JPH0118091B2 - - Google Patents

Info

Publication number
JPH0118091B2
JPH0118091B2 JP55122101A JP12210180A JPH0118091B2 JP H0118091 B2 JPH0118091 B2 JP H0118091B2 JP 55122101 A JP55122101 A JP 55122101A JP 12210180 A JP12210180 A JP 12210180A JP H0118091 B2 JPH0118091 B2 JP H0118091B2
Authority
JP
Japan
Prior art keywords
stretching
film
filler
polyolefin resin
liquid rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55122101A
Other languages
Japanese (ja)
Other versions
JPS5747334A (en
Inventor
Nobunari Sugimoto
Yukio Watanabe
Tsunemitsu Hasegawa
Masahiro Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP12210180A priority Critical patent/JPS5747334A/en
Publication of JPS5747334A publication Critical patent/JPS5747334A/en
Publication of JPH0118091B2 publication Critical patent/JPH0118091B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、多孔性フイルム又はシートの製造方
法に関する。詳しくは、ポリオレフイン樹脂に充
填剤および液状ゴムを配合してなる組成物から多
孔性フイルム又はシートを製造する方法に関する
ものである。 従来よりポリオレフイン樹脂に充填剤を配合
し、溶融成形して得られたフイルムまたはシート
を一軸ないしは二軸に延伸する試みは、多孔性フ
イルムを製造する手段として数多く実施されて来
た。 しかしながら、これらフイルムに於いては、一
軸延伸物ではフイルム物性の異方性、特に縦方向
(延伸方向)の引裂け易さ及び表面強度に問題が
残り、又、二軸延伸物では、フイルム物性の異方
性には問題ないものの、表面強度及び延伸性に問
題があり、更に両者共、全般的に剛性が高い傾向
があり、用途によつては欠点ともなつている。 フイルム物性の異方性、表面強度を改良する一
つの方法としては出来るだけ低倍率で延伸も行
い、多孔化を実現させる事であるが、未だ満足行
く結果が得られていない。 また、フイルムに柔軟性を持たせる方法とし
て、低融点ポリマー、ゴム状物質、可塑剤および
界面活性剤等を添加する方法が考えられるが、多
孔化、延伸性、および表面強度等の物性のバラン
スを満足したものは未だ見い出されていない。 本発明者等は、こうした従来の多孔性フイルム
またはシートの欠点を改良し、一軸延伸に於いて
は物性バランスが良好で、表面強度が強く、又二
軸延伸では表面強度及び延伸性にすぐれ、かつ両
者共柔軟性の高い、多孔性フイルムまたはシート
を提供する事を目的に、鋭意検討した結果本発明
に到達したものである。 すなわち、本発明の要旨は、ポリオレフイン樹
脂に充填剤と液状ゴムを配合してなる組成物を溶
融成形して得たフイルムまたはシートを延伸処理
する事を特徴とする多孔性フイルムまたはシート
の製造方法に存する。 以下、本発明をさらに詳細に説明するに、本発
明に使用されるポリオレフイン樹脂は、高密度ポ
リエチレン、ポリプロピレン及びそれらと他のα
―オレフインとの共重合体等であり、単独及び2
種以上の混合物としても用いられる。なかでも、
高密度ポリエチレン、ポリプロピレンの単独物が
好んで使用されるが、高密度ポリエチレンが特に
好ましい。 充填剤としては、無機及び有機の充填剤が用い
られ、無機充填剤としては、炭酸カルシウム、タ
ルク、クレー、カオリン、シリカ、珪藻土、炭酸
マグネシウム、炭酸バリウム、硫酸マグネシウ
ム、硫酸バリウム、硫酸カルシウム、水酸化アル
ミニウム、酸化亜鉛、水酸化マグネシウム、酸化
カルシウム、酸化マグネシウム、酸化チタン、ア
ルミナ、マイカ、アスベスト粉、ガラス粉、シラ
スバルーン、ゼオライト、珪酸白土等が使用さ
れ、特に炭酸カルシウム、タルク、クレー、シリ
カ、珪藻土、硫酸バリウム等が好適である。 有機充填剤としては、木粉、パルプ粉等のセル
ロース系粉末等が使用される。これらは単独又は
混合して用いられる。 充填剤の平均粒径としては、30μ以下のものが
好ましく、10μ以下のものが更に好ましく、1〜
5μのものが最も好ましい。 粒径が大きすぎると延伸物の気孔の緻密性が悪
くなり、又粒径が小さすぎると、樹脂への分散性
が悪く、成形性も劣る。 充填剤の表面処理は、樹脂への分散性、更には
延伸性の点で、実施されている事が好ましく、脂
肪酸又はその金属塩での処理が好ましい結果を与
える。 液状ゴムは、液状ポリブタジエン、液状ポリブ
テン等が用いられる。中でも水酸基末端液状ポリ
ブタジエンが良好な結果を示す。水酸基末端液状
ポリブタジエンは、ポリブタジエンの末端に反応
性の優れた水酸基を有するものである。 また、水酸基末端液状ポリブタジエンの誘導体
も使用され、この例としては、末端がイソシアネ
ート変性、無水マレイン酸変性、エポキシ変性等
の液状物が挙げられる。しかし、色、臭いの点で
未変性品の方が好ましい。 末端に極性基のあるもののポリオレフイン樹
脂、充填剤系への導入は、両者の相溶性を向上さ
せる上で好ましい結果を与えるものと推定され
る。 なお、前記ポリオレフイン樹脂には、常法に従
い熱及び紫外線安定剤、顔料、帯電防止剤、螢光
剤等を添加しても差支えない。 ポリオレフイン樹脂、充填剤および液状ゴムを
配合するに当り配合割合はポリオレフイン樹脂
100重量部に対して充填剤25〜400重量部、液状ゴ
ム1〜100重量部が好ましい。 充填剤の割合が、25重量部に満たないと、延伸
したフイルムに気孔が充分形成されず、多孔化度
合が低くなる。又充填剤の割合が400重量部を越
えると混練性、分散性、フイルム又はシート成形
性が劣り、更に延伸物の表面強度が低下する。 本発明において、特に好ましい配合割合は、ポ
リオレフイン樹脂100重量部に対して充填剤60〜
150重量部である。液状ゴムの配合割合について
は、100重量部を越えるとポリオレフイン樹脂の
持つ特性が薄れ、満足の行く混練性、フイルム又
はシート成形性および延伸性を確保する事が出来
ない。 本発明において、更に好ましい配合割合は5〜
50重量部、更に好ましくは10〜30重量部である。 ポリオレフイン樹脂、充填剤および液状ゴムの
配合は、3者を通常のブレンダー又は混合機に入
れ、混合すればよいが、好ましくは次の方法が混
合性、充填剤の分散性、更にはフイルム又はシー
ト成形性の点で良好である。 しかして、ポリオレフイン樹脂の形態はパウダ
ーが良く、通常10〜150メツシユのものが使用さ
れるが、均一性、取扱い上、30〜80メツシユのも
のが更に好ましい。 混合機は、ドラム、ダンブラー型混合機、リボ
ンブレンダー、ヘンシエルミキサー、スーパーミ
キサー等が使用されるが、ヘンシエルミキサー等
の高速撹拌型の混合機が望ましい。 混合順序としては、これら混合機にまずポリオ
レフイン樹脂粉末を入れ、これに液状ゴムを添加
し、充分撹拌し、ポリオレフイン樹脂表面に、均
一に液状ゴムを展着させる。この状態にした后、
充填剤を添加し、更に撹拌し、最終的な混合した
組成物が得られる。 この方法を用いるメリツトは、液状ゴムと充填
剤を直接接触・分散させる際に発生する凝集塊の
発生を防ぐ事が出来、混練時ポリオレフイン樹脂
中の充填剤の分散性を向上させる事が出来る事で
ある。 次に、混合物の混練には従来公知の装置、例え
ば、通常のスクリユー押出機、二軸スクリユー押
出機、ミキシングロール、バンバリーミキサー、
二軸型混練機等により適宜実施される。 液状ゴムの添加により、いずれの混練方法に於
いても大幅に混練トルクを低下させる事が出来、
装置の小型化、電力等の省資源化に有用である。 フイルム又はシートの成形については、通常の
フイルム又はシートの成形装置及び成形方法に準
じて行えば良く、円形ダイによるインフレーシヨ
ン成形、TダイによるTダイ成形等を適宜採用す
れば良い。その選択は、次の延伸の方法により異
なる。 すなわち、一軸延伸の場合は、ロール延伸が通
常好んで採用されるが、チユーブラー延伸で、一
軸方向(引取方向)を強調させた形であつても良
い。 又、延伸は一段でも二段以上の多段でも差支え
ない。 本組成物の一軸延伸に於ける特徴は、 低倍率延伸で多孔化が達成される。つまり、
延伸倍率が低い時点でマトリツクスと充填剤間
の界面が剥がれて空隙が発生し、所謂ボイドが
形成される事にある。 従つて、1.2倍という低延伸倍率に於いてす
ら、多孔化が生じ、フイルムの白化が起こる。
これは、極めて特異な現象といえる。この低倍
率延伸によりフイルム又はシートの物性の異方
性を抑える事ができ、かつ、表面強度も高い。 延伸応力が低い。原反の柔軟性が向上した事
及び前述の低倍率延伸で多孔化が可能な事との
関係で、延伸時に低応力で延伸が出来る。これ
は、設備面での小型化、簡略化につながり生産
コストの面で非常に有利となる。 低温での延伸が可能である。 ),)項に関係した事でもあるが延伸温度
を低下させる事が出来る。おどろくべき事には、
多孔化が達成可能な温度はポリオレフイン樹脂単
