel. A substrate having an average roughness in the range of 3 to 1000 nm and a slope of the undulating slope in the range of 1 ° to 54.7 ° is used. The reason for limiting the numerical value and the preferable numerical range of the center line average roughness of the undulations, the reason for limiting the numerical value and the preferable numerical range of the slope of the undulating slope, and other common points regarding the manufacturing method are described in claim 1. This is the same as the described invention. However, in the invention described in claim 2,The substrate surface on which the silicon carbide is deposited has a plurality of undulations extending substantially in parallel to the {001} surface of silicon or silicon carbide.The ratio of the {001} plane in the area of the substrate surface does not exceed 10%. In this way, by providing the undulations on the substrate surface and controlling the ratio of the smooth surface remaining on the substrate surface, it is possible to control the internal stress of silicon carbide deposited on the substrate surface.
[0022]
In the (001) plane, a crystal phase grows in the <001> direction, and stress is generated in the tensile direction with respect to the film. However, by forming undulations on the substrate surface and increasing the proportion of the (111) plane, (001) It is possible to intentionally generate a compressive stress that cancels the tensile stress of the surface, and as a result, the stress in the surface can be relaxed. For example, when the ratio of the (001) plane is controlled to 10% or less in the substrate plane, a undulating slope including the (111) plane is formed, and a undulating substrate in which the growing crystal phases collide with each other is used. A tensile stress acting in the <001> direction and a compressive stress acting in a direction perpendicular to the <001> direction are generated in the silicon carbide layer grown on the substrate, and the stresses cancel each other. Using this, stress can be controlled. The lower limit of the ratio of the {001} plane in the area of the substrate surface is ideally 0%.
[0023]
[Invention of Claim 3]
  In the invention described in claim 3, as in the invention described in claim 1, the substrate on which silicon carbide is deposited has a plurality of undulations whose surfaces extend substantially in parallel, and the undulations are center lines. A substrate having an average roughness in the range of 3 to 1000 nm and a slope of the undulating slope in the range of 1 ° to 54.7 ° is used. The reason for limiting the numerical value and the preferable numerical range of the center line average roughness of the undulations, the reason for limiting the numerical value and the preferable numerical range of the slope of the undulating slope, and other common points regarding the manufacturing method are described in claim 1. This is the same as the described invention. However, in the invention described in claim 3,The substrate surface on which the silicon carbide is deposited has a plurality of undulations extending substantially parallel to the {111} plane of silicon or cubic silicon carbide.The ratio of the {111} plane occupying the area of the substrate surface does not exceed 3%. In this way, by providing the undulations on the substrate surface and controlling the ratio of the smooth surface remaining on the substrate surface, the inside of the silicon carbide deposited and formed on the substrate surface as in the case of the invention according to claim 2 Stress can be controlled. The lower limit of the proportion of the {111} plane that occupies the area of the substrate surface is ideally 0%.
[0024]
[Invention of Claim 4]
  In the invention according to claim 4, as in the invention according to claim 1, the substrate on which silicon carbide is deposited has a plurality of undulations whose surfaces extend substantially in parallel, and the undulations are center lines. A substrate having an average roughness in the range of 3 to 1000 nm and a slope of the undulating slope in the range of 1 ° to 54.7 ° is used. The reason for limiting the numerical value and the preferable numerical range of the center line average roughness of the undulations, the reason for limiting the numerical value and the preferable numerical range of the slope of the undulating slope, and other common points regarding the manufacturing method are described in claim 1. This is the same as the described invention. However, in the invention described in claim 4,The substrate surface on which the silicon carbide is deposited has a plurality of undulations extending substantially parallel to the {1,1, -2,0} plane of hexagonal silicon carbide.The ratio of the {1,1, -2,0} plane in the area of the substrate surface does not exceed 10%. In this way, by providing the undulations on the substrate surface and controlling the ratio of the smooth surface remaining on the substrate surface, the inside of the silicon carbide deposited and formed on the substrate surface as in the case of the invention according to claim 2 Stress can be controlled. The lower limit of the ratio of the {1,1, -2,0} plane in the area of the substrate surface is ideally 0%.
[Invention of Claim 5]
  In the invention according to claim 5, similarly to the invention according to claim 1, the substrate on which silicon carbide is deposited has a plurality of undulations whose surfaces extend substantially in parallel, and the undulations are center lines. A substrate having an average roughness in the range of 3 to 1000 nm and a slope of the undulating slope in the range of 1 ° to 54.7 ° is used. The reason for limiting the numerical value and the preferable numerical range of the center line average roughness of the undulations, the reason for limiting the numerical value and the preferable numerical range of the slope of the undulating slope, and other common points regarding the manufacturing method are described in claim 1. This is the same as the described invention. However, in the invention according to claim 5,The substrate surface on which the silicon carbide is deposited is formed by forming a plurality of undulations extending substantially in parallel on the {0, 0, 0, 1} plane of hexagonal silicon carbide.The ratio of the {0, 0, 0, 1} plane in the substrate surface area does not exceed 3%. In this way, by providing the undulations on the substrate surface and controlling the ratio of the smooth surface remaining on the substrate surface, the inside of the silicon carbide deposited and formed on the substrate surface as in the case of the invention according to claim 2 Stress can be controlled. The lower limit of the ratio of the {0, 0, 0, 1} plane in the area of the substrate surface is ideally 0%.
[0025]
[Invention of Claim 6]
In the first to fifth aspects of the present invention, silicon carbide is deposited on at least a part of the substrate surface from the vapor phase or the liquid phase. As a method for depositing silicon carbide from the gas phase or the liquid phase, a known method can be used as it is.
As a silicon source gas in the method of depositing silicon carbide from the gas phase, dichlorosilane (SiH2Cl2), SiHFour, SiClFour, SiHClThreeA silane compound gas such as can be used. As the carbon source gas, acetylene (C2H2), CHFour, C2H6, CThreeH8A hydrocarbon gas such as can be used.
Examples of the liquid phase method include a method of melting polycrystalline or amorphous silicon carbide, or a method of forming silicon carbide from a silicon source and a carbon source.
[Invention of Claim 7]
The invention according to claim 7 is the invention according to any one of claims 2 to 6, wherein the shape of the portion where the slopes are adjacent to each other is curved in the cross section perpendicular to the direction in which the undulations of the substrate surface extend. It is characterized by being in a shape. The portions where the slopes are adjacent are the undulating groove portion and the ridge portion extending on the surface, and the shape of the cross section of both the bottom portion of the groove and the top of the ridge is curved. This state can also be seen from the electron micrograph shown in FIG. That is, the cross-sectional shape of the undulation does not have to be constant in wavelength and wave height, but has a shape like one kind of sine wave. As described above, since the cross-sectional shape of both the bottom portion of the groove and the top of the ridge is curved, it is possible to reduce the surface defect density.
[0026]
In order to form the undulations having the above-described shape on the surface of the substrate, for example, an optical lithography technology, a press processing technology, a laser processing, an ultrasonic processing technology, a polishing processing technology, or the like can be used. Whichever method is used, the final form of the surface of the substrate to be grown has a form sufficient to effectively reduce or eliminate the anti-phase region boundary as described in each claim. It should be.
