JPH032893B2 - - Google Patents

Info

Publication number
JPH032893B2
JPH032893B2 JP56088734A JP8873481A JPH032893B2 JP H032893 B2 JPH032893 B2 JP H032893B2 JP 56088734 A JP56088734 A JP 56088734A JP 8873481 A JP8873481 A JP 8873481A JP H032893 B2 JPH032893 B2 JP H032893B2
Authority
JP
Japan
Prior art keywords
stretching
film
polyolefin resin
filler
saturated hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56088734A
Other languages
Japanese (ja)
Other versions
JPS57203520A (en
Inventor
Yukio Watanabe
Kunio Bizen
Masahiro Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP8873481A priority Critical patent/JPS57203520A/en
Priority to EP82101589A priority patent/EP0066672B1/en
Priority to US06/353,990 priority patent/US4472328A/en
Priority to DE8282101589T priority patent/DE3277120D1/en
Publication of JPS57203520A publication Critical patent/JPS57203520A/en
Publication of JPH032893B2 publication Critical patent/JPH032893B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、多孔性フイルム又はシートの製造方
法に関する。詳しくは、ポリオレフイン樹脂に充
填剤およびポリヒドロキシ飽和炭化水素を配合し
てなる組成物から多孔性フイルム又はシートを製
造する方法に関するものである。 従来よりポリオレフイン樹脂に充填剤を配合
し、溶融成形して得られたフイルムまたはシート
を一軸ないしは二軸に延伸する試みは、多孔性フ
イルムを製造する手段として数多く実施されて来
た。 しかしながら、これらフイルムに於いては、一
軸延伸物ではフイルム物性の異方性、特に縦方向
(延伸方向)の耐引裂き強度及び表面強度に問題
が残り、又は、二軸延伸物では、フイルム物性の
異方性には問題ないものの、表面強度及び延伸性
に問題があり、更に両者共、全般的に剛性が高い
傾向があり、用途によつては欠点ともなつてい
る。 フイルム物性の異方性、表面強度を改良する一
つの方法としては出来るだけ低倍率で延伸を行
い、多孔化を実現させる事であるが、未だ満足行
く結果が得られていない。 また、フイルムに柔軟性を持たせる方法とし
て、低融点ポリマー、ゴム状物質、可塑剤および
界面活性剤等を添加する方法が考えられるが、多
孔化、延伸性、および表面強度等の物性のバラン
スを満足したものは未だ見い出させていない。 本発明者等は、こうして従来の多孔性フイルム
またはシートの欠点を改良し、一軸延伸に於いて
は引裂き強度と透湿性の物性バランスが良好で表
面強度が強く、又二軸延伸では表面強度及び延伸
性にすぐれ、かつ両者共柔軟性の高い、多孔性フ
イルムまたはシートを提供する事を目的に、鋭意
検討した結果本発明に到達したものである。 すなわち、本発明の要旨は、ポリオレフイン樹
脂に充填剤と、液状ポリブタジエンを水素添加し
た、1分子当り少くとも1.5の水酸基を有する主
鎖が飽和したまたは大部分飽和したポリヒドロキ
シ飽和炭化水素を配合してなる組成物を溶融成形
して得たフイルムまたはシートを延伸処理する事
を特徴とする多孔性フイルムまたはシートの製法
に存する。 以下、本発明をさらに詳細に説明するに、本発
明に使用されるポリオレフイン樹脂は、高密度ポ
リエチレン、ポリプロピレン及びそれらと他のα
−オレフインとの共重合体等であり、単独及び2
種以上の混合物としても用いられる。なかでも、
高密度ポリエチレン、ポリプロピレンの単独物が
好んで使用されるが、高密度ポリエチレンが特に
好ましい。 充填剤としては、無機及び有機の充填剤が用い
られ、無機充填剤としては、炭酸カルシウム、タ
ルク、クレー、カオリン、シリカ、珪藻土、炭酸
マグネシウム、炭酸バリウム、硫酸マグネシウ
ム、硫酸バリウム、硫酸カルシウム、水酸化アル
ミニウム、酸化亜鉛、水酸化マグネシウム、酸化
カルシウム、酸化マグネシウム、酸化チタン、ア
ルミナ、マイカ、アスベスト粉、ガラス粉、シラ
スバルーン、ゼオライト、珪酸白土等が使用さ
れ、特に炭酸カルシウム、タルク、クレー、シリ
カ、珪藻土、硫酸バリウム等が好適である。 有機充填剤としては、木粉、パルプ粉等のセル
ロース系粉末等が使用される。これらは単独又は
混合して用いられる。 充填剤の平均粒径としては、30μ以下のものが
好ましく、10μ以下のものが更に好ましく、1〜
5μのものが最も好ましい。 粒径が大きすぎると延伸物の気孔の緻密性が悪
くなり、又粒径が小さすぎると、樹脂への分散性
が悪く、成形性も劣る。 充填剤の表面処理は、樹脂への分散性、更には
延伸性の点で、実施されている事が好ましく、脂
肪酸又はその金属塩での処理が好ましい結果を与
える。 本発明において用いられるポリヒドロキシ飽和
炭化水素は、1分子当り少くとも1.5個の水酸基
を有する主鎖が飽和したまたは大部分飽和した炭
化水素系ポリマーであつて、400〜48000、好まし
くは500〜20000の範囲の数平均分子量(蒸気圧法
による)をもつものが用いられる。数平均分子量
が小さすぎると耐候性が十分でなく、また大きす
ぎると流動性が低下するため取り扱いが困難とな
る。1分子当りの平均水酸基数は1.5以上好まし
くは1.8以上とくに好ましくは2.0〜5.0である。そ
して水酸基は主鎖の末端、長鎖分岐の末端にある
ことが好ましい。 しかしてこのようなポリヒドロキシ飽和炭化水
素は、公知の方法例えば過酸化水素等を重合開始
剤として、プタジエン単独あるいは共重合性モノ
マーとをラジカル重合して得られるブタジエン系
液状重合体を水素添加することによつて得られ
る。共重合モノマーとしてはイソプレン、クロロ
プレン、スチレン、メチル(メタ)アクリレー
ト、メチルビニルエーテル等が挙げられる。 水素添加はニツケル系触媒(例えば還元ニツケ
ル、ラネーニツケル)、コバルト系触媒、白金触
媒、パラジウム触媒、ロジウム触媒、ルテニウム
触媒、これらの混合又は合金系触媒を使用して通
常の方法で実施される。 末端に極性基のあるもののポリオレフイン樹
脂、充填剤系への導入は、両者の相溶性を向上さ
せる上で好ましい結果を与えるものと推定され
る。 こうしたポリヒドロキシ飽和炭化水素を使用す
ることにより、例えば液状ポリブタジエン、液状
ポリブテンおよびこれらの末端基に水酸基をもつ
不飽和ヒドロキシ炭化水素等を使用した場合に比
べ、充填剤の分散性、得られたフイルムまたはシ
ートの耐引裂き性、耐候性および耐熱性が格段に
向上する。 なお、前記ポリオレフイン樹脂には、常法に従
い熱及び紫外線安定剤、顔料、帯電防止剤、螢光
剤等を添加しても差支えない。 ポリオレフイン樹脂、充填剤およびポリヒドロ
キシ飽和炭化水素を配合するに当たり配合割合は
ポリオレフイン樹脂100重量部に対して充填剤25
〜400重量部、ポリヒドロキシ飽和炭化水素1〜
100重量部が好ましい。 充填剤の割合が。25重量部に満たないと、延伸
したフイルムに気孔が充分形成されず、多孔化度
合が低くなる。又充填剤の割合が400重量部を越
えると混練性、分散性、フイルム又はシート成形
性が劣り、更に延伸物の表面強度が低下する。 本発明において、特に好ましい配合割合は、ポ
リオレフイン樹脂100重量部に対して充填剤60〜
200重量部である。ポリヒドロキシ飽和炭化水素
の配合割合については、100重量部を越えるとポ
リオレフイン樹脂の持つ特性が薄れ、満足の行く
混練性、フイルム又はシート成形性および延伸性
を確保する事が出来ない。 本発明において、更に好ましい配合割合は5〜
50重量部、更に好ましくは10〜40重量部である。 ポリオレフイン樹脂、充填剤およびポリヒドロ
キシ飽和炭化水素の配合は、3者を通常のブレン
ダー又は混合機に入れ、混合すればよいが、好ま
しくは次の方法が混合性、充填剤の分散性、更に
はフイルム又はシート成形性の点で良好である。 しかして、ポリオレフイン樹脂の形態はパウダ
ーが良く、通常10〜150メツシユのものが使用さ
れるが、均一性、取扱い上、30〜80メツシユのも
の更に好ましい。 混合機は、ドラム、タンブラー型混合機、リボ
ンブレンダー、ヘンシエルミキサー、スーパーミ
キサー等が使用されるが、ヘンシエルミキサー等
の高速撹拌型の混合機が望ましい。 混合順序としては、これら混合機にまずポリオ
レフイン樹脂粉末を入れ、これにポリヒドロキシ
飽和炭化水素を添加し、充分撹拌し、ポリオレフ
イン樹脂表面に均一にポリヒドロキシ飽和炭化水
素を展着させる。この状態にした后、充填剤を添
加し、更に撹拌し、最終的に混合した組成物が得
られる。 この方法を用いるメリツトは、ポリヒドロキシ
飽和炭化水素と充填剤を直接接触・分散させる際
に発生する凝集塊の発生を防ぐ事が出来、混練時
ポリオレフイン樹脂中の充填剤の分散性を向上さ
せる事が出来る事である。 次に、混合物の混練には従来公知の装置、例え
ば、通常のスクリユー押出機、二軸スクリユー押
出機、ミキシングロール、バンバリーミキサー、
二軸型混練機等により適宜実施される。 ポリヒドロキシ飽和炭化水素添加により、いず
れの混練方法に於いても大幅に混練トルクを低下
させる事が出来、装置の小型化、電力等の省資源
化に有用である。 フイルム又はシートの成形については、通常の
フイルム又はシートの成形装置及び成形方法に準
じて行えば良く、円形ダイによるインフレーシヨ
ン成形、TダイによるTダイ成形等を適宜採用す
れば良い。その選択は、次の延伸の方法により異
なる。 すなわち、一軸延伸の場合は、ロール延伸が通
常好んで採用されるが、チユーブラー延伸で、一
軸方向(引取方向)を強調させた形であつても良
い。 又、延伸は一段でも二段以上の多段でも差支え
ない。 本組成物の一軸延伸に於ける特徴は、 低倍率延伸で多孔化が達成される。つまり、
延伸倍率が低い時点でマトリツクスと充填剤間
の界面が剥がれて空隙が発生し、所謂ボイドが
形成される事にある。 従つて、1.2倍という低延伸倍率に於いてす
ら、多孔化が生じ、フイルムの白化が起こる。
これは、極めて特異な現象といえる。この低倍
率延伸によりフイルム又はシートの物性の異方
性を抑える事ができる、かつ、表面強度も高
い。 延伸応力が低い。原反の柔軟性が向上した事
及び前述の低倍率延伸で多孔化が可能な事との
関係で、延伸時に低応力で延伸が出来る。これ
は、設備面での小型化、簡略化につながり生産
コストの面で非常に有利となる。 低温での延伸が可能である。 ,項に関係した事でもあるが延伸温度を
低下させる事が出来る。おどろくべき事には、
多孔化が達成可能な温度はポリオレフイン樹脂
単味の延伸温度から常温までに至る。 これは、設備上及び省エネルギーの点で非常
に有利である。 通常、充填剤を含有したフイルムまたはシート
の多孔化が達成される延伸倍率は3.5〜6倍であ
るが、本発明のような組成物からなるフイルムま
たはシートの多孔化は延伸倍率1.2〜6倍と低倍
率でも達成される。しかし、多孔化とフイルム又
シートの物性の異方性の低下の観点より好ましく
は、1.5〜3倍が良い。 次に二軸延伸の場合を記す。 二軸延伸は、同時及び逐次延伸に於いて極めて
良好な延伸性を示した。 二軸延伸でも低倍率延伸が可能であり、少なく
共一方向が1.2倍で均一延伸と多孔化が達成され
る。これに伴い、表面強度が強い多孔性フイルム
を得る事が出来る。 通常、多孔化が達成され、かつ、均一延伸の可
能な延伸倍率は、少なく共一方向が1.2〜4.0倍で
ある。好ましくは、1.2〜2.0倍が良い。 又、一軸延伸、二軸延伸共延伸后に熱処理を実
施する事により、フイルム精度を安定化する事が
出来る。又、公知のコロナ処理、フレーム処理等