味の延伸温度から常温までに至る。これは、設備
上及び省エネルギーの点で非常に有利である。 通常、充填剤を含有したフイルムまたはシート
の多孔化が達成される延伸倍率は3.5〜6倍であ
るが、本発明のような組成物からなるフイルムま
たはシートの多孔化は延伸倍率1.2〜6倍と低倍
率でも達成される。しかし、多孔化とフイルム又
はシートの物性の異方性の低下の観点より好まし
くは、1.5〜3倍が良い。 次に二軸延伸の場合を記す。 二軸延伸は、同時及び逐次延伸に於いて極めて
良好な延伸性を示した。 二軸延伸でも低倍率延伸が可能であり、少なく
共1方向が1.2倍で均一延伸と多孔化が達成され
る。これに伴い、表面強度が強い多孔性フイルム
を得る事が出来る。 通常、多孔化が達成され、かつ、均一延伸の可
能な延伸倍率は、少なく共1方向が1.2〜4.0倍で
ある。好ましくは、1.2〜2.0倍が良い。 又、一軸延伸二軸延伸共延伸后に熱処理を実施
する事により、フイルム精度を安定化する事が出
来る。又、公知のコロナ処理、フレーム処理等の
表面処理を施す事も出来る。 かくして、得られたフイルム又はシートは次に
述べる性能を示す。 多孔性:連続気孔を有するため、透湿性、ガ
ス透過性にすぐれる。又耐水圧も良好。 フイルム又はシート物性:一軸延伸物に於い
ては、異方性を少なくする事が出来るため、
縦、横のバランスが良好。特に縦方向(延伸方
向)の耐引裂性が良好。又表面強度を高くする
事が出来る。 二軸延伸物に於いては、異方性が更に少な
く、表面強度も高くする事が可能。 一軸および二軸延伸物共柔軟性が良好。 加工性:熱接着、収縮色装が可能。 焼却性:易焼却性。有毒ガスを発生しない。 本発明により得られたフイルムまたはシートは
前記性能を生かし、種々の用途に利用されよう。 例えば透湿性を生かした衣料用(防水用品、雨
具etc)電池セパレーター用、過材用(空気除
塵、ミスト除去、工業廃水、)医療用等が挙げら
れる。 以下、本発明を実施例に基づいて、更に詳細に
説明するが、本発明は実施例に限定されるもので
はない。 実施例 1 高密度ポリエチレン樹脂(ノバテツクBR002,
ノバテツクは(三菱化成工業(株)の登録商標)20Kg
に、水酸基末端液状ポリブタジエン〔商品名:
Poly bd,R―45HT(出光石油化学(株)製)〕5Kg
を、まずヘンシエルミキサー中で撹拌混合し、次
いでこれに炭酸カルシウム(平均粒径1.2μ、脂肪
酸処理)25Kgを添加し、更に撹拌混合を行なつ
た。 かくして得られた混合物を、二軸混練機―
DSM―65(Double Screw Mixer,日本製鋼所(株)
製)に於いて混練し、造粒した。 これを40φ押出機によりインフレーシヨン成形
し、厚さ130μのフイルムに製膜した。押出条件
は下記のとおり。 シリンダー温度:150―180―180℃ ヘツド、ダイス温度:180℃ 引取速度:4m/min、ブロー比=1.3、折り
径=300mm かくして得られたフイルムを、ロール延伸機に
より一軸延伸を行つた。 延伸条件は下記のとおり 延伸温度:100℃ 延伸倍率:2.2倍 延伸速度:4.4m/min 延伸したフイルムは、多孔化され充分白化した
ものであり、延伸ムラもなく、表面美麗な多孔性
フイルムであつた。 このフイルムの性能を表―1に示す。 尚、表―1中の性能評価項目の測定方法は下記
のとおり。 1 延伸性: ◎:切断なし、均一延伸、延伸ムラなし 〇:切断なし、延伸ムラ、殆どなし △:切断なし、延伸ムラ、ややあり ×:切断又は延伸ムラ大 2 空隙率:次の式より、フイルムの密度から計
算 空隙率(%)=D0−D/D0×100(%) D0:原反フイルムの密度(g/cm2) D:延伸フイルムの密度(g/cm2) 3 強伸度:ASTM882―64Tに準ずる 20mm幅×50mm長さ、引張速度:50mm/min 4 透湿度:ASTM E96―66(E)に準ずる 5 表面強度:フイルム表面にセロテープを貼
り、すばやく引剥がした際の表面の剥れ状
態を見て、次の基準で判定した。 ◎:表面剥離せず 〇:表面剥離殆どなし △:表面剥離少しあり ×:表面剥離大 なお、表中の組成の記号は、表―5に示す通り
である。 実施例 2〜8 延伸温度と延伸倍率を表―1のとおり変えた他
は、実施例1と全く同様にして多孔性フイルムを
得、さらにその性能を評価した。結果を表―1に
示す。 実施例 9〜13 ポリマー、充填剤および液状ゴムの配合割合を
変えた他は、実施例1と全く同様にして多孔性フ
イルムを得、さらにその性能を評価した。結果を
表―1に示す。 比較例 1〜5 液状ゴムを配合しない系で延伸温度および延伸
倍率を変えた他は、実施例1と全く同様にして多
孔性フイルムを得、さらにその性能を評価した。
結果を表―2に示す。 比較例 6〜8 ポリマー、充填剤および液状ゴムの配合割合を
表―2のとおり変えた他は、実施例1と全く同様
にして多孔性フイルムを得、さらにその性能を評
価した。結果を表―2に示す。 実施例 14〜18 液状ゴムとして、液状ポリブタジエン(日本曹
達(株)製、Nisso PBG)または液状ポリブテン
(日本石油化学(株)製、日石ポリブテンLV―150)
を使用したもの、又、充填剤としてタルク(日本
タルク(株)製、MSタルク)または珪藻土を使用し
たものについて、各々実施例1と同様に原反を作
製し、一軸延伸を行つた。さらに同様にフイルム
の性能を評価した。結果を表―3に示す。 比較例 9〜11 実施例1の配合の内、液状ゴムとして、ゴム状
ポリブタジエン(タフプレンA、タフプレンは旭
化成工業(株)の登録商標)またはゴム状EPR(タフ
マー0480,タフマーは三井石油化学工業(株)の登録
商標)を添加した以外は実施例1と同様にして原
反フイルムを製膜し、一軸延伸を実施した。さら
に同様にフイルムの性能を評価した。結果を表―
3に示す。 実施例 19〜20 高密度ポリエチレン樹脂の代わりに、ポリプロ
ピレン樹脂(ノバテツクP4200Y、ノバテツクは
三菱化成工業(株)の登録商標)を使用した以外、実
施例1と同様の方法で原反フイルムを作製し一軸
延伸を実施した。さらに同様にフイルムの性能を
評価した。結果を表―3に示す。 実施例 21〜27 実施例1、実施例19,20と同様の配合、方法で
原反フイルムを作製し、これをロング延伸機
(TMロング社(米国)製)にて逐次および同時
二軸延伸した。 二軸延伸に於いては、いずれも低倍率で均一延
伸が可能であつた。さらに、得られたフイルムの
性能を実施例1と同様に評価した。結果を表―4
に示す。 比較例 12〜13 比較例1〜5と同様に、液状ゴムを配合しない
系で、かつ実施例21〜27と同様な方法で二軸延伸
操作を行なつて原反フイルムを得、さらに得られ
たフイルムの性能を実施例1と同様に評価した。
結果を表―4に示す。
The present invention relates to a method for manufacturing a porous film or sheet. Specifically, the present invention relates to a method for producing a porous film or sheet from a composition obtained by blending a filler and a liquid rubber with a polyolefin resin. Conventionally, many attempts have been made to uniaxially or biaxially stretch a film or sheet obtained by blending a filler into a polyolefin resin and melt-molding it as a means of producing a porous film. However, in these films, problems remain in the anisotropy of the film physical properties, especially the ease of tearing in the longitudinal direction (stretching direction) and surface strength, and in the biaxially stretched products, the film physical properties Although there is no problem with anisotropy, there are problems with surface strength and stretchability, and both tend to have high overall rigidity, which may be a drawback depending on the application. One method of improving the anisotropy and surface strength of the physical properties of the film is to stretch it at as low a magnification as possible to make it porous, but satisfactory results have not yet been obtained. Additionally, adding low-melting point polymers, rubber-like substances, plasticizers, surfactants, etc. can be considered as a method of imparting flexibility to the