[0027]
If an optical lithography technique is used, an arbitrary undulating shape can be transferred to a growth substrate by arbitrarily forming a mask pattern to be transferred to the substrate. The width of the undulation shape can be controlled by changing the line width of the pattern, for example, and the depth of the undulation shape and the angle of the slope can be controlled by controlling the etching selectivity between the resist and the substrate. Is possible. When forming a substrate in which the shape of the portion where the slopes adjoin each other in a cross section perpendicular to the direction in which the undulations of the substrate surface extend is curved, the resist is softened by heat treatment after pattern transfer to the resist. Thus, it is possible to form an undulating pattern having a curved cross section (wave shape).
[0028]
If a press working technique is used, it is possible to form an arbitrary undulating shape on the substrate to be grown by arbitrarily forming a pressing die. By forming molds of various shapes, various undulating shapes can be formed on the growth substrate.
[0029]
If laser processing or ultrasonic processing technology is used, the undulation shape is directly formed on the substrate, so that finer processing is possible.
If polishing is used, it is possible to control the width and depth of the undulating shape by changing the size of the abrasive grain size and the processing pressure. When it is intended to produce a substrate having a unidirectional undulation shape, polishing is performed only in one direction.
[0030]
If dry etching is used, the width and depth of the undulation shape can be controlled by changing the etching conditions and the shape of the etching mask. In the cross section orthogonal to the direction in which the undulations of the substrate surface extend, when forming a substrate in which the shape of the portion where the slopes are adjacent is a curved shape, by disposing the etching mask away from the pattern transfer substrate, Since etching is diffused between the mask and the substrate, a wavy pattern having a curved cross section can be transferred. Alternatively, the mask may have a trapezoidal shape in which the cross section of the window of the mask widens toward the pattern transfer substrate.
[0031]
  According to the present inventionThe surface defect density is 1000 / cm2Single-crystal silicon carbide characterized by(Hereinafter also referred to as “single crystal silicon carbide I”) can be manufactured.. Conventionally, single crystal silicon carbide is known. However, conventional single crystal silicon carbide has a surface defect density of 10Four/ Cm2(For example, A.L., Syrkin et al., Inst. Phys. Conf. Ser. No. 142, p189). In contrast, the present inventionCan be manufactured bySingle crystal silicon carbide has a surface defect density of 1000 / cm.2Below, preferably 100 / cm2It is as follows. The lower limit of the surface defect density is ideally 0 / cm2In reality, 0.1 / cm2Degree. Such single crystal silicon carbide has very excellent electrical characteristics because of its low crystal boundary density, and can be suitably used as a semiconductor substrate, a crystal growth substrate (including a seed crystal), and other electronic devices.
[0032]
  According to the present inventionSingle crystal silicon carbide characterized by having an internal stress of 100 MPa or less(Hereinafter also referred to as “single crystal silicon carbide II”) can be manufactured.. Conventionally, single crystal silicon carbide is known. However, conventional polycrystalline silicon carbide has an internal stress exceeding 100 MPa (for example, T.Shoki et al., SPIE. Int. Soc. Opt. Eng. Vol. 3748 p456). In contrast, the present inventionCan be manufactured bySingle crystal silicon carbide has an internal stress of 100 MPa or less, preferably 50 MPa or less. The lower limit of the internal stress is ideally 0 MPa, and practically 50 MPa. Such single crystal silicon carbide can provide a smooth silicon carbide with less warping and distortion of silicon carbide. When silicon carbide is warped by internal stress, the silicon carbide surface is distorted. For example, when silicon carbide is newly deposited on the silicon carbide substrate, silicon carbide is deposited while taking over the strain. However, as a substrate, the internal stress is 100 MPa or less, and the present invention is smooth without distortion.Can be manufactured byWhen single crystal silicon carbide is used, such a problem can be avoided.
[0033]
  According to the present inventionThe surface defect density is 1000 / cm2And having an internal stress of 100 MPa or less(Hereinafter also referred to as “single crystal silicon carbide III”) can be produced.. As described above, the conventional single crystal silicon carbide has a surface defect density of 10%.Four/ Cm2There was no single crystal with an internal stress of about 100 MPa. In contrast, the present inventionCan be manufactured bySingle crystal silicon carbide has a surface defect density of 1000 / cm.2Below, preferably 100 / cm2The internal stress is 100 MPa or less, preferably 50 MPa or less. The lower limit of the surface defect density is ideally 0 / cm2In reality, 0.1 / cm2Degree. Moreover, the lower limit of the internal stress is ideally 0 MPa, and practically 50 MPa. Such single crystal silicon carbide has very excellent electrical characteristics because of its low crystal boundary density, and can be suitably used as a semiconductor substrate, a crystal growth substrate (including a seed crystal), and other electronic devices. Further, it is possible to provide a smooth silicon carbide in which warpage and distortion of silicon carbide are small.
[0034]
  According to the present inventionEtch pit density is 10 / cm2And the twin density is 4 × 10-FourVol. % Single crystal silicon carbide(Hereinafter also referred to as “single crystal silicon carbide IV”) can be manufactured.. The etch pit density affects the yield of devices using the single crystal silicon carbide of the present invention, and the etch pit density is 10 / cm.2If the device area is 0.01 cm or less2In this case, a yield of 90% or more can be obtained. Etch pit density is 1 / cm from the viewpoint of increasing device yield.2The following is preferable. The twin density is 4 × 10.-FourVol. % Or less, the device area is 0.01 cm2Is preferable from the viewpoint that a yield of 90% or more can be obtained.-FiveVol. % Or less is more preferable.
[0035]
[Claims8-11Invention described in]
  Claim8-11In the manufacturing method according to any one of claims 1 to 7, the invention described in (1) is performed by epitaxially growing silicon carbide while precipitating the crystallinity of the substrate surface.SaidSingle crystal silicon carbideAny of I-IVIt is a manufacturing method. The method of epitaxially growing silicon carbide precipitation while taking over the crystallinity of the substrate surface may be any method that can limit the propagation direction of defects on the inner surface of the film within a specific crystal plane, such as a chemical vapor deposition (CVD) method, A liquid phase epitaxial growth method, a sputtering method, a molecular beam epitaxy (MBE) method, or the like can be used. In the case of the CVD method, the simultaneous supply method of source gases can be used instead of the source gas alternate supply method.
[0036]
In the invention according to the twelfth aspect, since the step of orientation of the silicon carbide substrate to be grown in a mirror-symmetrical orientation is introduced at a density that is statistically balanced, it is introduced unintentionally by the step of the substrate surface to be grown. Thus, the anti-phase region boundary surfaces in the silicon carbide layer are effectively associated with each other, and a silicon carbide film in which the anti-phase region boundary surface is completely eliminated can be obtained. Furthermore, because of the effect of introducing the off-angle, the individual growth regions all become the same phase region that expands in the same direction, so even when the discrete growth regions are joined together with growth, an antiphase region boundary surface is formed at the joint. There is also an advantage that it does not occur.
That is, according to this method, the lattice constant mismatch between the silicon and silicon carbide interface, which is a problem when silicon carbide is deposited on the silicon substrate, is eliminated, the generation of defects is suppressed, and high quality carbonization is performed. Silicon can be formed.
[0037]
【Example】
Hereinafter, the present invention will be described in more detail based on examples.
