JPH0328996B2 - - Google Patents

Info

Publication number
JPH0328996B2
JPH0328996B2 JP61073157A JP7315786A JPH0328996B2 JP H0328996 B2 JPH0328996 B2 JP H0328996B2 JP 61073157 A JP61073157 A JP 61073157A JP 7315786 A JP7315786 A JP 7315786A JP H0328996 B2 JPH0328996 B2 JP H0328996B2
Authority
JP
Japan
Prior art keywords
solder
alloy
added
solderability
soldering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61073157A
Other languages
Japanese (ja)
Other versions
JPS62230493A (en
Inventor
Masao Masuzawa
Takuji Niihori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TARUCHIN KK
Original Assignee
TARUCHIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TARUCHIN KK filed Critical TARUCHIN KK
Priority to JP7315786A priority Critical patent/JPS62230493A/en
Publication of JPS62230493A publication Critical patent/JPS62230493A/en
Publication of JPH0328996B2 publication Critical patent/JPH0328996B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はSn又はPbあるいはSn−Pbからなるは
んだ、又はこれにAg、Bi、Sb、Ib、Cdのうち少
くとも1種を含むはんだ中に、ゲルマニウム
(Ge)を添加することに依り該はんだの溶融時に
おける酸化物の発生を抑制しかつはんだ付性(ぬ
れ性、きれ性、はじき性等)を改善したはんだ合
金に関する。 一般に電子機器の組立や部品製造及び自動車用
ラヂエーター、電装部品等の製造に際しはんだは
溶融状態で使用される事がほとんどである。この
際に溶融されたはんだ合金は空気中又は溶融はん
だ中に含まれる酸素(O2)と反応し多量の酸化
物(MeO)が発生するため、製造技術面、経済
性等の見地から多くの問題を起す原因となつて居
る。そりわけ電子機器組立の際、プリント基板の
はんだ付に利用される噴流型はんだ槽においては
その傾向が著しく、酸化物の発生に依るはんだ材
の損失、生成しした酸化物の噴流部への巻き込み
に依る製品不良の発生等の問題が起きて居る。 他方、最近の電子機器類の軽薄短小の傾向から
製品は小型化の一途をたどり、又経済的見地から
コストダウンの要請も強まつて居る折から高密度
実装基板に対応する高信頼性はんだ、部品の耐熱
温度低減に対応する低融点型はんだに対する関心
も高まつて来て居る。 現在噴流型自動はんだ付装置における酸化物生
成の対策としては一般に、鉱物油、植物油等の油
脂類や還元剤を配合したワツクス類が酸化防止剤
として用いられて居るが、これ等を噴流槽の溶融
はんだ面に浮かべた場合、最も酸化物の生成が著
しい噴流の落ち込み部分(タキツボ部)に於いて
は酸化防止剤の物性上充分の効果が期待出来ず、
又その他の部位についても単に液面の一部を空気
から遮断する事に依り酸化物の生成を防止して居
るに過ぎない。又これ等酸化防止剤の多くは有機
系化合物であるためはんだ槽の熱の影響に依り変
質し、炭化、分解、発煙、増粘等にひき起す事に
依りハンダ槽を著しく汚染し生成した酸化物の噴
流部位への巻き込みとあいまつて作業性低下の原
因となつて居る。又先に本発明と同様の目的でリ
ン(P)入合金材の使用が提案されているが(特
開昭54−84817、昭54−128459)この際添加され
たP分は溶融合金中で選択的に酸化消費されて行
くため酸化防止の接続時間は添加されたPの量に
比例する事になる。従つて充分な酸化防止の持続
時間を維持するためには相当量のPを添加しなけ
ればならない。然しながら過剰のPの添加ははん
だの性質にザラツキ、はじき、ぬれ不良等の悪影
響を与えるのでPの濃度は上限を0.01wt%程度に
抑える必要がある。その為含リン合金を使用する
際にはリン含有濃度の管理が必要となり製造管理
面にいくつかの問題を残す事になる。またリンの
消費速度は温度依存性が大きいため300℃以上の
高温下ではリンの消費が激しく酸化防止の持続時
間が極端に短縮されると云う欠点を持つて居る。
更にリンは非金属元素であるためはんだ付後のハ
ンダ付部分で電気的マイグレーシヨンを起し易い
等の欠点を有して居る。 本発明はSn又はPbあるいはその双方からなる
はんだ、又はこれにAg、Bi、Sb、In、Cdのうち
少くとも1種を含むはんだにおける溶融時の酸化
物の発生を抑制し、かつはんだ付性を改善したは
んだ合金を提供することを目的とするものであつ
て、その特徴とするところは前記はんだ中にゲル
マニウムを0.0001〜0.1wt%、好ましくは0.001〜
0.05wt%添加したことにある。 本発明で使用されるGeは添加濃度の増加に比
例してぬれ性、きれ性等のはんだ付性が改善され
ると共に酸化防止持続時間も延長される等、P添
加の場合と反対の傾向を示すため含有濃度の変化
が製品に与える影響がほとんどないと云う特徴を
有して居る。また300℃以上の高温下においても
酸化速度があまり変化しないので高温時の使用に
ついても含リン合金に比べ優れた特性を示す。
又、GeはSn、Pbに類似した金属であるためPの
場合と異りはんだ付部分での電気的マイグレーシ
ヨンは少なく、無添加のはんだと比較してもむし
ろ小さい位である。更にGe添加の大きな特徴と
しては、はんだ合金のはんだ付性を改善する点に
ある。最近の電子工業界の傾向として製品の軽薄
短小に依る小型化、ICの使用及び部品の改良に
依る低コスト化がさけばれて居るが、これに伴い
当然の事ながら高信類型はんだ、低融点はんだの
開発が要望されて居る。 通常高信頼型はんだ、低融点はんだを開発する
際に用いられる方法はSn又はPbあるいはその混
合物にAg、Bi、Sb、In、Cd等の金属元素を配合