film, but the balance between physical properties such as porosity, stretchability, and surface strength can be considered. Nothing that satisfies this has yet been found. The present inventors have improved the drawbacks of these conventional porous films or sheets, and have achieved a good balance of physical properties and strong surface strength in uniaxial stretching, and excellent surface strength and stretchability in biaxial stretching. The present invention was arrived at as a result of intensive studies aimed at providing a porous film or sheet that both have high flexibility. That is, the gist of the present invention is to provide a method for producing a porous film or sheet, which comprises stretching a film or sheet obtained by melt-molding a composition obtained by blending a filler and liquid rubber with a polyolefin resin. exists in Hereinafter, the present invention will be explained in more detail. The polyolefin resin used in the present invention includes high-density polyethylene, polypropylene, and other α
- copolymers with olefins, etc. alone and
It is also used as a mixture of more than one species. Among them,
High-density polyethylene and polypropylene alone are preferably used, and high-density polyethylene is particularly preferred. Inorganic and organic fillers are used as fillers, and inorganic fillers include calcium carbonate, talc, clay, kaolin, silica, diatomaceous earth, magnesium carbonate, barium carbonate, magnesium sulfate, barium sulfate, calcium sulfate, and water. Aluminum oxide, zinc oxide, magnesium hydroxide, calcium oxide, magnesium oxide, titanium oxide, alumina, mica, asbestos powder, glass powder, shirasu balloon, zeolite, clay silicate, etc. are used, especially calcium carbonate, talc, clay, and silica. , diatomaceous earth, barium sulfate, etc. are suitable. As the organic filler, cellulose powder such as wood flour and pulp powder is used. These may be used alone or in combination. The average particle size of the filler is preferably 30 μ or less, more preferably 10 μ or less, and 1 to 1 μm.
5μ is most preferred. If the particle size is too large, the density of the pores in the drawn product will be poor, and if the particle size is too small, the dispersibility in the resin will be poor and the moldability will be poor. Surface treatment of the filler is preferably carried out in terms of dispersibility in the resin and further stretchability, and treatment with a fatty acid or a metal salt thereof gives preferable results. As the liquid rubber, liquid polybutadiene, liquid polybutene, etc. are used. Among them, hydroxyl-terminated liquid polybutadiene shows good results. The hydroxyl group-terminated liquid polybutadiene has a highly reactive hydroxyl group at the end of the polybutadiene. Further, derivatives of hydroxyl-terminated liquid polybutadiene are also used, and examples thereof include liquid products whose terminals are modified with isocyanate, maleic anhydride, or epoxy. However, unmodified products are preferable in terms of color and odor. It is presumed that the introduction of a material having a polar group at the terminal into the polyolefin resin and filler system will give preferable results in improving the compatibility between the two. Note that heat and ultraviolet stabilizers, pigments, antistatic agents, fluorescent agents, and the like may be added to the polyolefin resin according to conventional methods. When blending polyolefin resin, filler, and liquid rubber, the blending ratio is polyolefin resin.
Preferably, 25 to 400 parts by weight of filler and 1 to 100 parts by weight of liquid rubber are used per 100 parts by weight. If the proportion of the filler is less than 25 parts by weight, sufficient pores will not be formed in the stretched film, resulting in a low degree of porosity. If the proportion of the filler exceeds 400 parts by weight, the kneading properties, dispersibility, film or sheet formability will be poor, and the surface strength of the stretched product will be reduced. In the present invention, a particularly preferred blending ratio is 60 to 60 parts by weight of filler to 100 parts by weight of polyolefin resin.