Reference example
In order to confirm the effect of introducing the off-angle, the (001) plane of a 6-inch Φ silicon substrate (hereinafter referred to as Si) without an off-angle and the Si (001) plane with off-angles of 4 ° and 10 °, respectively, are grown. As a substrate, silicon carbide (hereinafter 3C-SiC) was grown. The growth of 3C-SiC is divided into a carbonization process on the substrate surface and a 3C-SiC growth process by alternately supplying source gases. In the carbonization step, the processed substrate was heated from room temperature to 1050 ° C. for 120 minutes in an acetylene atmosphere. After the carbonization step, dichlorosilane and acetylene were alternately exposed to the substrate surface at 1050 ° C. to grow 3C—SiC. Detailed conditions of the carbonization process are shown in Table 1, and detailed conditions of the 3C-SiC process are shown in Table 2, respectively.
When the density of the antiphase region boundary surface was measured for silicon carbide grown on each substrate, the results shown in Table 3 were obtained.
[0038]
[Table 1]
Figure 0004563609
[0039]
[Table 2]
Figure 0004563609
[0040]
[Table 3]
Figure 0004563609
[0041]
In addition, the density of the antiphase region boundary surface was obtained by observing the 3C-SiC surface with AFM. At this time, the surface of 3C—SiC was subjected to thermal oxidation treatment, and the thermal oxide film was removed to observe the antiphase boundary, thereby observing.
From the relationship between the off-angle and the anti-phase region boundary surface density shown in Table 3, it can be seen that although the decrease of the anti-phase region boundary surface density due to the introduction of the off-angle is confirmed, it has not been completely eliminated.
A scanning electron micrograph of the surface of the 3C-SiC film grown on the substrate having an off angle of 4 ° is shown in FIG. 2, and a scanning electron micrograph of the surface of the 3C-SiC film grown on the substrate having no off angle is shown in FIG. As shown in FIG.
2 and 3, it is confirmed that the terrace area is enlarged by introducing the off-angle, and the 3C-SiC growth in the step flow mode is dominant, and the propagation direction of the plane defect is limited to a specific crystal plane. You can see that However, these defect propagation directions are all parallel and remain without disappearing. Therefore, it is impossible to completely eliminate the anti-phase boundary surface defects.
[0042]
Example 1
A silicon (001) surface having a diameter of 6 inches is used as a substrate to be grown, and after the substrate surface is thermally oxidized, a line & space pattern having a width of 1.5 μm, a length of 60 mm, and a thickness of 1 μm is formed on the substrate surface using photolithography technology. The resist was formed. However, the direction of the line & space pattern was made parallel to the <110> orientation. By heating this substrate using a hot plate under the conditions shown in Table 4, the line & space resist pattern spreads and deforms in the direction perpendicular to the line, and the wave front is formed by connecting the top and bottom of the undulation with a smooth curve The resist pattern shape of the cross section was obtained. The cross-sectional shape (undulations) and planar shape (lines & spaces) of this resist pattern were transferred to a silicon substrate by dry etching.
[0043]
The resist was removed in a mixed solution of hydrogen peroxide and sulfuric acid to obtain a substrate. As a result of electron microscope observation, as shown in FIG. 4, this substrate has a plurality of undulations extending substantially parallel to the substrate surface, and in a cross section orthogonal to the direction in which the undulations extend, The shape of the portion where the slopes are adjacent to each other was curved. Further, this undulation had a center line average roughness of 100 nm, and the average slope of this undulation slope was 4 °. The center line average roughness and the slope of the undulating slope were measured with an atomic force microscope (AFM).
[0044]
3C-SiC was grown on this substrate. The growth of 3C-SiC is divided into a carbonization process on the substrate surface and a 3C-SiC growth process by alternately supplying a source gas. Table 5 shows the detailed conditions of the 3C-SiC growth step. The detailed conditions for the carbonization step were the same as in Table 1.
In the 3C-SiC growth step, the density of the antiphase region boundary surface appearing on the outermost surface was measured in the same manner as described above by changing the film thickness of 3C-SiC by changing the number of supply cycles of the source gas. The results shown in Table 6 were obtained.
[0045]
[Table 4]
Figure 0004563609
[0046]
[Table 5]
Figure 0004563609
[0047]
[Table 6]
Figure 0004563609
[0048]
From the relationship between the 3C-SiC film thickness and the antiphase region boundary surface density shown in Table 6, it can be seen that the surface defects collide and disappear as the growth of 3C-SiC progresses. It can be seen that the effectiveness of the present invention is remarkable as compared with the numerical values in Table 3 which are the conventional methods. Further, the etch pit density and twin density of 6 inch Φ3C—SiC obtained in this example were examined as follows. After exposing the surface of 3C-SiC to molten KOH (500 ° C., 5 minutes), the surface was observed with an optical microscope. The number of etch pits corresponding to the stacking fault density was 1,700 or less on the entire surface of 6 inches, and the density was 10 / cm2It was the following. Furthermore, pole observation of the X-ray diffraction rocking curve (XRD) with respect to the 3C-SiC <111> orientation was performed, and the signal intensity of the {115} plane orientation corresponding to the twin plane and the normal single crystal plane {111} plane orientation The twin density was calculated from the signal intensity ratio. As a result, twin density is 4 × 10 which is the limit of measurement.-FourVol. % Or less.
[0049]
Example 2
A Si (001) surface having a diameter of 6 inches was used as a substrate to be grown, and a line and space pattern having a width of 1.5 μm, a length of 60 mm, and a thickness of 1 μm was formed on the substrate surface using a photolithography technique. However, the direction of the line & space pattern was made parallel to the <110> orientation. This substrate was heated using a hot plate under the conditions shown in Table 7 to soften the resist and change the cross-sectional shape of the resist pattern. The cross-sectional shape (undulations) and planar shape (lines & spaces) of this resist pattern were transferred to a Si substrate by dry etching. The heating temperature of the resist pattern was changed between 150 ° C. and 200 ° C., and the undulation inclination angle θ was changed as shown in Table 8.
The resist was removed in a mixed solution of hydrogen peroxide and sulfuric acid to obtain a substrate. As a result of electron microscope observation, as shown in FIG. 4, this substrate has a plurality of undulations extending substantially parallel to the substrate surface, and in a cross section orthogonal to the direction in which the undulations extend, The shape of the portion where the slopes are adjacent to each other was curved. Further, this undulation had a center line average roughness of 100 nm, and the average slope of the undulation slope was as shown in Table 8. The centerline average roughness and the slope of the undulating slope were measured in the same manner as in Example 1.
[0050]
3C-SiC was grown on these substrates. The growth of 3C-SiC is divided into a carbonization process on the substrate surface and a 3C-SiC growth process by alternately supplying a source gas. The detailed conditions for the carbonization step were the same as in Table 1, and the detailed conditions for the 3C-SiC growth step were the same as in Table 5.
For the 3C—SiC grown on each substrate, the density of the antiphase region boundary surface appearing on the outermost surface was measured in the same manner as described above, and the results shown in Table 8 were obtained.