し多元合金化する事に依つて行なわれて居るが、
この際添加元素の種類、量等に依り新たな欠点を
生ずる場合がある。例えば実施例3にあげた低融
点はんだはBiの添加に依り融点は低下したもの
の(135〜165℃)ぬれ性、拡がり性、きれ性等の
はんだ付性についてはSn−Pbの二元合金はんだ
よりも劣る値を示す。然しながらこの合金にGe
を添加した場合はそのはんだ性が改善され所期の
目的である低融点、高信頼型はんだ合金を得る事
が出来る。又数種のSn−Pbの二元合金にGeを添
加した場合無添加の合金と比較していずれもはん
だ付性の改善が見られ、その他の多元合金への添
加も同様な結果が得られる。 即ち本発明の特徴であるゲルマニウムの微量添
加ははんだ合金の溶融時の酸化物生成量を抑制す
るのみでなく添加された合金のはんだ付性即ち無
添加のはんだに比較して母材金属に対するぬれ
性、きれ性の向上、はんだ付不良の原因となるツ
ララ、ブリツヂの発生の改善等はんだの高信頼化
に大きく貢献する事を示して居る。 更にこれらのはんだ付け性は従来より作業温度
(はんだ浴温度)に対する依存度が高いと言われ
ているが、本発明が提案しているゲルマニウム
(Ge)の添加に依り特許請求の範囲に記載されて
いるすべての組み合わせの合金について、その作
業温度を5〜30℃引き下げる効果をしめす。即ち
別の表現を用いるなら実施例1の表より明らかな
ようにゲルマニウムを添加することにより無添加
のはんだ合金を250℃で使用した場合と比較して
より低温で同一のはんだ付け性を発揮することを
示すものである。 このような特徴は電子機器類のはんだ付の際、
はんだ合金の組み合わせやそれに伴う静的特性を
変化させることなく作業温度を低下させる働きを
有することであり、先に述べたはんだの低融点化
の際に発生する諸弊害を排除する可能性を示す。 更に上記の特徴は、実施例1に示すような錫
(Sn)−鉛(Pb)の二元合金はんだのみならず実
施例3に示すビスマス(Bi)入りの場合にも、
又、ビスマス(Bi)、銀(Ag)、アンチモニー
(Sb)、インヂユーム(In)、カドミユーム(Cd)
等の金属の1〜数種類をSn−Pbの二元合金中に
加えて多元合金化した場合にも同様の効果をあら
わす。 なぜならば、ゲルマニウムの添加は従来の多元
合金の場合と異なり、ベースとなる合金の表面張
力、被はんだ付け母材あるいはフラツクスとの間
の界面張力及び溶融はんだ合金の流動性等が改善
されるためである。 又本発明の応用例の1つとしてクリームはんだ
用粉末の原料として用いた場合粉末表面の酸化膜
が薄くなる事に依りいわゆるはんだボールの発生
を防止し、はんだ付の信頼性を高める効果を示
す。 上記したSn又はPbあるいはその双方からなる
はんだ、又はこれにAg、Bi、Sb、In、Cdのうち
少くとも1種を含むはんだ中にGeを添加含有せ
しめることにより酸化物の発生抑制効果及びはん
だ付性効果を得るためにはこれらはんだ中にGe
を少くとも0.0001wt%含有させることが必要であ
る。また、Geを0.1wt%以上含有させると高価な
Geを多量用いることにより合金価格が高くなり
実用的でなくなる。好ましくはGeは前記はんだ
中に0.001〜0.05wt%含有せしめる。 以下に実施例を示す。 実施例 1 60%Sn−残部Pb(H60A※)はんだ及びこれに
Ge0.0001wt%、0.001wt%、0.005wt%、0.01wt
%、0.05wt%及び0.1wt%をそれぞれ添加したは
んだについて、酸化物生成量、ぬれ時間、きれ時
間、きれ張力について測定を行つた。その結果を
第1表に示す。 各測定試験方法は次の如くした。 酸化物生成量 表面積45.4cm2はんだ槽中に1.5Kg
のはんだ金を溶融せしめ、その表面に回転式ス
キージを装着し1時間後に生成した酸化物の重
量を測定する。 ぬれ時間、きれ時間及びききれ張力 メニスコグラフ法を用い下記の条件にて測定す
る。 はんだ溶融温度:250℃ フラツクス:米国産ガムロジンWW35%TPA溶
液 試験片:2.0φ×30mmCu線 試験機:ソルダーチエツカーSAT−2000型(レ
スカ製) ※ JIS H 3282
The present invention is a solder made of Sn, Pb, or Sn-Pb, or a solder containing at least one of Ag, Bi, Sb, Ib, and Cd by adding germanium (Ge) to the solder. This invention relates to a solder alloy that suppresses the generation of oxides during melting and has improved solderability (wettability, sharpness, repellency, etc.). In general, solder is mostly used in a molten state when assembling electronic devices, manufacturing parts, automobile radiators, electrical components, etc. At this time, the molten solder alloy reacts with oxygen (O 2 ) contained in the air or in the molten solder, generating a large amount of oxide (MeO). It is causing problems. This tendency is remarkable in jet-type solder baths used for soldering printed circuit boards when assembling electronic equipment, resulting in loss of solder material due to the generation of oxides and entrainment of the generated oxides into the jet part. Problems such as product defects are occurring due to this. On the other hand, due to the recent trend of electronic devices becoming lighter, thinner, shorter and smaller, products are becoming