の表面処理を施す事も出来る。 かくして、得られたフイルム又なシートは次に
述べる性能を示す。 多孔性:連続気孔を有するため、透湿性、ガ
ス透過性にすぐれる。又耐水圧も良好。 フイルム又はシート物性:一軸延伸物に於い
ては、異方性を少なくする事が出来るため、
縦、横のバランスが良好。特に縦方向(延伸方
向)の耐引裂性が良好。又表面強度を高くする
事が出来る。 二軸延伸物に於いては、異方性が更に少な
く、表面強度も高くする事が可能。 一軸および二軸延伸物共柔軟性、耐侯性およ
び耐熱性が良好。 加工性:熱接着、収縮包装が可能。 焼却性:易焼却性。有毒ガスを発生しない。 本発明により得られたフイルムまたはシートは
前記性能を生かし、種々の用途に利用されよう。 例えば透湿性を生かした衣料用(防水用品、雨
具etc)電池セパレーター用、過材用(空気除
塵、ミスト除去、工業廃水、)医療用等が挙げら
れる。 以下、本発明を実施例に基づいて、更に詳細に
説明するが、本発明は実施例に限定されるもので
ない。 参考例 1 (ポリヒドロキシ飽和炭化水素の製造) 容量10のオートクレーブに市販のポリヒドロ
キシポリブタジエン〔アーコ(Arco)社製;R
−45HT、数平均分子量Mn;3110,OH基;
0.82meq/g、シス−1,4;15%、トランス−
1,4;58%、ビニル;27%〕3Kg、シクロヘキ
サン3Kg及びカーボン担持ルテニウム(5%)触
媒(日本エンゲルハルト社製)300gを仕込み、
精製アルゴンガスでもつて系内を置換した後、高
純度水素ガスをオートクレーブに供給し、同時に
加熱を開始し、約30分を要して定常条件(内温約
100℃、内圧約50Kg/cm2)に到達させた。この条
件に約15時間維持した後、水素化反応を停止し、
以下常法に従つてポリマーを精製、乾燥した。 得られたポリマーは赤外吸収スペクトルによる
分析の結果、殆んど二重結合を含まぬ飽和炭化水
素ポリマーであることが確認された。また、水添
物の−OH基含有量は0.8meq/gであつた。 参考例 2 (ポリヒドロキシ飽和炭化水素の製造) ポリヒドロキシポリブタジエンとして、日本曹
達(株)製液状ポリブタジエンG2000(分子量2000)
を用いたほかは、参考例1と同様にして水添し
た。得られたポリマーは、ヨウ素価5g/100g、
水酸基価44KOHmg/gで、30℃での粘度が775ポ
イズの液状物であつた。 実施例 1 高密度ポリエチレン樹脂(ノバテツクBR002,
ノバテツクは、三菱化成工業(株)の登録商標)20Kg
に、ポリヒドロキシ飽和炭化水素(参考例2で得
られたもの)5Kgを、まずヘンシエルミキサー中
で撹拌混合し、次いでこれに炭酸カルシウム(平
均粒径1.2μ、脂肪酸処理)25Kgを添加し、更に撹
拌混合を行なつた。 かくして得られた混合物を、二軸混練機−DM
−65(Double Screw Mixer、日本製鋼所(株)製)
に於いて混練し、造粒した。 これを40mmφ押出機によりインフレーシヨン成
形し、厚さ70μのフイルムに製膜した。押出条件
は下記のとおり。 シリンダー温度:170−190−210−230℃ ヘツド、ダイス温度:230℃ 引取速度:8m/min ブロー比=2.0、 折り径314mm かくして得られたフイルムを、ロール延伸機に
より一軸延伸を行つた。 延伸条件は下記のとおり 延伸温度:80℃ 延伸倍率:2.2倍 延伸速度:11.0m/min 延伸したフイルムは、多孔化され充分白化した
ものであり、延伸ムラもなく、表面美麗な多孔性
フイルムであつた。 このフイルムの性能を表−1に示す。 尚、表−1中の性能評価項目の測定方法は下記
のとおり。 1 延伸性: ◎:切断なし、均一延伸、延伸ムラなし 〇:切断なし、延伸ムラ、殆どなし △:切断なし、延伸ムラ、ややあり ×:切断又は延伸ムラ大 2 空隙率:次の式より、フイルムの密度から計
算 空隙率(%)=D0−D/D0×100(%) D0:原反フイルムの密度(g/cm3) D:延伸フイルムの密度(g/cm3) 3 引裂き強度:JIS P−8116に準ずる。 14mm幅×110mm長さの試料で、ノ
ツチ無しエルメンドルフ引裂き強
さ。 4 透湿度:ASTM E26−66(E)に準ずる。 5 表面強度:フイルム表面にセロハンテープを
貼り、すばやく引剥がした際の表面
の剥れ状態を見て、次の基準で判定
した。 ◎:表面剥離せず 〇:表面剥離殆どなし △:表面剥離少しあり ×:表面剥離大 なお、表中の組成の記号は、表−7に示す通り
である。 実施例 2〜8 延伸温度と延伸倍率を表−1のとおり変えた他
は、実施例1と全く同様にして多孔性フイルムを
得、さらにその性能を評価した。結果を表−1に
示す。 実施例 9〜13 ポリマー、充填剤およびポリヒドロキシ飽和炭
化水素の配合割合を変えた他は、実施例1と全く
同様にして多孔性フイルムを得、さらにその性能
を評価した。結果を表−1に示す。 実施例 14〜17 ポリヒドロキシ飽和炭化水素として、(参考例
1で得たもの)表−7でC−2の記号を使用し、
延伸温度80℃で、倍率を種々変えた他は、実施例
1と同様にして多孔性フイルムを得、さらにその
性能を評価した。結果を表−2に示す。 比較例 1〜5 ポリヒドロキシ飽和炭化水素を配合しない系で
延伸温度および延伸倍率を変えた他は、実施例1
と全く同様にして多孔性フイルムを得、さらにそ
の性能を評価した。結果を表−3に示す。 比較例 6〜8 ポリマー、充填剤およびポリヒドロキシ飽和炭
化水素の配合割合を表−3のとおり変えた他は、
実施例1と全く同様にして多孔性フイルムを得、
さらにその性能を評価した。結果を表−3に示
す。 比較例 9〜11 ポリヒドロキシ飽和炭化水素の代りに、第三成
分として液状ポリブタジエン(日本曹達(株)製、
Nisso PB G)または液状ポリブテン(日本石
油化学(株)製、日石ポリブテンHV−300)を使用
し、延伸温度80℃で、倍率を種々変えた他は、実
施例1と同様にして多孔性フイルムを得、さらに
その性能を評価した。その結果を表−4に示す。 実施例18および19 充填剤としてタルク(日本タルク(株)製、MSタ
ルク)または珪藻土を使用したものについて、
各々実施例1と同様に原反を作製し、一軸延伸を
行つた。さらに同様にフイルムの性能を評価し
た。結果を表−4に示す。 比較例 12〜14 実施例1の配合の内、ポリヒドロキシ飽和炭化
水素の代りに第3成分として、ゴム状ポリブタジ
エン(タフプレンA、タフプレンは旭化成工業(株)
の登録商標)またはゴム状EPR(タフマーP0480、
タフマーは三井石油化学工業(株)の登録商標)を添
加した以外は実施例1と同様にして原反フイルム
を製膜し、一軸延伸を実施した。さらに同様にフ
イルムの性能を評価した。結果を表−4に示す。 実施例20および21 高密度ポリエチレン樹脂の代わりに、ポリプロ
ピレン樹脂(ノバテツクP4200Y、ノバテツクは
三菱化成工業(株)の登録商標)を使用した以外、実
施例1と同様の方法で原反フイルムを作製し一軸
延伸を実施した。さらに同様にフイルムの性能を
評価した。結果を表−4に示す。 実施例 22〜28 実施例1、実施例20,21と同様の配合、方法で
原反フイルムを作製し、これをロング延伸機
(TMロング社(米国)製)にて逐次および同時
二軸延伸した。 二軸延伸に於いては、いずれも低倍率で均一延
伸が可能であつた。さらに、得られたフイルムの
性能を実施例1と同様に評価した。結果を表−5
に示す。 比較例 15〜16 比較例1〜5と同様に、ポリヒドロキシ飽和炭
化水素を配合しない系で、かつ実施例22〜28と同
様な方法で二軸延伸操作を行なつて原反フイルム
を得、さらに得られたフイルムの性能を実施例1
と同様に評価した。結果を表−5に示す。 実施例29および30 参考例1および2で得たポリヒドロキシ飽和炭
化水素を用いて、実施例1と同様にヘンシエルミ
キサーで配合した後、ミゼツトバンバリーミキサ
ーで混練した原料から厚さ2mmのプレス片を作つ
た(プレス温度190℃)。 これら試料プレス片の耐熱性および耐侯性を測
定した。耐熱性は、100℃のオーブン中に、又耐
侯性はサンシヤインカーボンアーク式ウエザーメ
ーター(スガ試験機製)中に入れた促進試験後
(100hr後および1000hr後)の引張り破断伸度で評
価した。結果を表−6に示す。尚表−6の中のブ
ランクは、促進試験をしてないプレス片そのもの
の破断伸度である。 比較例 17〜20 液状ポリブタジエン〔Nisso PBG(日本曹
達)〕、液状ポリブテン〔日石ポリブテンHV−
300(日本石油化学)〕、水酸基末端液状ポリブタジ
エン〔Poly bd R−45HT(出光石油化学)〕及び
ゴム状ポリブタジエン〔タフプレンA(旭化成)〕
を添加した以外は、実施例29,30と同様にしてプ
レス片を作り耐熱性・耐侯性を調べた。結果を表
−6に示す。
The present invention relates to a method for manufacturing a porous film or sheet. Specifically, the present invention relates to a method for producing a porous film or sheet from a composition obtained by blending a filler and a polyhydroxy saturated hydrocarbon with a polyolefin resin. Conventionally, many attempts have been made to uniaxially or biaxially stretch a film or sheet obtained by blending a filler into a polyolefin resin and melt-molding it as a means of producing a porous film. However, in these films, problems remain in the anisotropy of the film physical properties, especially the tear resistance and surface strength in the longitudinal direction (stretching direction), in the case of uniaxially oriented products, or in the film physical properties in the biaxially oriented products. Although there is no problem with anisotropy, there are problems with surface strength and stretchability, and both tend to have high overall rigidity, which may be a drawback depending on the application. One way to improve the anisotropy and surface strength of the film is to stretch it at as low a magnification as possible to make it porous, but satisfactory results have not yet been obtained. Additionally, adding low-melting point polymers, rubber-like substances, plasticizers, surfactants, etc. can be considered as a method of imparting flexibility to the film, but the balance between physical properties such as porosity, stretchability, and surface strength can be considered. I have not yet found anything that satisfies this. The present inventors have thus improved the drawbacks of conventional porous films or sheets, and have