[0051]
[Table 7]
Figure 0004563609
[0052]
[Table 8]
Figure 0004563609
[0053]
From the relationship between the slope of the undulation and the antiphase region boundary surface density shown in Table 8, the inclination angle θ of the undulation is particularly less than 54.7 ° which is an angle formed by the (111) plane and is 1 ° or more. In some cases, a decrease in the density of the antiphase region boundary surface can be confirmed. Furthermore, compared with the numerical values in Table 3 which are the conventional methods, 3C-SiC grown on a relief processing substrate as in the present invention has a significantly reduced or eliminated antiphase region boundary surface density even at the same off angle. It can be seen that the effectiveness of the present invention is remarkable. Further, the etch pit density and twin density of 3C-SiC grown on the undulation substrate with the undulation inclination angle of 4 degrees obtained in this example were examined as follows. After exposing 3C-SiC to molten KOH (500 ° C., 5 minutes), the surface was observed with an optical microscope. The number of etch pits corresponding to the stacking fault density was 1,528 on the entire surface of 6 inches, and the density was 8 .65 / cm2Met. Furthermore, pole observation of the X-ray diffraction rocking curve (XRD) with respect to the 3C-SiC <111> orientation was performed, and the signal intensity of the {115} plane orientation corresponding to the twin plane and the normal single crystal plane {111} plane orientation The twin density was calculated from the signal intensity ratio. As a result, twin density is 4 × 10 which is the limit of measurement.-FourVol. % Or less.
[0054]
Example 3
In each of Examples 1 and 2, a cubic SiC film was grown on a Si (001) plane substrate. In Example 3, as a substrate to be grown, a substrate having undulations extending parallel to the <110> direction on the (001) plane of single crystal cubic silicon carbide (3C-SiC) having a diameter of 6 inches, or a single crystal Cubic silicon carbide is formed on the surface of each substrate using a substrate having undulations extending parallel to the <0,0,0,1> orientation on the (1,1, -2,0) plane of hexagonal silicon carbide. A film or a hexagonal silicon carbide film was grown under the same conditions as in Example 1.
As a result of observation with an electron microscope, each of the substrates has a plurality of undulations extending substantially parallel to the substrate surface, as shown in FIG. 4, and is orthogonal to the direction in which the undulations extend. In the cross section, the shape of the portion where the slopes are adjacent to each other was curved. Further, this undulation had a center line average roughness of 100 nm, and the average slope of this undulation slope was 4 °.
As a result, the effectiveness of the present invention was confirmed in the same manner as in Example 1 when the substrate was used.
[0055]
Example 4
An attempt was made to fabricate an undulation-formed substrate parallel to the <110> direction by a method of polishing the surface of a 6-inch diameter Si (001) substrate in parallel to the <110> direction. For polishing, a commercially available diamond slurry having a diameter of about 15 μm (manufactured by Engis Co., Ltd .: High Press) and a commercially available abrasive cloth (manufactured by Engis Co., Ltd .: M414) were used (Table 9). The diamond slurry is uniformly infiltrated on the cloth, and the Si (001) substrate is placed on the pad, and 0.2 kg / cm.2Was applied to the entire Si (001) substrate, and a one-way polishing treatment was performed by reciprocating a distance of about 20 cm on the cloth 300 times parallel to the <110> direction. Innumerable polishing scratches (scratches) parallel to the <110> direction were formed on the surface of the Si (001) substrate.
[0056]
[Table 9]
Figure 0004563609
[0057]
Since polishing abrasive grains or the like are attached to the surface of the Si (001) substrate subjected to the unidirectional polishing treatment, NHFourOH + H2O2+ H2O mixed solution (NHFourOH: H2O2: H2O = 4: 4: 1 at a liquid temperature of 60 ° C.)2SOFour+ H2O2Solution (H2SOFour: H2O2= 1: 1 (liquid temperature 80 ° C.) and HF (10%) solution alternately three times each for cleaning, and finally rinsed with pure water.
After cleaning, a thermal oxide film was formed to a thickness of about 1 μm on the unidirectionally polished substrate using the heat treatment apparatus under the conditions shown in Table 10. The thermal oxide film was removed with a HF 10% solution. If only polishing is performed, the substrate surface has many fine irregularities and defects other than the undulations to be obtained, and is difficult to use as a substrate to be grown. However, by forming a thermal oxide film of about 1 μm and removing the oxide film again, the surface of the substrate was etched by about 2000 mm, fine irregularities were removed, and a very smooth undulation surface could be obtained. Looking at the wavy cross section, the size of the wavy irregularities is unstable and irregular, but the density is high. At least the (001) plane was 10% or less. There is always ups and downs. On average, the centerline average roughness was 20 nm. The depth of the groove was about 30 to 50 nm and the width was about 0.5 to 1.5 μm. The slope was 3-5 °. A typical AFM image is shown in FIG.
[0058]
[Table 10]
Figure 0004563609
[0059]
A 3C—SiC film was formed on the substrate using this substrate. The growth of 3C-SiC is divided into a carbonization process on the substrate surface and a 3C-SiC growth process by alternately supplying source gases. The detailed conditions for the carbonization step were the same as in Table 1, and the detailed conditions for the 3C-SiC growth step were the same as in Table 5.
[0060]
As a result, the effect of the relief forming substrate parallel to <110> was obtained. That is, it was confirmed that the defects on the antiphase boundary surface were greatly reduced.
For example, the antiphase boundary surface density of a 3C—SiC film grown on an unpolished Si substrate is 8 × 10.9/ Cm2On the other hand, the antiphase boundary surface defect density of the 3C-SiC film grown on the Si substrate subjected to the unidirectional polishing is 0 to 1 / cm.2It became. The undulation shape and the antiphase boundary surface defect density with respect to the abrasive grain size are as shown in Table 11. Further, the undulation density and antiphase boundary surface defect density with respect to the number of polishing operations are as shown in Table 12.
[0061]
[Table 11]
Figure 0004563609
[0062]
[Table 12]
Figure 0004563609
[0063]
The etch pit density and twin density of 3C—SiC grown on a relief processing substrate with an abrasive grain size of 15 μm and a number of polishing round trips of 300 were examined as follows. After exposing 3C-SiC to molten KOH (500 ° C., 5 minutes), the surface was observed with an optical microscope. The number of etch pits corresponding to the stacking fault density was 1,414 on the entire surface of 6 inches, and the density was 8 .00 / cm2Met. Furthermore, pole observation of the X-ray diffraction rocking curve (XRD) with respect to the 3C-SiC <111> orientation was performed, and the signal intensity of the {115} plane orientation corresponding to the twin plane and the normal single crystal plane {111} plane orientation The twin density was calculated from the signal intensity ratio. As a result, twin density is 4 × 10 which is the limit of measurement.-FourVol. % Or less.
In this example, a diamond slurry having a diameter of 15 μm was used as an abrasive, but the size of the abrasive grains and the type of abrasive grains are not limited thereto. If the particle size is increased, the width of the undulations becomes wider and gentler. It can be easily imagined that if the particle size is made smaller, the undulation width becomes narrower. If the particle diameter is about φ1 to 300 μm, effective undulations can be formed. The pad is not limited to the above. The load pressure between the substrate and the cloth during polishing, the polishing speed and the number of times are not limited to the above. Moreover, although Si (001) was used in the examples, it goes without saying that the same results as described above can be obtained even when cubic or hexagonal silicon carbide is used. Moreover, although the undulation extending in the direction parallel to the <110> direction was formed on the Si (001) substrate, the direction is not limited to this.
[0064]
Example 5
In order to eliminate distortion and warpage generated in the silicon carbide layer, undulation formation parallel to the <110> direction is performed by performing a polishing process parallel to the <110> direction on the surface of the Si (001) substrate having a diameter of 6 inches. An attempt was made to produce a substrate. In this example, the existence probability of the Si (001) surface was controlled by the number of polishing treatments, and the effect of the present invention was confirmed. Under the same conditions as in Table 9, the unidirectional polishing treatment was performed on the Si (001) surface by changing the number of polishing times from 30 to 300 times. Innumerable polishing scratches (scratches) parallel to the <110> direction were formed on the surface of the Si (001) substrate.