smaller and smaller, and there is also a growing demand for cost reduction from an economic standpoint. There is also increasing interest in low melting point solders that can lower the heat resistance of components. Currently, as a countermeasure against oxide formation in jet-type automatic soldering equipment, waxes containing fats and oils such as mineral oil and vegetable oil and reducing agents are generally used as antioxidants. When floating on the molten solder surface, the antioxidant cannot be expected to have a sufficient effect due to its physical properties in the drop-down part of the jet (the pressure point) where oxides are most prominently generated.
In other areas, the formation of oxides is simply prevented by blocking part of the liquid surface from the air. In addition, since many of these antioxidants are organic compounds, they change in quality due to the influence of heat in the soldering bath, causing carbonization, decomposition, smoke generation, thickening, etc., resulting in significant contamination of the soldering bath and the resulting oxidation. Combined with objects getting caught in the jet area, this causes a decrease in work efficiency. Furthermore, the use of phosphorus (P)-containing alloy materials has previously been proposed for the same purpose as the present invention (Japanese Patent Application Laid-Open Nos. 54-84817 and 1984-128459), but the added P content is Since P is selectively consumed by oxidation, the connection time for oxidation prevention is proportional to the amount of added P. Therefore, significant amounts of P must be added to maintain sufficient anti-oxidation duration. However, the addition of excessive P has an adverse effect on the properties of the solder, such as roughness, repellency, and poor wetting, so the upper limit of the P concentration must be suppressed to about 0.01 wt%. Therefore, when using a phosphorus-containing alloy, it is necessary to control the phosphorus content concentration, which leaves some problems in terms of manufacturing control. Furthermore, since the consumption rate of phosphorus is highly temperature dependent, it has the disadvantage that at high temperatures of 300°C or higher, phosphorus is consumed rapidly and the duration of oxidation prevention is extremely shortened.
Furthermore, since phosphorus is a non-metallic element, it has the disadvantage of easily causing electrical migration at the soldered portion after soldering. The present invention suppresses the generation of oxides during melting in solder made of Sn and/or Pb, or solder containing at least one of Ag, Bi, Sb, In, and Cd, and improves solderability. The purpose of the present invention is to provide a solder alloy with improved properties, and its feature is that germanium is contained in the solder in an amount of 0.0001 to 0.1 wt%, preferably 0.001 to 0.1 wt%.