achieved a good balance of physical properties between tear strength and moisture permeability in uniaxial stretching, and high surface strength, and high surface strength and high surface strength in biaxial stretching. The present invention was arrived at as a result of intensive studies aimed at providing a porous film or sheet that is both highly stretchable and highly flexible. That is, the gist of the present invention is to blend a polyolefin resin with a filler and a polyhydroxy saturated hydrocarbon whose main chain is saturated or mostly saturated and has at least 1.5 hydroxyl groups per molecule, which is obtained by hydrogenating liquid polybutadiene. The present invention relates to a method for producing a porous film or sheet, which comprises stretching a film or sheet obtained by melt-molding a composition comprising: Hereinafter, the present invention will be explained in more detail. The polyolefin resin used in the present invention includes high-density polyethylene, polypropylene, and other α
- Copolymers with olefins, etc. alone and
It is also used as a mixture of more than one species. Among them,
High-density polyethylene and polypropylene alone are preferably used, and high-density polyethylene is particularly preferred. Inorganic and organic fillers are used as fillers, and inorganic fillers include calcium carbonate, talc, clay, kaolin, silica, diatomaceous earth, magnesium carbonate, barium carbonate, magnesium sulfate, barium sulfate, calcium sulfate, and water. Aluminum oxide, zinc oxide, magnesium hydroxide, calcium oxide, magnesium oxide, titanium oxide, alumina, mica, asbestos powder, glass powder, shirasu balloon, zeolite, clay silicate, etc. are used, especially calcium carbonate, talc, clay, and silica. , diatomaceous earth, barium sulfate, etc. are suitable. As the organic filler, cellulose powder such as wood flour and pulp powder is used. These may be used alone or in combination. The average particle size of the filler is preferably 30 μ or less, more preferably 10 μ or less, and 1 to 1 μm.
5μ is most preferred. If the particle size is too large, the density of the pores in the drawn product will be poor, and if the particle size is too small, the dispersibility in the resin will be poor and the moldability will be poor. Surface treatment of the filler is preferably carried out in terms of dispersibility in the resin and further stretchability, and treatment with a fatty acid or a metal salt thereof gives preferable results. The polyhydroxy saturated hydrocarbon used in the present invention is a main chain saturated or mostly saturated hydrocarbon polymer having at least 1.5 hydroxyl groups per molecule, 400 to 48,000, preferably 500 to 20,000. Those having a number average molecular weight (based on the vapor pressure method) in the range of are used. If the number average molecular weight is too small, the weather resistance will not be sufficient, and if it is too large, the fluidity will decrease, making handling difficult. The average number of hydroxyl groups per molecule is 1.5 or more, preferably 1.8 or more, and particularly preferably 2.0 to 5.0. The hydroxyl group is preferably located at the end of the main chain or at the end of a long chain branch. However, such polyhydroxy saturated hydrocarbons can be obtained by hydrogenating a butadiene-based liquid polymer obtained by radical polymerization of butadiene alone or with a copolymerizable monomer using a known method such as hydrogen peroxide as a polymerization initiator. obtained by Examples of copolymerizable monomers include isoprene, chloroprene, styrene, methyl (meth)acrylate, and methyl vinyl ether. Hydrogenation is carried out in a conventional manner using a nickel catalyst (eg reduced nickel, Raney nickel), cobalt catalyst, platinum catalyst, palladium catalyst, rhodium catalyst, ruthenium catalyst, or a mixture or alloy catalyst thereof. It is presumed that the introduction of a material having a polar group at the terminal into the polyolefin resin and filler system will give preferable results in improving the compatibility between the two. By using such a polyhydroxy saturated hydrocarbon, the dispersibility of the filler and the resulting film are improved, compared to the case where, for example, liquid polybutadiene, liquid polybutene, and unsaturated hydroxy hydrocarbons having hydroxyl groups at their end groups are used. Alternatively, the tear resistance, weather resistance, and heat resistance of the sheet are significantly improved. Note that heat and ultraviolet stabilizers, pigments, antistatic agents, fluorescent agents, and the like may be added to the polyolefin resin according to conventional methods. When blending polyolefin resin, filler, and polyhydroxy saturated hydrocarbon, the blending ratio is 25 parts by weight of filler per 100 parts by weight of polyolefin resin.
~400 parts by weight, 1~ polyhydroxy saturated hydrocarbon
100 parts by weight is preferred. The percentage of filler. If the amount is less than 25 parts by weight, sufficient pores will not be formed in the stretched film, resulting in a low degree of porosity. If the proportion of the filler exceeds 400 parts by weight, the kneading properties, dispersibility, film or sheet formability will be poor, and the surface strength of the stretched product will be reduced. In the present invention, a particularly preferred blending ratio is 60 to 60 parts by weight of filler to 100 parts by weight of polyolefin resin.