Since abrasive grains and the like are attached to the Si (001) substrate that has been subjected to the unidirectional polishing treatment, NHFourOH + H2O2+ H2O mixed solution (NHFourOH: H2O2: H2O = 4: 4: 1 at a liquid temperature of 60 ° C.)2SOFour+ H2O2Solution (H2SOFour: H2O2= 1: 1 (liquid temperature 80 ° C.) and HF (10%) solution alternately three times each for cleaning, and finally rinsed with pure water.
After cleaning, a thermal oxide film was formed to a thickness of about 1 μm on the unidirectionally polished substrate using the heat treatment apparatus under the conditions shown in Table 10. The thermal oxide film was removed with a HF 10% solution.
[0065]
A 3C—SiC film was formed on the substrate using this substrate. The growth of 3C-SiC is divided into a carbonization process on the substrate surface and a 3C-SiC growth process by alternately supplying source gases. The detailed conditions for the carbonization step were the same as in Table 1, and the detailed conditions for the 3C-SiC growth step were the same as in Table 5. Table 13 shows the relationship between the abundance ratio of the Si (001) plane, the internal stress of 3C—SiC, and the antiphase boundary surface defect density.
[0066]
[Table 13]
Figure 0004563609
[0067]
When the Si (001) plane on the Si (001) substrate, which is the 3C-SiC growth base substrate, was 10% or less, the internal stress in the SiC layer was 35 MPa or less in the compression direction. When the Si (001) plane was 10% or more, as shown in the table, the result showed very high stress. It can be said that undulations were provided on the Si (001) surface, and the effect of controlling the Si (001) surface to 10% or less appeared. In addition, the defect density tended to increase as the proportion of the Si (001) plane increased. It became clear that the defect density is better as the proportion of the Si (001) plane is smaller. In addition, the etch pit density and twin density of 3C—SiC grown on a relief processing substrate in which the Si (001) plane was controlled to 10% or less were determined as follows. After exposing 3C-SiC to molten KOH (500 ° C., 5 minutes), the surface was observed with an optical microscope. The number of etch pits corresponding to the stacking fault density was 1,548 over the entire surface of 6 inches, and the density was 8 .76 / cm2Met. Furthermore, pole observation of the X-ray diffraction rocking curve (XRD) with respect to the 3C-SiC <111> orientation was performed, and the signal intensity of the {115} plane orientation corresponding to the twin plane and the normal single crystal plane {111} plane orientation The twin density was calculated from the signal intensity ratio. As a result, twin density is 4 × 10 which is the limit of measurement.-FourVol. % Or less.
As a result of observation with an electron microscope, each of the substrates has a plurality of undulations extending substantially parallel to the substrate surface, as shown in FIG. 4, and is orthogonal to the direction in which the undulations extend. In the cross section, the shape of the portion where the slopes are adjacent to each other was curved. Further, this undulation had a center line average roughness of 20 to 40 nm, and the average slope of the undulation slope was 3 to 5 °.
[0068]
In this embodiment, the Si (001) plane was used as described above. Similarly, by setting the (111) plane to 3% or less in the Si (111) plane, (1,1, -2,0) in the hexagonal silicon carbide (1,1, -2,0) plane. By making the surface 10% or less, in the hexagonal silicon carbide (0,0,0,1) surface, the (0,0,0,1) surface is made 3% or less, and each SiC layer is deposited. The result that the internal stress inside can be reduced to 100 MPa or less was also obtained.
[0069]
Example 6
In order to eliminate distortion and warpage generated in the silicon carbide layer, undulation formation parallel to the <110> direction is performed by performing a polishing process parallel to the <110> direction on the surface of the Si (001) substrate having a diameter of 6 inches. An attempt was made to produce a substrate. In this example, the center line average roughness of the Si (001) surface was controlled by the grain size of the abrasive grains, and the effect of the present invention was confirmed. Polishing was performed under the same conditions as in Table 9. Innumerable polishing scratches (scratches) parallel to the <110> direction were formed on the surface of the Si (001) substrate.
Since abrasive grains and the like are attached to the Si (001) substrate that has been subjected to the unidirectional polishing treatment, NHFourOH + H2O2+ H2O mixed solution (NHFourOH: H2O2: H2O = 4: 4: 1 at a liquid temperature of 60 ° C.)2SOFour+ H2O2Solution (H2SOFour: H2O2= 1: 1 (liquid temperature 80 ° C.) and HF (10%) solution alternately three times each for cleaning, and finally rinsed with pure water.
After cleaning, a thermal oxide film was formed to a thickness of about 1 μm on the unidirectionally polished substrate using the heat treatment apparatus under the conditions shown in Table 10. The thermal oxide film was removed with a HF 10% solution.
[0070]
A 3C—SiC film was formed on the substrate using this substrate. The growth of 3C-SiC is divided into a carbonization process on the substrate surface and a 3C-SiC growth process by alternately supplying source gases. The detailed conditions for the carbonization step were the same as in Table 1, and the detailed conditions for the 3C-SiC growth step were the same as in Table 5. Table 14 shows the relationship between the center line average roughness of the Si (001) plane, the internal stress of 3C-SiC, and the antiphase boundary surface defect density.
[0071]
[Table 14]
Figure 0004563609
[0072]
When the center line average roughness is 3 nm or less, the internal stress is high and the surface defect density is also high. When the center line average roughness is between 3 nm and 100 nm, the internal stress is also reduced and the surface defect density is also eliminated. When the center line average roughness exceeds 100 nm, the surface defect density tends to increase. Further, the etch pit density and twin density of 3C—SiC grown on the undulating substrate in which the center line average roughness of the Si (001) plane was controlled to 30 to 50 nm were determined as follows. When 3C-SiC was exposed to molten KOH (500 ° C., 5 minutes) and the surface was observed with an optical microscope, the number of etch pits corresponding to the stacking fault density was 1,683 over the entire surface of 6 inches, and the density was 9 .52 / cm2Met. Furthermore, pole observation of the X-ray diffraction rocking curve (XRD) with respect to the 3C-SiC <111> orientation was performed, and the signal intensity of the {115} plane orientation corresponding to the twin plane and the normal single crystal plane {111} plane orientation The twin density was calculated from the signal intensity ratio. As a result, twin density is 4 × 10 which is the limit of measurement.-FourVol. % Or less. It can be said that the effect of the present invention appeared by providing undulations on the Si (001) plane and controlling the center line average roughness to 3 nm to 100 nm.
As a result of observation with an electron microscope, each of the substrates has a plurality of undulations extending substantially parallel to the substrate surface, as shown in FIG. 4, and is orthogonal to the direction in which the undulations extend. In the cross section, the shape of the portion where the slopes are adjacent to each other was curved. Furthermore, the average slope of this undulating slope was 3-5 °.
[0073]
In this embodiment, the Si (001) plane is used, but the same applies to the Si (111) plane, hexagonal silicon carbide (1,1, -2,0), and hexagonal silicon carbide (0,0,0,1). It has been confirmed that the results are obtained.