This is because 0.05wt% was added. Ge used in the present invention shows a tendency opposite to that of P addition, such that as the additive concentration increases, solderability such as wettability and sharpness is improved, and the oxidation prevention duration is also extended. Therefore, it has the characteristic that changes in the content concentration have almost no effect on the product. Furthermore, since the oxidation rate does not change much even at high temperatures of 300°C or higher, it exhibits superior properties compared to phosphorus-containing alloys even when used at high temperatures.
Furthermore, since Ge is a metal similar to Sn and Pb, unlike the case of P, electrical migration at the soldered portion is small, and is rather small compared to additive-free solder. Furthermore, a major feature of the addition of Ge is that it improves the solderability of the solder alloy. The recent trend in the electronics industry is to reduce the size of products by making them lighter, thinner, and smaller, and to lower costs by using ICs and improving parts. There is a demand for the development of solder. The method usually used to develop highly reliable solders and low melting point solders is to mix metal elements such as Ag, Bi, Sb, In, and Cd with Sn, Pb, or a mixture thereof to form a multi-component alloy. Although it is
At this time, new defects may occur depending on the type, amount, etc. of the added element. For example, although the melting point of the low melting point solder mentioned in Example 3 was lowered due to the addition of Bi (135 to 165°C), the solderability such as wettability, spreadability, and scrapability was lower than that of the Sn-Pb binary alloy solder. indicates a value inferior to . However, this alloy contains Ge.
By adding , the solderability is improved and it is possible to obtain the desired low melting point, highly reliable solder alloy. Furthermore, when Ge is added to several types of Sn-Pb binary alloys, solderability is improved compared to alloys without the addition, and similar results are obtained when Ge is added to other multi-element alloys. . In other words, the addition of a small amount of germanium, which is a feature of the present invention, not only suppresses the amount of oxide produced when the solder alloy is melted, but also improves the solderability of the added alloy, that is, the wettability to the base metal compared to solder without additives. It has been shown that this method greatly contributes to higher reliability of solder, such as by improving soldering properties and sharpness, and by reducing the occurrence of icicles and bridging that cause soldering defects. Furthermore, it has been said that the solderability of these products is highly dependent on the working temperature (solder bath temperature), but the addition of germanium (Ge) proposed by the present invention improves the solderability as described in the claims. The effect of lowering the working temperature by 5 to 30°C is shown for all combinations of alloys. In other words, to use another expression, as is clear from the table of Example 1, by adding germanium, the same solderability is exhibited at a lower temperature than when using a solder alloy without additives at 250°C. This shows that. These characteristics are useful when soldering electronic devices.