It is 150 parts by weight. Regarding the blending ratio of liquid rubber, if it exceeds 100 parts by weight, the properties of the polyolefin resin will be weakened, and satisfactory kneadability, film or sheet moldability, and stretchability cannot be ensured. In the present invention, a more preferable blending ratio is 5 to
The amount is 50 parts by weight, more preferably 10 to 30 parts by weight. The polyolefin resin, filler, and liquid rubber can be blended by placing the three in an ordinary blender or mixer, but preferably the following method is used to improve mixability, filler dispersibility, and film or sheet production. Good in terms of moldability. The polyolefin resin is preferably in the form of a powder, and one with a mesh size of 10 to 150 is usually used, but one with a mesh size of 30 to 80 is more preferable from the viewpoint of uniformity and handling. As the mixer, a drum, a dumbler type mixer, a ribbon blender, a Henschel mixer, a super mixer, etc. are used, and a high-speed stirring type mixer such as a Henschel mixer is preferable. As for the mixing order, polyolefin resin powder is first put into these mixers, liquid rubber is added thereto, and thoroughly stirred to spread the liquid rubber uniformly on the surface of the polyolefin resin. After reaching this state,
Filler is added and further stirred to obtain the final mixed composition. The advantage of using this method is that it is possible to prevent the formation of agglomerates that occur when liquid rubber and filler are directly brought into contact and dispersed, and it is possible to improve the dispersibility of filler in polyolefin resin during kneading. It is. Next, for kneading the mixture, a conventionally known device is used, such as a conventional screw extruder, a twin screw extruder, a mixing roll, a Banbury mixer,
This is carried out as appropriate using a twin-screw kneader or the like. By adding liquid rubber, the kneading torque can be significantly reduced in any kneading method.
It is useful for downsizing devices and saving resources such as electric power. Molding of the film or sheet may be carried out according to a conventional film or sheet molding apparatus and method, and inflation molding using a circular die, T-die molding using a T-die, etc. may be employed as appropriate. The selection depends on the subsequent stretching method. That is, in the case of uniaxial stretching, roll stretching is usually preferred, but tubular stretching with emphasis on the uniaxial direction (take-up direction) may also be used. Further, the stretching may be carried out in one stage or in multiple stages of two or more stages. The characteristics of the uniaxial stretching of this composition are as follows: Porousness is achieved by low-magnification stretching. In other words,
When the stretching ratio is low, the interface between the matrix and the filler peels off, creating voids and forming so-called voids. Therefore, even at a low draw ratio of 1.2 times, porosity and whitening of the film occur.
This can be said to be an extremely unique phenomenon. This low-magnification stretching makes it possible to suppress anisotropy in the physical properties of the film or sheet, and also provides high surface strength. Low stretching stress. Due to the improved flexibility of the original fabric and the ability to make it porous by stretching at a low magnification as described above, it is possible to stretch with low stress during stretching. This leads to miniaturization and simplification of equipment and is very advantageous in terms of production costs. Stretching at low temperatures is possible. ), This is also related to the items above, but the stretching temperature can be lowered. Surprisingly,