[0074]
Example 7
An attempt was made to reduce the distortion of 3C—SiC by providing undulations on the front and back surfaces of a 6-inch diameter Si (001) substrate. The undulations were formed by polishing under the conditions shown in Table 9. The center line average roughness was about 50 nm on both the front and back surfaces. 3C-SiC was grown on this substrate. The growth of 3C-SiC is divided into a carbonization process on the substrate surface and a 3C-SiC growth process by alternately supplying source gases. The detailed conditions for the carbonization step were the same as in Table 1, and the detailed conditions for the 3C-SiC growth step were the same as in Table 5. The grown 3C—SiC internal stress was as low as 10 MPa in the direction of compression. The stress generated on the front and back surfaces cancels out, warping and distortion are reduced, and good 3C—SiC growth is brought about. It can be said that the effect of forming undulations on the front and back surfaces of the substrate was obtained.
Although this embodiment was performed on the Si (100) plane, the same applies to the Si (111) plane, hexagonal silicon carbide (1,1, -2,0), and hexagonal silicon carbide (0,0,0,1). It has been confirmed that the results are obtained.
[0075]
Example 8
In the above examples, it was found that high quality 3C-SiC can be obtained by forming undulations having a predetermined shape on the substrate surface. In this embodiment, a method for producing a relief shape by dry etching is shown. First, a quartz mask as shown in FIG. 5 was produced. The line and space pattern provided in the mask of this example is 100 μm apart. The long side of the mask window is arranged parallel to <110> of the silicon substrate. The distance between the silicon substrate and the mask was 1 mm (FIG. 6). This is because if the interval is set to 0, a rectangular line & space pattern is transferred to the silicon substrate. For dry etching, an RIE apparatus was used. CF for etchingFour40 sccm and O210 sccm of gas was used. Etching was performed for 4 hours with the power of the RF power source set to 250 W and the degree of vacuum between the electrodes set to 8 Pa (Table 15). As a result, stable wavy undulations having a period of 200 μm and a depth of 8 μm (center line average roughness 60 nm to 100 nm) and an inclination of 3 to 5 ° were transferred to the surface of the silicon substrate. 3C-SiC formed on this substrate has a surface defect density of 0 to 1 / cm.2A good result was obtained. Further, the etch pit density and twin density of 3C—SiC grown on a corrugated relief substrate processed by RIE (Reactive Ion Etching) were determined as follows. After exposing the surface of 3C-SiC to molten KOH (500 ° C., 5 minutes), the surface was observed with an optical microscope. The number of etch pits corresponding to the stacking fault density was 1,290 on the entire surface of 6 inches, and the density was 7 .30 / cm2Met. Furthermore, pole observation of the X-ray diffraction rocking curve (XRD) with respect to the 3C-SiC <111> orientation was performed, and the signal intensity of the {115} plane orientation corresponding to the twin plane and the normal single crystal plane {111} plane orientation The twin density was calculated from the signal intensity ratio. As a result, twin density is 4 × 10 which is the limit of measurement.-FourVol. % Or less.
[0076]
[Table 15]
Figure 0004563609
[0077]
In the embodiment, a quartz mask is used, but the material is not limited to this. Moreover, although the line and space is set to an interval of 100 μm, it can be arbitrarily set to 10 to 1000 μm. If a narrower window is opened, the strength of the mask becomes a problem. However, the mask strength is secured by setting the space between the line and the space to 1: 2 or 1: 3, and the dry etching is performed multiple times while shifting the position of the mask. High density undulations may be formed. The distance between the mask and the pattern transfer substrate is 1 mm, but this is for making the transfer pattern wavy, and the distance is not necessarily limited to this. It is sufficient that the pattern to be transferred has a distance that is wavy. By making the cross section of the mask window trapezoidal, the wavy undulations can be transferred by etching.
[0078]
Example 9
When the surface shape of the produced undulation substrate is a saw shape, defects such as etch pits sometimes occur in steep recesses as shown in FIG. 7A, and the defects propagate to the surface. Become.
Therefore, an attempt was made to suppress the occurrence of defects by making the surface shape of the undulation corrugated and reducing this steep recess.
The saw-shaped undulation was produced by unidirectional polishing. (The method is the same as the one-way polishing in the example, but the final oxidation treatment is not performed.) The surface of the Si (001) substrate having a diameter of 6 inches is subjected to a polishing treatment parallel to the <110> direction. An attempt was made to produce a relief forming substrate parallel to the 110> direction. For polishing, a commercially available diamond slurry having a diameter of about 15 μm (manufactured by Engis Co., Ltd .: High Press) and a commercially available abrasive cloth (manufactured by Engis Co., Ltd .: M414) were used (Table 9). The diamond slurry is uniformly infiltrated on the cloth, and the Si (001) substrate is placed on the pad, and 0.2 kg / cm.2Was applied to the entire Si (001) substrate, and a one-way polishing treatment was performed by reciprocating a distance of about 20 cm on the cloth 300 times parallel to the <110> direction. Innumerable polishing scratches (scratches) parallel to the <110> direction were formed on the surface of the Si (001) substrate.
[0079]
Since polishing abrasive grains or the like are attached to the surface of the Si (001) substrate subjected to the unidirectional polishing treatment, NHFourOH + H2O2+ H2O mixed solution (NHFourOH: H2O2: H2O = 4: 4: 1 at a liquid temperature of 60 ° C.)2SOFour+ H2O2Solution (H2SOFour: H2O2= 1: 1 (liquid temperature 80 ° C.) and HF (10%) solution alternately three times each for cleaning, and finally rinsed with pure water.
A very sharp undulation shape (saw shape) was obtained on the surface immediately after polishing (FIG. 7B).
In the wave-type undulation, a saw-shaped undulation was prepared by unidirectional polishing, and then the surface was relaxed into a waveform by performing a thermal oxidation treatment on the undulation surface.
After the polished undulation substrate was cleaned, a thermal oxide film was formed to a thickness of about 1 μm on the unidirectional polished substrate using the heat treatment apparatus under the conditions shown in Table 10. The thermal oxide film was removed with a HF 10% solution. If only polishing is performed, the substrate surface has many fine irregularities and defects other than the undulations to be obtained, and is difficult to use as a substrate to be grown. However, by forming a thermal oxide film of about 1 μm and removing the oxide film again, the surface of the substrate was etched by about 2000 mm, fine irregularities were removed, and a very smooth undulation surface could be obtained. Looking at the wavy cross section, the size of the wavy irregularities is unstable and irregular, but the density is high. At least the (001) plane is 10% or less. There is always ups and downs. On average, the center line average roughness is 20 nm. The depth of the groove was about 30 to 50 nm, and the width was about 0.5 to 1.5 μm. The slope was 3-5 °. A typical AFM image is shown in FIG.
[0080]
A 3C—SiC film was formed on the substrate using this substrate. The growth of 3C-SiC is divided into a carbonization process on the substrate surface and a 3C-SiC growth process by alternately supplying source gases. The detailed conditions for the carbonization step were the same as in Table 1, and the detailed conditions for the 3C-SiC growth step were the same as in Table 5.
In the wave-type undulation, a saw-shaped undulation was prepared by unidirectional polishing, and then the surface was relaxed into a waveform by performing a thermal oxidation treatment on the undulation surface.
A corrugated undulation substrate was produced, and the steep recess was improved moderately.
In addition, waveform undulation was also formed by dry etching and compared.
As a result of growing SiC on the corrugated undulation substrate, no defects were observed in the steep recess as in SiC on the saw undulation substrate. (Fig. 7 (c))
Table shows the density of defects.