It has the ability to lower the working temperature without changing the combination of solder alloys or the static properties associated with it, and it shows the possibility of eliminating the problems that occur when lowering the melting point of solder mentioned earlier. . Furthermore, the above characteristics apply not only to the tin (Sn)-lead (Pb) binary alloy solder as shown in Example 1, but also to the case of bismuth (Bi)-containing solder as shown in Example 3.
Also, bismuth (Bi), silver (Ag), antimony (Sb), indium (In), cadmium (Cd)
A similar effect is obtained when one to several types of metals are added to a Sn-Pb binary alloy to form a multi-component alloy. This is because, unlike conventional multi-component alloys, the addition of germanium improves the surface tension of the base alloy, the interfacial tension with the base material to be soldered or flux, and the fluidity of the molten solder alloy. It is. In addition, as one application example of the present invention, when used as a raw material for cream solder powder, the oxide film on the powder surface becomes thinner, thereby preventing the formation of so-called solder balls and showing the effect of increasing the reliability of soldering. . By adding Ge to the solder made of Sn and/or Pb mentioned above, or the solder containing at least one of Ag, Bi, Sb, In, and Cd, the effect of suppressing the generation of oxides and the solder In order to obtain the adhesion effect, Ge is added to these solders.
It is necessary to contain at least 0.0001wt%. In addition, if Ge is contained more than 0.1wt%, it becomes expensive.
Using a large amount of Ge increases the alloy price and makes it impractical. Preferably, Ge is contained in the solder in an amount of 0.001 to 0.05 wt%. Examples are shown below. Example 1 60% Sn-balance Pb (H60A*) solder and this
Ge0.0001wt%, 0.001wt%, 0.005wt%, 0.01wt
%, 0.05wt%, and 0.1wt% of solder were measured for the amount of oxide produced, wetting time, breaking time, and breaking tension. The results are shown in Table 1. Each measurement test method was as follows. Amount of oxide produced: Surface area 45.4cm 1.5Kg in 2 solder baths
A rotary squeegee is attached to the surface of the solder, and the weight of the oxide produced is measured after one hour. Wetting time, breaking time, and breaking tension Measure using the meniscograph method under the following conditions. Solder melting temperature: 250℃ Flux: American gum rosin WW35% TPA solution Test piece: 2.0φ