The temperature at which porosity can be achieved ranges from the stretching temperature of a single polyolefin resin to room temperature. This is very advantageous in terms of equipment and energy saving. Usually, the stretching ratio at which porous film or sheet containing filler is achieved is 3.5 to 6 times, but the porous film or sheet made of the composition of the present invention can be made porous at a stretching ratio of 1.2 to 6 times. This can be achieved even at low magnification. However, from the viewpoint of increasing porosity and reducing the anisotropy of the physical properties of the film or sheet, it is preferably 1.5 to 3 times. Next, the case of biaxial stretching will be described. Biaxial stretching showed extremely good stretching properties in both simultaneous and sequential stretching. Biaxial stretching also allows low stretching ratios, and uniform stretching and porosity can be achieved at least 1.2 times in one direction. Accordingly, a porous film with high surface strength can be obtained. Usually, the stretching ratio at which porosity can be achieved and uniform stretching can be achieved is at least 1.2 to 4.0 times in one direction. Preferably, it is 1.2 to 2.0 times. Further, by performing heat treatment after uniaxial stretching, biaxial stretching, and co-stretching, the precision of the film can be stabilized. Further, known surface treatments such as corona treatment and flame treatment can also be applied. The film or sheet thus obtained exhibits the following properties. Porosity: Because it has continuous pores, it has excellent moisture permeability and gas permeability. It also has good water pressure resistance. Physical properties of film or sheet: In uniaxially stretched products, anisotropy can be reduced, so
Good vertical and horizontal balance. Particularly good tear resistance in the longitudinal direction (stretching direction). Moreover, the surface strength can be increased. Biaxially stretched products have even less anisotropy and can have higher surface strength. Both uniaxially and biaxially stretched products have good flexibility. Processability: Heat bonding and shrink coloring are possible. Incinurability: Easily incinerated. Does not generate toxic gas. The film or sheet obtained according to the present invention may be utilized for various purposes by taking advantage of the above-mentioned properties. Examples include applications that utilize moisture permeability for clothing (waterproof products, rain gear, etc.), battery separators, filter materials (air dust removal, mist removal, industrial wastewater, and medical applications). Hereinafter, the present invention will be explained in more detail based on Examples, but the present invention is not limited to the Examples. Example 1 High-density polyethylene resin (Novatec BR002,
Novatec (registered trademark of Mitsubishi Chemical Industries, Ltd.) 20Kg
, hydroxyl group-terminated liquid polybutadiene [Product name:
Poly bd, R-45HT (manufactured by Idemitsu Petrochemical Co., Ltd.) 5Kg
were first stirred and mixed in a Henschel mixer, then 25 kg of calcium carbonate (average particle size 1.2μ, fatty acid treated) was added thereto, and further stirred and mixed. The mixture thus obtained was mixed in a twin-screw kneader.
DSM-65 (Double Screw Mixer, Japan Steel Works, Ltd.)
The mixture was kneaded and granulated in a factory. This was inflation-molded using a 40φ extruder to form a film with a thickness of 130μ. The extrusion conditions are as follows. Cylinder temperature: 150-180-180°C Head and die temperature: 180°C Take-up speed: 4 m/min, blow ratio = 1.3, fold diameter = 300 mm The film thus obtained was uniaxially stretched using a roll stretching machine. The stretching conditions are as follows: Stretching temperature: 100°C Stretching ratio: 2.2x Stretching speed: 4.4 m/min The stretched film is porous and sufficiently whitened, with no stretching unevenness and a porous film with a beautiful surface. It was hot. Table 1 shows the performance of this film. The measurement methods for the performance evaluation items in Table 1 are as follows. 1 Stretchability: ◎: No cutting, uniform stretching, no stretching unevenness 〇: No cutting, stretching unevenness, hardly any △: No cutting, stretching unevenness, slightly present ×: Large cutting or stretching unevenness 2 Porosity: From the following formula , calculated from the density of the film. Porosity (%) = D 0 - D / D 0 × 100 (%) D 0 : Density of raw film (g/cm 2 ) D: Density of stretched film (g/cm 2 ) 3 Strength and elongation: 20mm width x 50mm length according to ASTM882-64T, tensile speed: 50mm/min 4 Moisture permeability: According to ASTM E96-66(E) 5 Surface strength: Apply sellotape to the film surface and peel it off quickly. The peeling condition of the surface was observed and the judgment was made based on the following criteria. ◎: No surface peeling ○: Almost no surface peeling △: Slight surface peeling ×: Large surface peeling The symbols for the compositions in the table are as shown in Table-5. Examples 2 to 8 Porous films were obtained in exactly the same manner as in Example 1, except that the stretching temperature and stretching ratio were changed as shown in Table 1, and their performance was evaluated. The results are shown in Table-1. Examples 9 to 13 Porous films were obtained in exactly the same manner as in Example 1, except that the blending ratios of the polymer, filler, and liquid rubber were changed, and their performance was further evaluated. The results are shown in Table-1. Comparative Examples 1 to 5 Porous films were obtained in exactly the same manner as in Example 1, except that the stretching temperature and stretching ratio were changed in a system in which no liquid rubber was blended, and the performance thereof was evaluated.
The results are shown in Table-2. Comparative Examples 6 to 8 Porous films were obtained in exactly the same manner as in Example 1, except that the blending ratios of the polymer, filler, and liquid rubber were changed as shown in Table 2, and their performance was further evaluated. The results are shown in Table-2. Examples 14 to 18 Liquid polybutadiene (Nisso PBG, manufactured by Nippon Soda Co., Ltd.) or liquid polybutene (Nisseki Polybutene LV-150, manufactured by Nippon Petrochemical Co., Ltd.) was used as the liquid rubber.
For those using talc (manufactured by Nippon Talc Co., Ltd., MS Talc) or diatomaceous earth as a filler, original fabrics were prepared in the same manner as in Example 1, and uniaxially stretched. Furthermore, the performance of the film was evaluated in the same manner. The results are shown in Table-3. Comparative Examples 9 to 11 Among the formulations in Example 1, as the liquid rubber, rubbery polybutadiene (Tuffrene A, Tuffrene is a registered trademark of Asahi Kasei Industries, Ltd.) or rubbery EPR (Tuffmer 0480, Tafmer is a registered trademark of Mitsui Petrochemical Industries, Ltd.) A raw film was formed in the same manner as in Example 1, except that the film (registered trademark of Co., Ltd.) was added, and uniaxial stretching was performed. Furthermore, the performance of the film was evaluated in the same manner. Display the results.
Shown in 3. Examples 19-20 A raw film was produced in the same manner as in Example 1, except that polypropylene resin (Novatek P4200Y, Novatek is a registered trademark of Mitsubishi Chemical Industries, Ltd.) was used instead of high-density polyethylene resin. Uniaxial stretching was performed. Furthermore, the performance of the film was evaluated in the same manner. The results are shown in Table-3. Examples 21 to 27 A raw film was produced using the same formulation and method as in Example 1, Examples 19 and 20, and was sequentially and simultaneously biaxially stretched using a Long stretching machine (manufactured by TM Long Co., Ltd. (USA)). did. In biaxial stretching, uniform stretching was possible at low magnification in all cases. Furthermore, the performance of the obtained film was evaluated in the same manner as in Example 1. Table of results-4
Shown below. Comparative Examples 12 to 13 In the same manner as Comparative Examples 1 to 5, a biaxial stretching operation was performed in the same manner as in Examples 21 to 27 in a system without liquid rubber, and the raw film was obtained. The performance of the film was evaluated in the same manner as in Example 1.
The results are shown in Table 4.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 以上の結果から明らかな様に、ポリオレフイン
樹脂に充填剤及び液状ゴムを配合した組成物から
得たフイルムまたはシートは、極めて、すぐれた
延伸性を示し、かつ低倍率延伸で多孔化が実現さ
れる事更にフイルムまたはシートが美麗で柔軟性
に富んでいる等の利点を有する。 又、熱による収縮性も大きく、連続気孔を有す
るフイルム又はシートとして広範囲な用途が期待
される。
[Table] As is clear from the above results, films or sheets obtained from compositions containing polyolefin resin, filler, and liquid rubber exhibit extremely excellent stretchability, and do not become porous when stretched at low ratios. Furthermore, the film or sheet has advantages such as being beautiful and highly flexible. In addition, it has a high shrinkage property due to heat, and is expected to be used in a wide range of applications as a film or sheet having continuous pores.

Claims (1)

【特許請求の範囲】 1 ポリオレフイン樹脂に充填剤と液状ゴムを配
合してなる組成物を溶融成形して得たフイルムま
たはシートを延伸処理する事を特徴とする多孔性
フイルムまたはシートの製造方法。 2 組成物の配合割合が、ポリオレフイン樹脂
100重量部に対して、充填剤25〜400重量部、液状
ゴム1〜100重量部である特許請求の範囲第1項
記載の製造方法。 3 ポリオレフイン樹脂が高密度ポリエチレンで
ある特許請求の範囲第1項または第2項記載の製
造方法。 4 ポリオレフイン樹脂がポリプロピレンである
特許請求の範囲第1項または第2項記載の製造方
法。 5 液状ゴムが、液状ポリブタジエン、液状ポリ
ブテン、及びそれらの誘導体である特許請求の範
囲第1項ないし第4項のいずれかに記載の製造方
法。 6 組成物の配合に際し、ポリオレフイン樹脂の
粉末に液状ゴムを分散、展着させた后、充填剤を
混合させる事を特徴とする特許請求の範囲第1項
ないし第5項のいずれかに記載の製造方法。 7 延伸処理が、少なく共1.2倍の一軸延伸であ
る特許請求の範囲第1項ないし第6項のいずれか
に記載の製造方法。 8 延伸処理が少なく共1.2倍の二軸延伸である
特許請求の範囲第1項ないし第6項のいずれかに
記載の製造方法。
[Scope of Claims] 1. A method for producing a porous film or sheet, which comprises stretching a film or sheet obtained by melt-molding a composition obtained by blending a filler and liquid rubber with a polyolefin resin. 2 The blending ratio of the composition is polyolefin resin
The manufacturing method according to claim 1, wherein the amount of filler is 25 to 400 parts by weight and the liquid rubber is 1 to 100 parts by weight per 100 parts by weight. 3. The manufacturing method according to claim 1 or 2, wherein the polyolefin resin is high-density polyethylene. 4. The manufacturing method according to claim 1 or 2, wherein the polyolefin resin is polypropylene. 5. The manufacturing method according to any one of claims 1 to 4, wherein the liquid rubber is liquid polybutadiene, liquid polybutene, or a derivative thereof. 6. The method according to any one of claims 1 to 5, characterized in that when blending the composition, a filler is mixed after dispersing and spreading the liquid rubber into the polyolefin resin powder. Production method. 7. The manufacturing method according to any one of claims 1 to 6, wherein the stretching treatment is uniaxial stretching of at least 1.2 times. 8. The manufacturing method according to any one of claims 1 to 6, wherein the stretching process is at least 1.2 times biaxial stretching.
JP12210180A 1980-09-03 1980-09-03 Production of porous film or sheet Granted JPS5747334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12210180A JPS5747334A (en) 1980-09-03 1980-09-03 Production of porous film or sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12210180A JPS5747334A (en) 1980-09-03 1980-09-03 Production of porous film or sheet

Publications (2)

Publication Number Publication Date
JPS5747334A JPS5747334A (en) 1982-03-18
JPH0118091B2 true JPH0118091B2 (en) 1989-04-04

Family

ID=14827658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12210180A Granted JPS5747334A (en) 1980-09-03 1980-09-03 Production of porous film or sheet

Country Status (1)

Country Link
JP (1) JPS5747334A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2259369A1 (en) 1999-05-07 2010-12-08 Nitto Denko Corporation Porous films and processes for the production thereof
JP2011071127A (en) * 2003-04-09 2011-04-07 Nitto Denko Corp Adhesive-carrying porous film for cell separator, and application thereof

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126143A (en) * 1982-01-23 1983-07-27 呉羽化学工業株式会社 Bag stacker for bag manufacturing device
JPS58191726A (en) * 1982-05-06 1983-11-09 Tokai Gosei Mokuzai Kk Jointer
JPS5982019U (en) * 1982-11-25 1984-06-02 王子油化合成紙株式会社 sanitary napkins
JPS6099867A (en) * 1983-10-26 1985-06-03 東レ株式会社 Shrinkable label
JPS60229731A (en) * 1984-04-27 1985-11-15 Mitsubishi Chem Ind Ltd Porous film having excellent softness
JPS60230825A (en) * 1984-05-01 1985-11-16 Mitsubishi Chem Ind Ltd Porous film or sheet excellent in flexibility
JPS60257221A (en) * 1984-06-04 1985-12-19 Mitsubishi Chem Ind Ltd Porous film excellent in flexibility
JPS61209129A (en) * 1985-03-01 1986-09-17 Tokuyama Soda Co Ltd Manufacture of partially microporous sheet
JPS62129321A (en) * 1985-11-29 1987-06-11 Tokuyama Soda Co Ltd Production of porous sheet
JPH0531993Y2 (en) * 1985-12-17 1993-08-17
JPS62148537A (en) * 1985-12-23 1987-07-02 Mitsui Toatsu Chem Inc Production of porous film
JPH075778B2 (en) * 1986-07-09 1995-01-25 日東電工株式会社 Directional porous film with heat treatment part
JPS6346119U (en) * 1986-09-11 1988-03-29
FI97300C (en) * 1987-08-27 1996-11-25 Mitsubishi Chemical Mkv Compan Porous film and absorbent sanitary products
JP2571612B2 (en) * 1988-10-12 1997-01-16 花王株式会社 Film production method
US5853638A (en) * 1997-06-27 1998-12-29 Samsung General Chemicals Co., Ltd. Process for producing stretched porous film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532470A (en) * 1976-06-15 1978-01-11 Beecham Group Ltd Production of chemical intermediate
JPS5381578A (en) * 1976-12-28 1978-07-19 Asahi Chemical Ind Stretched polyolefine article with improved property

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532470A (en) * 1976-06-15 1978-01-11 Beecham Group Ltd Production of chemical intermediate
JPS5381578A (en) * 1976-12-28 1978-07-19 Asahi Chemical Ind Stretched polyolefine article with improved property

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2259369A1 (en) 1999-05-07 2010-12-08 Nitto Denko Corporation Porous films and processes for the production thereof
JP2011071127A (en) * 2003-04-09 2011-04-07 Nitto Denko Corp Adhesive-carrying porous film for cell separator, and application thereof
JP2011071128A (en) * 2003-04-09 2011-04-07 Nitto Denko Corp Adhesive-carrying porous film for cell separator, and application thereof

Also Published As

Publication number Publication date
JPS5747334A (en) 1982-03-18

Similar Documents

Publication Publication Date Title
US4472328A (en) Process for producing porous film or sheet
JPH0118091B2 (en)
JPS6215090B2 (en)
JPH0583099B2 (en)
JPH032893B2 (en)
JPS5962117A (en) Preparation of porous film or sheet
JPS58149925A (en) Production of porous film or sheet
EP3460001A1 (en) Thermoplastic elastomer composition based on styrene block copolymer with low density and good mechanical properties
JPH0651813B2 (en) Method for producing porous sheet
JPS6210141A (en) Production of porous film or sheet
JPH0662794B2 (en) Method for producing porous film or sheet
US20030130400A1 (en) Olefin type thermoplastic elastomer
JPH035306B2 (en)
JPS59136334A (en) Manufacture of porous sheet
JPS60229731A (en) Porous film having excellent softness
JPH0723432B2 (en) Porous film
JPS63251436A (en) Production of porous sheet
JPH05310980A (en) Production of stretchable porous film or sheet
DE102019107468A1 (en) THERMOPLASTIC ELASTOMER COMPOSITION WITH LOW DENSITY AND GOOD MECHANICAL PROPERTIES DUE TO THE USE OF UNCOATED GLASS BALLS
CN115666780B (en) Zeolite with improved compatibility
JPH101555A (en) Porous film
US20230211314A1 (en) Zeolites with improved compatibility
KR20220064539A (en) PVC composite stabilizer manufacturing device and PVC composite stabilizer manufacturing method
JPH0673202A (en) Biaxially oriented polypropylene film
JPS62250038A (en) Porous film