[0081]
[Table 16]
Figure 0004563609
[0082]
The etch pit density and twin density of 3C-SiC grown on the corrugated undulation substrate were determined as follows. After exposing the surface of 3C-SiC to molten KOH (500 ° C., 5 minutes), the surface was observed with an optical microscope. The number of etch pits corresponding to the stacking fault density was 1,700 or less on the entire surface of 6 inches, and the density was 10 / cm2It was the following. Furthermore, pole observation of the X-ray diffraction rocking curve (XRD) with respect to the 3C-SiC <111> orientation was performed, and the signal intensity of the {115} plane orientation corresponding to the twin plane and the normal single crystal plane {111} plane orientation The twin density was calculated from the signal intensity ratio. As a result, twin density is 4 × 10 which is the limit of measurement.-FourVol. % Or less. On the other hand, the number of etch pits of 3C-SiC grown on a saw-type undulation substrate is 284,356 on the entire 6-inch surface, and the density is 1609 / cm.2The twin density is 6 × 10-3Vol. %Met.
Thus, the generation density of the defects generated at the substrate interface could be greatly improved by producing the waveform undulation. According to the present invention, the density of etch pits generated on the substrate surface is 10 / cm.2Hereafter, twins are mixed 4 × 10-FourVol. % Or less. Furthermore, the etch pit density on the substrate surface is 10 / cm over a large area of 6 inches in diameter.2Hereafter, twins are mixed 4 × 10-FourVol. % Or less.
The present invention has been described with reference to the examples. However, the present invention is not limited to the above examples. For example, the film formation conditions and the film thickness of the 3C—SiC film are not limited to those of the examples. In the embodiments, a substrate having a diameter of 6 inches has been described. However, the effect of the present invention is not limited to a substrate having a diameter of 6 inches. For example, a large-diameter substrate having a diameter of 8 inches or more or a small-diameter substrate having a diameter of 4 inches or less. Can be obtained similarly.
[0083]
【The invention's effect】
As described above, according to the silicon carbide manufacturing method of the present invention, a silicon carbide film in which the antiphase region boundary surface is effectively reduced or eliminated and the internal stress and strain of the silicon carbide layer are reduced can be obtained.
Further, the silicon carbide film of the present invention has very excellent electrical characteristics because of its low crystal boundary density, and is widely useful as various electronic devices.
[Brief description of the drawings]
FIG. 1 is an explanatory view of generation of an antiphase region boundary surface 1 and twins due to an increase in step density at a silicon carbide / silicon substrate interface.
FIG. 2 is a scanning electron micrograph of the surface of a 3C—SiC film grown on a substrate with an off angle of 4 °.
FIG. 3 is a scanning electron micrograph of the surface of a 3C—SiC film grown on a substrate having no off-angle.
FIG. 4 is an electron micrograph of a substrate surface used in the present invention, in which the shape of a portion where slopes existing on the substrate surface are adjacent to each other is curved in a cross section perpendicular to the direction in which the undulations extend.
5 is a schematic view of a quartz mask used in Example 8. FIG.
FIG. 6 is an explanatory diagram showing a relationship between a silicon substrate and a mask.
7 shows an undulation substrate (a) having a saw-shaped surface, a substrate (b) having a very sharp undulation shape, or an undulation substrate having a corrugated surface (c) obtained in Example 9. FIG. Scanning electron micrograph of the surface of the 3C-SiC film grown in (1).

Claims (11)

基板表面の少なくとも一部に炭化珪素を析出させる炭化珪素の製造方法において、前記炭化珪素を析出させる基板表面は略平行に延在する複数の起伏を有し、この起伏は中心線平均粗さが3〜1000nmの範囲にあり、この起伏の斜面の斜度は1°から54.7°の範囲にあり、かつこの起伏が延在する方向と直交する断面において、斜面同士が隣接する部分の形状が曲線状であることを特徴とする炭化珪素の製造方法。In the method for producing silicon carbide in which silicon carbide is deposited on at least a part of the substrate surface, the substrate surface on which the silicon carbide is deposited has a plurality of undulations extending substantially in parallel. The shape of the portion where the slopes are adjacent to each other in the cross section perpendicular to the direction in which the undulations extend in the range of 3 to 1000 nm, the slope of the slopes of the undulations is in the range of 1 ° to 54.7 °. A method for producing silicon carbide, characterized in that is curved. 基板表面の少なくとも一部に炭化珪素を析出させる炭化珪素の製造方法において、前記炭化珪素を析出させる基板表面は、珪素または炭化珪素の{001}面に略平行に延在する複数の起伏が形成されたものであり、この起伏は中心線平均粗さが3〜1000nmの範囲にあり、この起伏の斜面の斜度は1°から54.7°の範囲にあり、基板表面の面積に占める{001}面の割合が10%を超えないことを特徴とする炭化珪素の製造方法。In the method for manufacturing silicon carbide in which silicon carbide is deposited on at least a part of the substrate surface, the substrate surface on which the silicon carbide is deposited is formed with a plurality of undulations extending substantially parallel to the {001} plane of silicon or silicon carbide. are those that are, the undulations is in the range center line average roughness of 3 to 1000, inclination of the inclined surface of the undulations is in the range of 54.7 ° from the 1 °, it occupies the area of the board surface A method for producing silicon carbide, wherein the ratio of the {001} plane does not exceed 10%. 基板表面の少なくとも一部に炭化珪素を析出させる炭化珪素の製造方法において、前記炭化珪素を析出させる基板表面は、珪素または立方晶炭化珪素の{111}面に略平行に延在する複数の起伏が形成されたものであり、この起伏は中心線平均粗さが3〜1000nmの範囲にあり、この起伏の斜面の斜度は1°から54.7°の範囲にあり、基板表面の面積を占める{111}面の割合が3%を超えないことを特徴とする炭化珪素の製造方法。In the method for manufacturing silicon carbide in which silicon carbide is deposited on at least a part of the substrate surface, the substrate surface on which the silicon carbide is deposited has a plurality of undulations extending substantially parallel to the {111} plane of silicon or cubic silicon carbide. are those but formed, the undulations is in the range center line average roughness of 3 to 1000, inclination of the inclined surface of the undulations is in the range of 54.7 ° from the 1 °, the area of the base plate surface A method for producing silicon carbide, wherein the proportion of {111} planes occupying no more than 3%. 基板表面の少なくとも一部に炭化珪素を析出させる炭化珪素の製造方法において、前記炭化珪素を析出させる基板表面は、六方晶炭化珪素の{1,1,−2,0}面に略平行に延在する複数の起伏が形成されたものであり、この起伏は中心線平均粗さが3〜1000nmの範囲にあり、この起伏の斜面の斜度は1°から54.7°の範囲にあり、基板表面の面積に占める{1,1,−2,0}面の割合が10%を超えないことを特徴とする炭化珪素の製造方法。In the method for manufacturing silicon carbide in which silicon carbide is deposited on at least a part of the substrate surface, the substrate surface on which the silicon carbide is deposited extends substantially parallel to the {1,1, -2,0} plane of hexagonal silicon carbide. A plurality of existing undulations are formed , the undulations have a centerline average roughness in the range of 3 to 1000 nm, and the slopes of the undulation slopes are in the range of 1 ° to 54.7 ° , method for producing a silicon carbide {1,1, -2,0} occupying the area of the base plate surface ratio of the surface is characterized in that it does not exceed 10%. 