【表】 実施例 2 35%Sn−残部Pb(H35A)はんだ及びこれに実
施例1と同様の割合でGeを添加したはんだ合金
の測定を実施例1と同様であるが溶融温度は300
℃として行つた。その結果を第2表に示す。
[Table] Example 2 A 35% Sn-balance Pb (H35A) solder and a solder alloy to which Ge was added in the same proportion as in Example 1 were measured in the same manner as in Example 1, but at a melting temperature of 300.
I went as ℃. The results are shown in Table 2.

【表】 実施例 3 43Sn−43Pb−14Biの配合を有する低融点はん
だ及びこれに実施例1と同様の割合でGeを添加
したはんだ合金の測定を実施例1と同様であるが
溶融温度は200℃として行つた。その結果を第3
表に示す。
[Table] Example 3 A low melting point solder having a composition of 43Sn-43Pb-14Bi and a solder alloy to which Ge was added in the same proportion as in Example 1 were measured in the same manner as in Example 1, but at a melting temperature of 200. I went as ℃. The result is the third
Shown in the table.

【表】 実施例 4 容量300Kgの自動噴流式はんだ槽(日本電熱計
器製FS−300型)を用い、63%Sn−残部Pb
(H63A)はんだ及びこれにGe0.05wt%を添加し
たはんだ合金の250℃における酸化物生成量の比
較(時間)を第1図に示す。
[Table] Example 4 Using an automatic jet soldering bath with a capacity of 300 kg (model FS-300 manufactured by Nihon Denka Keiki Co., Ltd.), 63% Sn - balance Pb
Figure 1 shows a comparison (in time) of the amount of oxide produced at 250°C between the (H63A) solder and the solder alloy to which 0.05 wt% of Ge was added.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例におけるH63AとこれにGeを
0.005wt%含有させた本発明例についての時間と
酸化物生成量との関係図である。
Figure 1 shows H63A in the example and Ge added to it.
FIG. 3 is a diagram showing the relationship between time and the amount of oxide produced for an example of the present invention containing 0.005 wt%.

Claims (1)

【特許請求の範囲】 1 Sn又はPbあるいはその双方からなるはんだ、
又はこれにAg、Bi、Sb、In、Cdのうち少くとも
1種を含むはんだ中にグルマニウムを0.0001〜
0.1wt%添加したことを特徴とするはんだ合金。 2 グルマニウムを0.001〜0.05wt%添加した特
許請求の範囲第1項記載のはんだ合金。
[Claims] 1. Solder made of Sn or Pb or both;
Or 0.0001 to 0.0001 glumanium in solder containing at least one of Ag, Bi, Sb, In, and Cd.
A solder alloy characterized by the addition of 0.1wt%. 2. The solder alloy according to claim 1, to which 0.001 to 0.05 wt% of glumanium is added.
JP7315786A 1986-03-31 1986-03-31 Solder alloy Granted JPS62230493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7315786A JPS62230493A (en) 1986-03-31 1986-03-31 Solder alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7315786A JPS62230493A (en) 1986-03-31 1986-03-31 Solder alloy

Publications (2)

Publication Number Publication Date
JPS62230493A JPS62230493A (en) 1987-10-09
JPH0328996B2 true JPH0328996B2 (en) 1991-04-22

Family

ID=13510059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7315786A Granted JPS62230493A (en) 1986-03-31 1986-03-31 Solder alloy

Country Status (1)

Country Link
JP (1) JPS62230493A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994020257A1 (en) * 1993-03-03 1994-09-15 Nihon Almit Co., Ltd. High-strength soldering alloy
JP2021171812A (en) * 2020-04-30 2021-11-01 千住金属工業株式会社 Lead-free and antimony-free solder alloy, solder ball, ball grid array, and solder joint

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2543941B2 (en) * 1988-03-17 1996-10-16 大豊工業株式会社 Solder material
JP2584842B2 (en) * 1988-09-13 1997-02-26 富士通株式会社 Lead-based high melting point solder alloy
JPH02187295A (en) * 1989-01-17 1990-07-23 Nippon Arumitsuto Kk High-strength solder alloy
JP2543985B2 (en) * 1989-06-28 1996-10-16 トヨタ自動車株式会社 Solder material
US6649127B2 (en) 1996-12-17 2003-11-18 Sony Chemicals Corp Lead-free solder material having good wettability
US6179935B1 (en) * 1997-04-16 2001-01-30 Fuji Electric Co., Ltd. Solder alloys
CN1069566C (en) * 1997-04-29 2001-08-15 北京有色金属研究总院 Low-temperature aluminium welding material and its preparation
JP3296289B2 (en) * 1997-07-16 2002-06-24 富士電機株式会社 Solder alloy
JP3760586B2 (en) * 1997-09-05 2006-03-29 株式会社村田製作所 Solder composition
DE69918758T2 (en) * 1998-03-26 2004-11-25 Nihon Superior Sha Co., Ltd., Suita Lead-free solder alloy
US6197253B1 (en) * 1998-12-21 2001-03-06 Allen Broomfield Lead-free and cadmium-free white metal casting alloy
DE10011174A1 (en) 1999-03-09 2000-10-05 Matsushita Electric Ind Co Ltd Microwave isolator, e.g. for mobile telephone, has three groups of striplines electrically insulated from each other on magnetic substrate in field of permanent magnet
JP3786251B2 (en) * 2000-06-30 2006-06-14 日本アルミット株式会社 Lead-free solder alloy
KR100421634B1 (en) * 2001-03-31 2004-03-10 주식회사 듀텍 Alloying compositions of Lead-free Solder Ball
JP4635715B2 (en) * 2005-05-20 2011-02-23 富士電機システムズ株式会社 Solder alloy and semiconductor device using the same
JP2008221330A (en) * 2007-03-16 2008-09-25 Fuji Electric Holdings Co Ltd Solder alloy
JP4957581B2 (en) * 2007-05-29 2012-06-20 日本軽金属株式会社 Hollow shape joining method and joining structure
JP6234488B2 (en) * 2016-02-05 2017-11-22 株式会社リソー技研 Lead-free solder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127592A (en) * 1981-01-30 1982-08-07 Sumitomo Metal Mining Co Ltd Brazing alloy for adhering ferrite

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127592A (en) * 1981-01-30 1982-08-07 Sumitomo Metal Mining Co Ltd Brazing alloy for adhering ferrite

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994020257A1 (en) * 1993-03-03 1994-09-15 Nihon Almit Co., Ltd. High-strength soldering alloy
JP2021171812A (en) * 2020-04-30 2021-11-01 千住金属工業株式会社 Lead-free and antimony-free solder alloy, solder ball, ball grid array, and solder joint
WO2021221145A1 (en) * 2020-04-30 2021-11-04 千住金属工業株式会社 Lead-free and antimony-free solder alloy, solder ball, baii grid array, and solder joint
CN115485098A (en) * 2020-04-30 2022-12-16 千住金属工业株式会社 Lead-free and antimony-free solder alloy, solder ball, ball grid array, and solder joint
CN115485098B (en) * 2020-04-30 2023-10-03 千住金属工业株式会社 Lead-free and antimony-free solder alloy, solder ball, ball grid array and solder joint

Also Published As

Publication number Publication date
JPS62230493A (en) 1987-10-09

Similar Documents

Publication Publication Date Title
JPH0328996B2 (en)
US6488888B2 (en) Lead-free solder alloys
JP3296289B2 (en) Solder alloy
US6365097B1 (en) Solder alloy
JP3753168B2 (en) Solder paste for joining microchip components
EP1073539B1 (en) Use of lead-free solder alloy powder paste in pcb production
JP2006255762A (en) Wire-shaped solder for electronic component
JP2000190090A (en) Lead free solder
JP2003170294A (en) Solder paste
JPH08164495A (en) Leadless solder for connecting organic substrate, and mounted substrate using it
EP1189725B1 (en) A control method for copper content in a solder dipping bath
JP3353662B2 (en) Solder alloy
JP3299091B2 (en) Lead-free solder alloy
WO2005099961A1 (en) Lead-free, bismuth-free solder alloy powders and pastes and methods of production thereof
WO1999004048A1 (en) Tin-bismuth based lead-free solders
JPH1177367A (en) Solder composition
JP2019155465A (en) Solder paste for chip component joining
KR100904651B1 (en) Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same
CN1307023C (en) Tin-zinc lead-free solder and solder-joined part
WO2004018145A1 (en) Tin-zinc lead-free solder, its mixture, and solder-joined part
JP3462025B2 (en) Solder paste
JPH08192291A (en) Cream solder
JP2000126890A (en) Soldering material
JPH1052791A (en) Lead free solder alloy
KR100904656B1 (en) Pb free solder Composition for wave and deeping, electronic equipment and PCB with the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term