It is 200 parts by weight. Regarding the blending ratio of polyhydroxy saturated hydrocarbon, if it exceeds 100 parts by weight, the properties of the polyolefin resin will be weakened, and satisfactory kneading properties, film or sheet formability, and stretchability cannot be ensured. In the present invention, a more preferable blending ratio is 5 to
The amount is 50 parts by weight, more preferably 10 to 40 parts by weight. The polyolefin resin, filler, and polyhydroxy saturated hydrocarbon can be blended by placing the three in a normal blender or mixer, but preferably the following method is used to improve mixability, filler dispersibility, and Good in terms of film or sheet formability. The polyolefin resin is preferably in the form of a powder, and one with a mesh size of 10 to 150 is usually used, but one with a mesh size of 30 to 80 is more preferable in terms of uniformity and handling. As the mixer, a drum, a tumbler type mixer, a ribbon blender, a Henschel mixer, a super mixer, etc. are used, and a high-speed stirring type mixer such as a Henschel mixer is preferable. As for the mixing order, the polyolefin resin powder is first put into these mixers, the polyhydroxy saturated hydrocarbon is added thereto, and the mixture is sufficiently stirred to uniformly spread the polyhydroxy saturated hydrocarbon on the surface of the polyolefin resin. After reaching this state, a filler is added and further stirred to obtain a final mixed composition. The advantage of using this method is that it can prevent the formation of agglomerates that occur when the polyhydroxy saturated hydrocarbon and filler are directly brought into contact and dispersed, and it can improve the dispersibility of the filler in the polyolefin resin during kneading. This is something that can be done. Next, for kneading the mixture, a conventionally known device is used, such as a conventional screw extruder, a twin screw extruder, a mixing roll, a Banbury mixer,
This is carried out as appropriate using a twin-screw kneader or the like. By adding polyhydroxy saturated hydrocarbon, the kneading torque can be significantly reduced in any kneading method, which is useful for downsizing equipment and saving resources such as electric power. Molding of the film or sheet may be carried out according to a conventional film or sheet molding apparatus and method, and inflation molding using a circular die, T-die molding using a T-die, etc. may be employed as appropriate. The selection depends on the subsequent stretching method. That is, in the case of uniaxial stretching, roll stretching is usually preferred, but tubular stretching with emphasis on the uniaxial direction (take-up direction) may also be used. Further, the stretching may be carried out in one stage or in multiple stages of two or more stages. The characteristics of the uniaxial stretching of this composition are as follows: Porousness is achieved by low-magnification stretching. In other words,
When the stretching ratio is low, the interface between the matrix and the filler peels off, creating voids and forming so-called voids. Therefore, even at a low draw ratio of 1.2 times, porosity and whitening of the film occur.
This can be said to be an extremely unique phenomenon. This low-magnification stretching makes it possible to suppress anisotropy in the physical properties of the film or sheet, and also provides high surface strength. Low stretching stress. Due to the improved flexibility of the original fabric and the fact that it is possible to make it porous by stretching at a low magnification as described above, it is possible to stretch with low stress during stretching. This leads to miniaturization and simplification of equipment and is very advantageous in terms of production costs. Stretching at low temperatures is possible. Although this is related to the above, the stretching temperature can be lowered. Surprisingly,
The temperature at which porosity can be achieved ranges from the stretching temperature of a single polyolefin resin to room temperature. This is very advantageous in terms of equipment and energy saving. Normally, a film or sheet containing a filler is made porous at a stretching ratio of 3.5 to 6 times, but a film or sheet made of the composition of the present invention is made porous at a stretching ratio of 1.2 to 6 times. This can be achieved even at low magnification. However, from the viewpoint of increasing porosity and reducing the anisotropy of the physical properties of the film or sheet, it is preferably 1.5 to 3 times. Next, the case of biaxial stretching will be described. Biaxial stretching showed extremely good stretching properties in both simultaneous and sequential stretching. Biaxial stretching also allows for low stretching ratios, and uniform stretching and porosity can be achieved at 1.2x in both directions. Accordingly, a porous film with high surface strength can be obtained. Usually, the stretching ratio at which porosity can be achieved and uniform stretching can be achieved is 1.2 to 4.0 times in both directions. Preferably, it is 1.2 to 2.0 times. Further, by performing heat treatment after both uniaxial stretching and biaxial stretching, film accuracy can be stabilized. Further, known surface treatments such as corona treatment and flame treatment can also be applied. The film or sheet thus obtained exhibits the following properties. Porosity: Because it has continuous pores, it has excellent moisture permeability and gas permeability. It also has good water pressure resistance. Physical properties of film or sheet: In uniaxially stretched products, anisotropy can be reduced, so
Good vertical and horizontal balance. Particularly good tear resistance in the longitudinal direction (stretching direction). Moreover, the surface strength can be increased. Biaxially stretched products have even less anisotropy and can have higher surface strength. Both uniaxially and biaxially stretched products have good flexibility, weather resistance, and heat resistance. Processability: Can be thermally bonded and shrink wrapped. Incinurability: Easily incinerated. Does not generate toxic gas. The film or sheet obtained according to the present invention may be utilized for various purposes by taking advantage of the above-mentioned properties. Examples include applications that utilize moisture permeability for clothing (waterproof products, rain gear, etc.), battery separators, filter materials (air dust removal, mist removal, industrial wastewater, and medical applications). Hereinafter, the present invention will be explained in more detail based on Examples, but the present invention is not limited to the Examples. Reference Example 1 (Production of polyhydroxy saturated hydrocarbon) Commercially available polyhydroxy polybutadiene [manufactured by Arco; R
−45HT, number average molecular weight Mn; 3110, OH group;
0.82meq/g, cis-1,4; 15%, trans-
1,4: 58%, vinyl: 27%] 3 kg, cyclohexane 3 kg and carbon-supported ruthenium (5%) catalyst (manufactured by Nippon Engelhard Co., Ltd.) 300 g,
After replacing the inside of the system with purified argon gas, high-purity hydrogen gas was supplied to the autoclave and heating was started at the same time.
100°C and an internal pressure of approximately 50 Kg/cm 2 ). After maintaining this condition for about 15 hours, the hydrogenation reaction was stopped and
The polymer was purified and dried according to a conventional method. As a result of analysis by infrared absorption spectrum, the obtained polymer was confirmed to be a saturated hydrocarbon polymer containing almost no double bonds. Moreover, the -OH group content of the hydrogenated product was 0.8 meq/g. Reference Example 2 (Manufacture of polyhydroxy saturated hydrocarbon) As polyhydroxy polybutadiene, liquid polybutadiene G2000 (molecular weight 2000) manufactured by Nippon Soda Co., Ltd.
Hydrogenation was carried out in the same manner as in Reference Example 1 except that . The obtained polymer had an iodine value of 5 g/100 g,
It was a liquid with a hydroxyl value of 44 KOHmg/g and a viscosity of 775 poise at 30°C. Example 1 High-density polyethylene resin (Novatec BR002,
Novatec is a registered trademark of Mitsubishi Chemical Industries, Ltd.) 20Kg
First, 5 kg of polyhydroxy saturated hydrocarbon (obtained in Reference Example 2) was stirred and mixed in a Henschel mixer, and then 25 kg of calcium carbonate (average particle size 1.2μ, fatty acid treated) was added thereto. Further stirring and mixing were performed. The mixture thus obtained was mixed in a twin-screw kneader - DM.
−65 (Double Screw Mixer, manufactured by Japan Steel Works, Ltd.)
The mixture was kneaded and granulated. This was inflation-molded using a 40 mmφ extruder to form a film with a thickness of 70 μm. The extrusion conditions are as follows. Cylinder temperature: 170-190-210-230°C Head and die temperature: 230°C Take-up speed: 8 m/min Blow ratio = 2.0, fold diameter 314 mm The film thus obtained was uniaxially stretched using a roll stretching machine. The stretching conditions are as follows: Stretching temperature: 80°C Stretching ratio: 2.2 times Stretching speed: 11.0 m/min The stretched film is porous and sufficiently whitened, with no stretching unevenness and a porous film with a beautiful surface. It was hot. The performance of this film is shown in Table 1. The methods for measuring the performance evaluation items in Table 1 are as follows. 1 Stretchability: ◎: No cutting, uniform stretching, no stretching unevenness 〇: No cutting, almost no stretching unevenness △: No cutting, some stretching unevenness ×: Severe cutting or stretching unevenness 2 Porosity: From the following formula , calculated from the density of the film Porosity (%) = D 0 - D / D 0 × 100 (%) D 0 : Density of raw film (g/cm 3 ) D: Density of stretched film (g/cm 3 ) 3 Tear strength: According to JIS P-8116. Unnotched Elmendorf tear strength for a 14 mm wide x 110 mm long sample. 4 Moisture permeability: Conforms to ASTM E26-66 (E). 5. Surface strength: A cellophane tape was attached to the surface of the film, and when it was quickly peeled off, the peeling state of the surface was observed and judged according to the following criteria. ◎: No surface peeling ○: Almost no surface peeling △: Some surface peeling ×: Large surface peeling The symbols for the compositions in the table are as shown in Table-7. Examples 2 to 8 Porous films were obtained in exactly the same manner as in Example 1, except that the stretching temperature and stretching ratio were changed as shown in Table 1, and their performance was evaluated. The results are shown in Table-1. Examples 9 to 13 Porous films were obtained in exactly the same manner as in Example 1, except that the blending ratios of the polymer, filler, and polyhydroxy saturated hydrocarbon were changed, and their performance was further evaluated. The results are shown in Table-1. Examples 14 to 17 As polyhydroxy saturated hydrocarbons (obtained in Reference Example 1), the symbol C-2 in Table 7 was used,
A porous film was obtained in the same manner as in Example 1, except that the stretching temperature was 80° C. and the magnification was varied, and its performance was further evaluated. The results are shown in Table-2. Comparative Examples 1 to 5 Example 1 except that the stretching temperature and stretching ratio were changed in a system that did not contain polyhydroxy saturated hydrocarbon.
A porous film was obtained in exactly the same manner as described above, and its performance was further evaluated. The results are shown in Table-3. Comparative Examples 6 to 8 Other than changing the blending ratio of polymer, filler, and polyhydroxy saturated hydrocarbon as shown in Table 3,
A porous film was obtained in exactly the same manner as in Example 1,
Furthermore, its performance was evaluated. The results are shown in Table-3. Comparative Examples 9 to 11 Liquid polybutadiene (manufactured by Nippon Soda Co., Ltd.,
Nisso PB G) or liquid polybutene (Nippon Petrochemical Co., Ltd., Nisseki Polybutene HV-300) was used, the stretching temperature was 80°C, and the stretching ratio was varied. A film was obtained and its performance was further evaluated. The results are shown in Table 4. Examples 18 and 19 Regarding those using talc (manufactured by Nippon Talc Co., Ltd., MS Talc) or diatomaceous earth as a filler,
Each original fabric was produced in the same manner as in Example 1, and uniaxially stretched. Furthermore, the performance of the film was evaluated in the same manner. The results are shown in Table 4. Comparative Examples 12 to 14 In the formulation of Example 1, rubbery polybutadiene (Tuffrene A, Tuffrene is manufactured by Asahi Kasei Corporation) was used as the third component instead of polyhydroxy saturated hydrocarbon.
) or rubbery EPR (Tafmar P0480,
A raw film was formed in the same manner as in Example 1, except that TAFMER (registered trademark of Mitsui Petrochemical Industries, Ltd.) was added, and uniaxial stretching was performed. Furthermore, the performance of the film was evaluated in the same manner. The results are shown in Table 4. Examples 20 and 21 Raw films were produced in the same manner as in Example 1, except that polypropylene resin (Novatek P4200Y, Novatek is a registered trademark of Mitsubishi Chemical Industries, Ltd.) was used instead of high-density polyethylene resin. Uniaxial stretching was performed. Furthermore, the performance of the film was evaluated in the same manner. The results are shown in Table 4. Examples 22 to 28 A raw film was produced using the same formulation and method as in Example 1, Examples 20 and 21, and was sequentially and simultaneously biaxially stretched using a long stretching machine (manufactured by TM Long Co., Ltd. (USA)). did. In biaxial stretching, uniform stretching was possible at low magnification in all cases. Furthermore, the performance of the obtained film was evaluated in the same manner as in Example 1. Table 5 shows the results.
Shown below. Comparative Examples 15 to 16 In the same manner as Comparative Examples 1 to 5, a raw film was obtained by performing biaxial stretching in the same manner as in Examples 22 to 28 without blending the polyhydroxy saturated hydrocarbon, Furthermore, the performance of the obtained film was demonstrated in Example 1.
It was evaluated in the same way. The results are shown in Table-5. Examples 29 and 30 The polyhydroxy saturated hydrocarbons obtained in Reference Examples 1 and 2 were blended in the same manner as in Example 1 using a Henschel mixer, and then kneaded using a Midget Banbury mixer to form a 2 mm thick press. A piece was made (press temperature 190℃). The heat resistance and weather resistance of these sample pressed pieces were measured. Heat resistance was evaluated by tensile elongation at break after an accelerated test (after 100 hours and after 1000 hours) in an oven at 100°C, and weather resistance was evaluated in a sunshine carbon arc weather meter (manufactured by Suga Test Instruments). . The results are shown in Table-6. The blank in Table 6 is the elongation at break of the pressed piece itself that has not been subjected to the accelerated test. Comparative Examples 17 to 20 Liquid polybutadiene [Nisso PBG (Nippon Soda)], liquid polybutene [Nisseki Polybutene HV-
300 (Japan Petrochemical)], hydroxyl-terminated liquid polybutadiene [Poly bd R-45HT (Idemitsu Petrochemical)], and rubbery polybutadiene [Tuffrene A (Asahi Kasei)]
A pressed piece was made in the same manner as in Examples 29 and 30, except that the following was added, and its heat resistance and weather resistance were examined. The results are shown in Table-6.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 以上の結果から明らかな様に、ポリオレフイン
樹脂に充填剤及びポリヒドロキシ飽和炭化水素を
配合した組成物から得たフイルムまたはシート
は、極めて、すぐれた延伸性を示し、かつ低倍率
延伸で多孔性が実現される事更にフイルムまたは
シートが美麗で柔軟性に富んでいる。更には、耐
熱・耐侯性がすぐれる等の利点を有する。 又、耐引裂き性が大きく連続気孔を有するフイ
ルム又はシートとして広範囲な用途が期待され
る。
[Table] As is clear from the above results, films or sheets obtained from compositions containing fillers and polyhydroxy saturated hydrocarbons in polyolefin resins exhibit extremely excellent stretchability and can be stretched at low ratios. In addition to achieving porosity, the film or sheet is beautiful and highly flexible. Furthermore, it has advantages such as excellent heat resistance and weather resistance. In addition, it is expected to be used in a wide range of applications as a film or sheet with high tear resistance and continuous pores.

Claims (1)

【特許請求の範囲】 1 ポリオレフイン樹脂に充填剤と、液状ポリブ
タジエンを水素添加した、1分子当り少くとも
1.5個の水酸基を有する主鎖が飽和したまたは大
部分飽和したポリヒドロキシ飽和炭化水素を配合
してなる組成物を溶融成形して得たフイルムまた
はシートを延伸処理する事を特徴とする多孔性フ
イルムまたはシートの製法。 2 組成物の配合割合が、ポリオレフイン樹脂
100重量部に対して、充填剤25〜400重量部、ポリ
ヒドロキシ飽和炭化水素1〜100重量部である特
許請求の範囲第1項記載の製法。 3 ポリオレフイン樹脂が高密度ポリエチレンで
ある特許請求の範囲第1項または第2項記載の製
法。 4 ポリオレフイン樹脂がポリプロピレンである
特許請求の範囲第1項または第2項記載の製法。 5 組成物の配合に際し、ポリオレフイン樹脂の
粉末にポリヒドロキシ飽和炭化水素を分散、展着
させた后、充填剤を混合させる事を特徴とする特
許請求の範囲第1項ないし第4項のいずれかに記
載の製法。 6 延伸処理が、少なく共1.2倍の一軸延伸であ
る特許請求の範囲第1項ないし第5項のいずれか
に記載の製法。 7 延伸処理が少なく共1.2倍の二軸延伸である
特許請求の範囲第1項ないし第5項のいずれかに
記載の製法。
[Claims] 1. A polyolefin resin containing a filler and hydrogenated liquid polybutadiene, at least per molecule.
A porous film characterized by stretching a film or sheet obtained by melt-molding a composition comprising a polyhydroxy saturated hydrocarbon whose main chain is saturated or mostly saturated and has 1.5 hydroxyl groups. Or the manufacturing method of the sheet. 2 The blending ratio of the composition is polyolefin resin
2. The method according to claim 1, wherein the amount of filler is 25 to 400 parts by weight and the polyhydroxy saturated hydrocarbon is 1 to 100 parts by weight based on 100 parts by weight. 3. The manufacturing method according to claim 1 or 2, wherein the polyolefin resin is high-density polyethylene. 4. The manufacturing method according to claim 1 or 2, wherein the polyolefin resin is polypropylene. 5. Any one of claims 1 to 4, characterized in that when blending the composition, a filler is mixed after the polyhydroxy saturated hydrocarbon is dispersed and spread in the polyolefin resin powder. The manufacturing method described in. 6. The manufacturing method according to any one of claims 1 to 5, wherein the stretching treatment is uniaxial stretching of at least 1.2 times. 7. The manufacturing method according to any one of claims 1 to 5, wherein the stretching process is at least 1.2 times biaxial stretching.
JP8873481A 1981-06-09 1981-06-09 Manufacture of porous film or sheet Granted JPS57203520A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8873481A JPS57203520A (en) 1981-06-09 1981-06-09 Manufacture of porous film or sheet
EP82101589A EP0066672B1 (en) 1981-06-09 1982-03-02 Process for producing porous film or sheet
US06/353,990 US4472328A (en) 1981-06-09 1982-03-02 Process for producing porous film or sheet
DE8282101589T DE3277120D1 (en) 1981-06-09 1982-03-02 Process for producing porous film or sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8873481A JPS57203520A (en) 1981-06-09 1981-06-09 Manufacture of porous film or sheet

Publications (2)

Publication Number Publication Date
JPS57203520A JPS57203520A (en) 1982-12-13
JPH032893B2 true JPH032893B2 (en) 1991-01-17

Family

ID=13951145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8873481A Granted JPS57203520A (en) 1981-06-09 1981-06-09 Manufacture of porous film or sheet

Country Status (1)

Country Link
JP (1) JPS57203520A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4698372A (en) * 1985-09-09 1987-10-06 E. I. Du Pont De Nemours And Company Microporous polymeric films and process for their manufacture
JPH0531993Y2 (en) * 1985-12-17 1993-08-17
JPH075778B2 (en) * 1986-07-09 1995-01-25 日東電工株式会社 Directional porous film with heat treatment part
FI97300C (en) * 1987-08-27 1996-11-25 Mitsubishi Chemical Mkv Compan Porous film and absorbent sanitary products
US5948557A (en) * 1996-10-18 1999-09-07 Ppg Industries, Inc. Very thin microporous material
CN101880419B (en) 2004-04-22 2012-08-29 东丽株式会社 Microporous polypropylene film
CA2625083C (en) 2005-10-18 2013-06-18 Toray Industries, Inc. Microporous film for electric storage device separator and electric storage device separator using the same
EP2410006A4 (en) 2009-03-17 2015-08-19 Toray Industries Porous polypropylene film and production method therefor
WO2011043160A1 (en) 2009-10-07 2011-04-14 東レ株式会社 Porous polypropylene film roll
JP6755726B2 (en) * 2016-06-21 2020-09-16 住友化学株式会社 Laminate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381578A (en) * 1976-12-28 1978-07-19 Asahi Chemical Ind Stretched polyolefine article with improved property

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381578A (en) * 1976-12-28 1978-07-19 Asahi Chemical Ind Stretched polyolefine article with improved property

Also Published As

Publication number Publication date
JPS57203520A (en) 1982-12-13

Similar Documents

Publication Publication Date Title
US4472328A (en) Process for producing porous film or sheet
JPS6215090B2 (en)
DE60225175T2 (en) HYDROGENATED COPOLYMER
JPH0118091B2 (en)
DE10392263T5 (en) Modified hydrogenated copolymer
JPS596236A (en) Production of elastomeric composition
JPS58206644A (en) Elastomer composition
DE60214035T2 (en) OLEFINIC THERMOPLASTIC ELASTOMER, METHOD FOR THE PRODUCTION THEREOF, COMPOSITIONS CONTAINING OLEFINIC THERMOPLASTIC ELASTOMER, METHOD FOR THE PRODUCTION THEREOF AND FORM BODY THEREOF
JPH032893B2 (en)
JPH03137161A (en) Thermoplastic resin composition
JPS59131613A (en) Preparation of elastomer ic composition
JP2002201333A (en) Block copolymer composition
JP2003128849A (en) Flame retardant thermoplastic elastomer composition
JPS5962117A (en) Preparation of porous film or sheet
JP4125576B2 (en) Thermoplastic elastomer composition
JPH0651813B2 (en) Method for producing porous sheet
JPH11323031A (en) Thermoplastic elastomer resin composition
JP2005255857A (en) Hydrogenated diene-based copolymer and method for producing the same
JP2005089656A (en) Styrenic thermoplastic elastomer composition
JPS59136334A (en) Manufacture of porous sheet
JPS60229731A (en) Porous film having excellent softness
JPS62253635A (en) Production of porous film or sheet
JP2005206669A (en) Vinyl aromatic thermoplastic elastomer composition
JPH0723432B2 (en) Porous film
JPS63251436A (en) Production of porous sheet