基板表面の少なくとも一部に炭化珪素を析出させる炭化珪素の製造方法において、前記炭化珪素を析出させる基板表面は、六方晶炭化珪素の{0,0,0,1}面に略平行に延在する複数の起伏が形成されたものであり、この起伏は中心線平均粗さが3〜1000nmの範囲にあり、この起伏の斜面の斜度は1°から54.7°の範囲にあり、基板表面の面積に占める{0,0,0,1}面の割合が3%を超えないことを特徴とする炭化珪素の製造方法。In the method for manufacturing silicon carbide in which silicon carbide is deposited on at least a part of the substrate surface, the substrate surface on which the silicon carbide is deposited extends substantially parallel to the {0, 0, 0, 1} plane of hexagonal silicon carbide. to and in which a plurality of undulations are formed, the undulations is in the range center line average roughness of 3 to 1000, inclination of the inclined surface of the undulations is in the range of 54.7 ° from the 1 °, group A method for producing silicon carbide, wherein a ratio of {0, 0, 0, 1} plane occupying an area of a plate surface does not exceed 3%. 炭化珪素の析出が気相または液相より行われる請求項1〜5のいずれか1項に記載の製造方法。The manufacturing method of any one of Claims 1-5 by which precipitation of silicon carbide is performed from a gaseous phase or a liquid phase. 基板表面の起伏が延在する方向と直交する断面において、斜面同士が隣接する部分の形状が曲線状である請求項2〜6のいずれか一項に記載の製造方法。The manufacturing method according to any one of claims 2 to 6, wherein in a cross section orthogonal to a direction in which the undulations of the substrate surface extend, the shape of the portion where the slopes are adjacent is curved. 炭化珪素の析出を、基板表面の結晶性を引き継ぎつつエピタキシャル成長させることで、面欠陥密度が1000/cm 2 以下である単結晶炭化珪素を製造する、請求項1〜7のいずれか一項に記載の製造方法。 The single crystal silicon carbide having a surface defect density of 1000 / cm 2 or less is produced by epitaxially growing silicon carbide precipitates while taking over the crystallinity of the substrate surface. Manufacturing method. 炭化珪素の析出を、基板表面の結晶性を引き継ぎつつエピタキシャル成長させることで、内部応力が100MPa以下である単結晶炭化珪素を製造する、請求項1〜7のいずれか一項に記載の製造方法。The manufacturing method according to any one of claims 1 to 7, wherein single crystal silicon carbide having an internal stress of 100 MPa or less is manufactured by epitaxially growing silicon carbide precipitation while taking over the crystallinity of the substrate surface. 炭化珪素の析出を、基板表面の結晶性を引き継ぎつつエピタキシャル成長させることで、面欠陥密度が1000/cmThe surface defect density is 1000 / cm by epitaxially growing silicon carbide precipitation while taking over the crystallinity of the substrate surface. 22 以下であり、かつ内部応力が100MPa以下である単結晶炭化珪素を製造する、請求項1〜7のいずれか一項に記載の製造方法。The manufacturing method as described in any one of Claims 1-7 which manufactures the single crystal silicon carbide which is below and an internal stress is 100 Mpa or less. 炭化珪素の析出を、基板表面の結晶性を引き継ぎつつエピタキシャル成長させることで、エッチピット密度が10/cmSilicon carbide precipitation is epitaxially grown while inheriting the crystallinity of the substrate surface, so that the etch pit density is 10 / cm. 22 以下であり、かつ双晶密度が4×10And the twin density is 4 × 10 -4-Four Vol.%以下である単結晶炭化珪素を製造する、請求項1〜7のいずれか一項に記載の製造方法。Vol. The manufacturing method as described in any one of Claims 1-7 which manufactures the single crystal silicon carbide which is% or less.
JP2001107285A 2000-04-07 2001-04-05 Method for producing silicon carbide Expired - Fee Related JP4563609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001107285A JP4563609B2 (en) 2000-04-07 2001-04-05 Method for producing silicon carbide

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000106292 2000-04-07
JP2000-106292 2000-11-30
JP2000-365443 2000-11-30
JP2000365443 2000-11-30
JP2001107285A JP4563609B2 (en) 2000-04-07 2001-04-05 Method for producing silicon carbide

Publications (2)

Publication Number Publication Date
JP2002226300A JP2002226300A (en) 2002-08-14
JP4563609B2 true JP4563609B2 (en) 2010-10-13

Family

ID=27343021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001107285A Expired - Fee Related JP4563609B2 (en) 2000-04-07 2001-04-05 Method for producing silicon carbide

Country Status (1)

Country Link
JP (1) JP4563609B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4856350B2 (en) * 2002-12-16 2012-01-18 Hoya株式会社 diode
JP4628189B2 (en) * 2005-06-07 2011-02-09 Hoya株式会社 Method for producing silicon carbide single crystal
JP4954596B2 (en) * 2006-04-21 2012-06-20 新日本製鐵株式会社 Method for producing silicon carbide single crystal ingot
JP5345499B2 (en) * 2009-10-15 2013-11-20 Hoya株式会社 Compound single crystal and method for producing the same
JP6244826B2 (en) * 2013-11-01 2017-12-13 住友金属鉱山株式会社 Silicon carbide substrate, silicon carbide substrate manufacturing method, semiconductor element
JP6269854B2 (en) * 2014-10-31 2018-01-31 富士電機株式会社 Method for growing silicon carbide epitaxial film
WO2016084561A1 (en) * 2014-11-27 2016-06-02 住友電気工業株式会社 Silicon carbide substrate, method for producing same, and method for manufacturing silicon carbide semiconductor device
JP6795805B1 (en) 2020-05-15 2020-12-02 株式会社Cusic SiC laminate and its manufacturing method and semiconductor device

Also Published As

Publication number Publication date
JP2002226300A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
US6736894B2 (en) Method of manufacturing compound single crystal
US6596080B2 (en) Silicon carbide and method for producing the same
JP5345499B2 (en) Compound single crystal and method for producing the same
US6416578B1 (en) Silicon carbide film and method for manufacturing the same
JP2003095798A (en) Method of producing single crystal substrate
JP3576432B2 (en) Silicon carbide film and method of manufacturing the same
JP4563609B2 (en) Method for producing silicon carbide
JP4628189B2 (en) Method for producing silicon carbide single crystal
US20150031193A1 (en) Semiconductor substrate suitable for the realization of electronic and/or optoelectronic devices and relative manufacturing process
US7101774B2 (en) Method of manufacturing compound single crystal
US6475456B2 (en) Silicon carbide film and method for manufacturing the same
JP2010516602A (en) Semiconductor substrate suitable for the implementation of electronic and / or optoelectronic devices and related manufacturing processes
JP2010516602A5 (en)
JP3880717B2 (en) Method for producing silicon carbide
JP4255866B2 (en) Silicon carbide film and manufacturing method thereof
JP3754294B2 (en) Method for manufacturing silicon carbide single crystal substrate and method for manufacturing semiconductor device
JP2004336079A (en) Manufacturing method for compound single crystal
JP2005260218A (en) Sic single crystal base material and manufacturing method of the same, semiconductor film formation base material
Nagano et al. Preparation of silicon-on-insulator substrate on large free-standing carbon nanotube film formation by surface decomposition of SiC film
EP1840249A2 (en) Silicone carbide film and method for manufacturing the same
Chollet¹ et al. NANOMETER-SCALE ROUGHNESS ANALYSIS OF SI SURFACES BY TM-AFM FOR LOW-TEMPERATURE EPITAXY.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100729

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees