JPH03289064A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH03289064A
JPH03289064A JP2089726A JP8972690A JPH03289064A JP H03289064 A JPH03289064 A JP H03289064A JP 2089726 A JP2089726 A JP 2089726A JP 8972690 A JP8972690 A JP 8972690A JP H03289064 A JPH03289064 A JP H03289064A
Authority
JP
Japan
Prior art keywords
battery
solvent
lithium
positive electrode
lithium salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2089726A
Other languages
Japanese (ja)
Inventor
Hiroshi Watanabe
浩志 渡辺
Seiji Yoshimura
精司 吉村
Sanehiro Furukawa
古川 修弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2089726A priority Critical patent/JPH03289064A/en
Publication of JPH03289064A publication Critical patent/JPH03289064A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve charge-discharge cycle and reservation characteristics by using as nonaqueous electrolyte one in which a soluble material comprising lithium salt including fluorine is solved in a solvent including at least butylene carbonate. CONSTITUTION:There are used positive electrode 1 mainly composed of manganese dioxide, a negative electrode 2 made of lithium or lithium - aluminium alloy, a material where a substance comprising lithium salt including florine is solved in a solvent including at least butylene carbonate. Since the lithium salt including fluorine is chemically stable in itself, it is hard to react with electrodes 1, 2 under highly active conditions so that the reaction between the solvent and manganese dioxide is restrained, thereby dissolution of the solvent in electrolyte is hard to occur with butylene carbonate being high at its oxide electric potential and a excellent in its oxidation resistance. It is thus possible to improve charge-discharge cycle and reservation characteristics.

Description

【発明の詳細な説明】 り粟よΩ且里公団 本発明は、二酸化マンガンを主体とする正極と、リチウ
ム又はリチウム−アルミニウム合金から成る負極と、非
水電解液とを備えた非水電解液二次電池に質し、特に非
水電解液の改良に関する。
[Detailed Description of the Invention] Riwayo Ω and Li Corporation The present invention provides a non-aqueous electrolyte comprising a positive electrode mainly made of manganese dioxide, a negative electrode made of lithium or a lithium-aluminum alloy, and a non-aqueous electrolyte. This paper applies to secondary batteries, and particularly relates to improvements in non-aqueous electrolytes.

従来■故杏 この種の電池は、高電圧、高エネルギー密度を有するの
で、近年、活発に研究されているが、実用化する上では
、サイクル特性や保存特性に更に優れた電池材料の開発
が望まれるところである。
Conventional ■ Late An This type of battery has high voltage and high energy density, so it has been actively researched in recent years, but in order to put it into practical use, it is necessary to develop battery materials with even better cycle characteristics and storage characteristics. This is what is desired.

特に、電解液は上記緒特性を大きく左右することが知ら
れている。即ち、リチウム二次電池では、充放電の繰り
返しにより正極及び負極が共に高活性な状態となるため
、これら両極と接する電解液の安定性によって電池特性
が太き(変わるからである。
In particular, it is known that the electrolyte greatly influences the above characteristics. That is, in a lithium secondary battery, both the positive electrode and the negative electrode become highly active due to repeated charging and discharging, so the battery characteristics change depending on the stability of the electrolyte in contact with these two electrodes.

そこで、例えば、特開昭59−167971号公報では
、電解液の溶媒としてT−ブチロラクトンとテトラヒド
ロフランとの混合溶媒を用いることが提案され、また、
特開昭63−32870号公報では、電解液の溶媒とし
てアセチル基置換したプロピレンカーボネートを用いる
ことが提案されている。
Therefore, for example, JP-A-59-167971 proposes using a mixed solvent of T-butyrolactone and tetrahydrofuran as a solvent for the electrolytic solution;
JP-A No. 63-32870 proposes the use of acetyl group-substituted propylene carbonate as a solvent for an electrolytic solution.

が” しよ゛と る しかしながら、電池の正極活物質として比較的高電位を
有し且つ酸化触媒作用の強い二酸化マンガンを用いる場
合には、特に充電時において電解液の分解が生じ易くな
る。このような電解液の分解は上記電解液を用いた場合
でも生じるため、従来構造の電池ではその特性を十分に
向上させることができないという課題を有していた。
However, when manganese dioxide, which has a relatively high potential and has a strong oxidation catalytic effect, is used as the positive electrode active material of the battery, decomposition of the electrolyte is likely to occur, especially during charging. Such decomposition of the electrolytic solution occurs even when the above-mentioned electrolytic solution is used, so a battery with a conventional structure has a problem in that its characteristics cannot be sufficiently improved.

具体的には、上記分解物の一部は正極表面に付着するた
め、電池の内部抵抗の増加や、活物質の利用率が低下し
て、電池の充放電サイクル特性が劣化する。加えて、充
放電サイクルを繰り返したり、長期間保存した場合には
ガス状の分解物が電池内に蓄積されて電池のフクレが生
しる等の課題がある。
Specifically, some of the decomposed products adhere to the surface of the positive electrode, resulting in an increase in the internal resistance of the battery, a decrease in the utilization rate of the active material, and a deterioration in the charge/discharge cycle characteristics of the battery. In addition, when charging and discharging cycles are repeated or when stored for a long period of time, gaseous decomposition products accumulate in the battery, causing problems such as blistering of the battery.

本発明はかかる現状に鑑みてなされたものであり、充放
電サイクル特性や保存特性に優れる非水電解液二次電池
を提供することを目的とする。
The present invention has been made in view of the current situation, and an object of the present invention is to provide a non-aqueous electrolyte secondary battery with excellent charge/discharge cycle characteristics and storage characteristics.

i   ”るための 本発明は上記目的を達成するために、二酸化マンガンを
主体とする正極と、リチウム又はリチウム−アルミニウ
ム合金から成る負極と、非水電解液とを備えた非水電解
液二次電池において、前記非水電解液として、少なくと
もブチレンカーボネートを含む溶媒に、フッ素含有リチ
ウム塩から成る溶質が溶解されたものを用いることを特
徴とする。
In order to achieve the above object, the present invention provides a non-aqueous electrolyte secondary comprising a positive electrode mainly made of manganese dioxide, a negative electrode made of lithium or lithium-aluminum alloy, and a non-aqueous electrolyte. In the battery, the non-aqueous electrolyte is characterized in that a solute made of a fluorine-containing lithium salt is dissolved in a solvent containing at least butylene carbonate.

昨−一一一里 上記の如く、電解液の溶質としてフッ素含有リチウム塩
を用いると、フッ素含有リチウム塩はそれ自体が化学的
に安定であるため、高活性状態にある電極と反応し難く
なる。加えて、活性な状態にある二酸化マンガンの表面
基と若干の遊離したフッ素イオンとが反応するため、溶
媒と二酸化マンガンとの反応が抑制される。これらのこ
とからサイクル特性を向上させることが可能となる。
As mentioned above, when a fluorine-containing lithium salt is used as a solute in the electrolyte, the fluorine-containing lithium salt itself is chemically stable, so it becomes difficult to react with the electrode in a highly active state. . In addition, since the surface groups of manganese dioxide in an active state react with some free fluorine ions, the reaction between the solvent and manganese dioxide is suppressed. These things make it possible to improve cycle characteristics.

加えて、ブチレンカーボネートはプロピレンカーボネー
ト等に比べて酸化電位が高く、耐酸化性に優れている。
In addition, butylene carbonate has a higher oxidation potential and excellent oxidation resistance than propylene carbonate and the like.

したがって、長期間保存したり、充放電サイクルを繰り
返したりした場合であっても電解液の溶媒の分解が生じ
難くなる。この結果、正極の活物質利用率が低下したり
、電池の内部抵抗が増大したり、電池のフクレ現象が生
じたりするのを抑制することができる。
Therefore, even when stored for a long period of time or when charge/discharge cycles are repeated, decomposition of the solvent in the electrolytic solution is less likely to occur. As a result, it is possible to suppress a decrease in the utilization rate of the active material of the positive electrode, an increase in the internal resistance of the battery, and a phenomenon of blistering in the battery.

男−LiJL桝 本発明の第1実施例を、第1図乃至第3図に基づいて、
以下に説明する。
Man-LiJL Masu The first embodiment of the present invention is based on FIGS. 1 to 3,
This will be explained below.

〔実施例〕〔Example〕

第1図に示すように、リチウム−アルミニウム合金から
成る負極2は負極集電体7の内面に圧着されており、こ
の負極集電体7はステンレスから成る断面略コ字状の負
極缶5の内底面に固着されている。上記負極缶5の周端
はポリプロピレン類の絶縁バッキング8の内部に固定さ
れており、絶縁バッキング8の外周にはステンレスから
成り上記負極缶5とは反対方向に断面略コ字状を成す正
極缶4が固定されている。この正極缶4の内底面には正
極集電体6が固定されており、この正極集電体6の内面
には正極1が固定されている。この正極1は、活物質で
あるマンガン酸化物85重量部に、導電剤としてのアセ
チレンブランク10重量部と、結着剤としてのフッ素樹
脂粉末5重量部とを加えてこれらを充分に混合した後、
この混合物を加圧成型することにより作製した。また、
上記正極1と前記負極2との間には、ポリプロピレン製
多孔性膜から成り電解液が含浸されたセパレータ3が介
装されている。尚、電池寸法は直径24、Omm、厚み
3. 0mn+である。
As shown in FIG. 1, a negative electrode 2 made of a lithium-aluminum alloy is crimped to the inner surface of a negative electrode current collector 7, and this negative electrode current collector 7 is attached to a negative electrode can 5 made of stainless steel and having a substantially U-shaped cross section. It is fixed to the inner bottom. The peripheral end of the negative electrode can 5 is fixed inside an insulating backing 8 made of polypropylene, and the outer periphery of the insulating backing 8 is a positive electrode can made of stainless steel and having a substantially U-shaped cross section in the opposite direction to the negative electrode can 5. 4 is fixed. A positive electrode current collector 6 is fixed to the inner bottom surface of the positive electrode can 4, and a positive electrode 1 is fixed to the inner surface of this positive electrode current collector 6. This positive electrode 1 was prepared by adding 10 parts by weight of acetylene blank as a conductive agent and 5 parts by weight of fluororesin powder as a binder to 85 parts by weight of manganese oxide as an active material, and mixing these thoroughly. ,
This mixture was produced by pressure molding. Also,
A separator 3 made of a porous polypropylene membrane and impregnated with an electrolyte is interposed between the positive electrode 1 and the negative electrode 2. The battery dimensions are 24 mm in diameter, 3 mm in thickness. It is 0mn+.

ここで、上記電解液としては、ブチレンカーボネート(
以下、BCと略す)と、1,2−ジメトキシエタン(以
下、DMEと略す)との等体積混合溶媒に、トリフルオ
ロメタンスルホン酸リチウム(L i CF、SO,,
1モル/Iりを熔解させたものを用いている。
Here, the electrolyte is butylene carbonate (
Lithium trifluoromethanesulfonate (Li CF, SO, ,
A solution prepared by melting 1 mol/I is used.

このようにして作製した電池を、以下(A)電池と称す
る。
The battery thus produced is hereinafter referred to as the (A) battery.

〔比較例I〕[Comparative Example I]

電解液の溶媒として、プロピレンカーボネート(以下、
PCと略す)とDMEとの等体積混合溶媒を用いる他は
、上記実施例と同様にして電池を作製した。
Propylene carbonate (hereinafter referred to as
A battery was produced in the same manner as in the above example except that a mixed solvent of equal volumes of PC (abbreviated as PC) and DME was used.

このようにして作製した電池を、以下(χ1)電池と称
する。
The battery thus produced is hereinafter referred to as a (χ1) battery.

〔比較例■〕[Comparative example ■]

電解液の溶媒として、エチレンカーボネート(以下、E
Cと略す)とDMEとの等体積混合溶媒を用いる他は、
上記実施例と同様にして電池を作製した。
Ethylene carbonate (hereinafter referred to as E) is used as a solvent for the electrolytic solution.
In addition to using an equal volume mixed solvent of C) and DME,
A battery was produced in the same manner as in the above example.

このようにして作製した電池を、以下(X2)電池と称
する。
The battery thus produced is hereinafter referred to as an (X2) battery.

〔比較例■〕[Comparative example ■]

電解液の溶媒として、γ−ブチロラクトン(以下、r−
BLと略す)とDMEとの等体積混合溶媒を用いる他は
、上記実施例と同様にして電池を作製した。
γ-butyrolactone (hereinafter referred to as r-
A battery was produced in the same manner as in the above example except that a mixed solvent of equal volumes of BL (abbreviated as BL) and DME was used.

このようにして作製した電池を、以下(X3)電池と称
する。
The battery thus produced is hereinafter referred to as an (X3) battery.

〔実験I〕[Experiment I]

上記本発明の(A)電池と比較例の(xl)電池〜(X
3)電池とのサイクル特性を調べたので、その結果を第
2図に示す。尚、充放電条件は、充電電流2mAで3時
間充電した後、放電電流2mAで電池電圧1.5■に達
するまで放電するという条件である 第2図から明らかなように、(A)電池は(X、)電池
〜(X、)電池に比べてサイクル特性が向上しているこ
とが認められる。
The (A) battery of the present invention and the (xl) battery of the comparative example ~ (X
3) The cycle characteristics with the battery were investigated, and the results are shown in Figure 2. The charging and discharging conditions are that after charging for 3 hours at a charging current of 2mA, the battery is discharged at a discharging current of 2mA until the battery voltage reaches 1.5cm.As is clear from Figure 2, (A) battery is It is recognized that the cycle characteristics are improved compared to the (X,) battery to the (X,) battery.

〔実験■〕[Experiment■]

上記本発明の(A)電池及び比較例の(XI)電池〜(
χ、)電池(Xl)電池を3.25Vで1週間保存し、
電池の内部抵抗の変化と電池フクレ量とを調べたので、
その結果を下記第1表に示す。
The (A) battery of the present invention and the (XI) battery of the comparative example ~ (
χ, ) Battery (Xl) Store the battery at 3.25V for one week,
We investigated the change in internal resistance of the battery and the amount of battery swelling.
The results are shown in Table 1 below.

第1表 上記第1表より明らかなように、初期には両電池の内部
抵抗は同等であるが、充電後には(XI)電池〜(X3
)電池は大幅に内部抵抗が増加しているのに対して、(
A)電池では余り内部抵抗が増加していないことが認め
られる。
Table 1 As is clear from Table 1 above, initially the internal resistances of both batteries are the same, but after charging, (XI) battery ~ (X3
) Batteries have a significantly increased internal resistance, whereas (
A) It is observed that the internal resistance of the battery does not increase much.

また、電池のフクレに関しては、(Xl)電池〜(X3
)電池は大幅にツクしているのに対して、(A)電池で
は余りツクしていないことが認められる。
Also, regarding battery swelling, (Xl) battery ~ (X3
It is observed that the battery (A) has not been charged much, while the battery (A) has been significantly overloaded.

第−LIJL附 本発明の第2実施例を、第3図に基づいて、以下に説明
する。
A second embodiment of the present invention will be described below with reference to FIG.

〔実施例〕〔Example〕

電解液の溶媒として、BCとテトラヒドロフラン(以下
、THFと略す)との等体積混合溶媒を用いる他は、前
記第1実施例の実施例と同様にして電池を作製した。
A battery was produced in the same manner as in the first example, except that an equal volume mixed solvent of BC and tetrahydrofuran (hereinafter abbreviated as THF) was used as a solvent for the electrolytic solution.

このようにして作製した電池を、以下(B)電池と称す
る。
The battery thus produced is hereinafter referred to as the (B) battery.

〔比較例〕[Comparative example]

電解液の溶媒として、T−BLとTHFとの等体積混合
溶媒を用い、且つ溶質として過塩素酸リチウム(1モル
/l)を用いる他は、上記実施例と同様にして電池を作
製した。
A battery was produced in the same manner as in the above example except that an equal volume mixed solvent of T-BL and THF was used as the electrolyte solvent and lithium perchlorate (1 mol/l) was used as the solute.

このようにして作製した電池を、以下(Y)電池と称す
る。
The battery thus produced is hereinafter referred to as a (Y) battery.

〔実験〕〔experiment〕

上記本発明の(B)電池と比較例の(Y)電池とのサイ
クル特性を調べたので、その結果を第3図に示す。尚、
充放電条件は、上記第1実施例の実験Iと同様の条件で
ある。
The cycle characteristics of the battery (B) of the present invention and the battery (Y) of the comparative example were investigated, and the results are shown in FIG. still,
The charging and discharging conditions were the same as those in Experiment I of the first example.

第3図から明らかなように、(B)電池は(Y)電池に
比べてサイクル特性が向上していることが認められる。
As is clear from FIG. 3, it is recognized that the (B) battery has improved cycle characteristics compared to the (Y) battery.

第一1L遁二桝 本発明の第3実施例を、第4図及び第5図に基づいて、
以下に説明する。
The third embodiment of the present invention is based on FIGS. 4 and 5.
This will be explained below.

〔実施例〕〔Example〕

電解液の溶質として、ヘキサフルオロリン酸リチウム(
L IP Fb )を用いる他は、前記第1実施例の実
施例と同様にして電池を作製した。
Lithium hexafluorophosphate (
A battery was produced in the same manner as in the first embodiment except for using L IP Fb ).

このようにして作製した電池を、以下(C)電池と称す
る。
The battery thus produced is hereinafter referred to as the (C) battery.

〔比較例〕[Comparative example]

電解液の溶媒として、r−BLとDMEとの等体積混合
溶媒を用い、且つ溶質として過塩素酸リチウム(1モル
/りを用いる他は、上記実施例と同様にして電池を作製
した。
A battery was produced in the same manner as in the above example except that an equal volume mixed solvent of r-BL and DME was used as the electrolyte solvent and lithium perchlorate (1 mol/liter) was used as the solute.

このようにして作製した電池を、以下(Z)電池と称す
る。
The battery thus produced is hereinafter referred to as a (Z) battery.

〔実験■〕[Experiment■]

上記本発明の(C)電池と比較例の(Z)電池とのサイ
クル特性を調べたので、その結果を第4図に示す。尚、
充放電条件は、上記第1実施例の実験■と同様の条件で
ある。
The cycle characteristics of the battery (C) of the present invention and the battery (Z) of the comparative example were investigated, and the results are shown in FIG. still,
The charging and discharging conditions were the same as those in Experiment (2) of the first embodiment.

第4図から明らかなように、(C)電池は(Z)電池に
比べてサイクル特性が向上していることが認められる。
As is clear from FIG. 4, it is recognized that the cycle characteristics of the (C) battery are improved compared to the (Z) battery.

[実験■] 上記(C)電池と(Z)電池とにおける、保存日数と電
池の内部抵抗及び電池のフクレ量との関係を調べたので
、その結果を第5図に示す。尚、保存温度は60°Cで
ある。
[Experiment ■] The relationship between the number of storage days, the internal resistance of the battery, and the amount of blistering of the battery was investigated for the battery (C) and battery (Z), and the results are shown in FIG. Note that the storage temperature is 60°C.

第5図から明らかなように、(C)電池は(Z)電池に
比べて、保存日数が長くなっても電池の内部抵抗の上昇
や電池のフクレが大きくなるのを抑制できることが認め
られる。
As is clear from FIG. 5, it is recognized that the (C) battery can suppress an increase in the internal resistance of the battery and an increase in the swelling of the battery even if the storage period becomes longer than that of the (Z) battery.

尚、本発明の骨子であるBCは単独で用いるよりも、上
記DMEやTHF、或いは2−メチルテトラヒドロフラ
ンや4−メチル−1,3ジオキソラン等の低粘度有機溶
媒と混合して用いることが望ましい。また、この場合に
は、BCが5 VOL%以上含有されていれば、十分に
その効果を発揮しうる。
Incidentally, BC, which is the gist of the present invention, is preferably used in combination with a low-viscosity organic solvent such as the above-mentioned DME, THF, or 2-methyltetrahydrofuran or 4-methyl-1,3 dioxolane, rather than using it alone. Moreover, in this case, if BC is contained at 5 VOL% or more, the effect can be sufficiently exhibited.

発訓じ裏九果 以上説明したように本発明によれば、長期間保存したり
、充放電サイクルを繰り返したりした場合であっても電
解液の溶媒の分解が生じ難くなるので、正極の活物質利
用率が低下したり、電池の内部抵抗が増大したり、電池
のフクレ現象が生したりするのを抑制することができる
。この結果、非水電解液二次電池の充放電サイクル特性
や保存特性を飛躍的に向上させることができる等の効果
を奏する。
As explained above, according to the present invention, the decomposition of the solvent in the electrolyte becomes difficult to occur even when stored for a long time or when charge/discharge cycles are repeated, so that the positive electrode becomes active. It is possible to suppress a decrease in the material utilization rate, an increase in the internal resistance of the battery, and the occurrence of a blistering phenomenon in the battery. As a result, effects such as being able to dramatically improve the charge/discharge cycle characteristics and storage characteristics of the non-aqueous electrolyte secondary battery are achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一例である非水系電解液二次電池を示
す半断面図、第2図は本発明の(A)電池と比較例の(
Xl)電池〜(X3)電池とのサイクル特性を示すグラ
フ、第3図は本発明の(B)電池と比較例の(Y)電池
とのサイクル特性を示すグラフ、第4図は本発明の(C
)電池と比較例の(Z)電池とのサイクル特性を示すグ
ラフ、第5図は(C)電池と(Z)電池とにおける保存
日数と内部抵抗及び電池フクレとの関係を示すグラフで
ある。 第1図 第2図 1・・・正極、2・・・負極、3・・・セパレータ。
FIG. 1 is a half-sectional view showing a non-aqueous electrolyte secondary battery which is an example of the present invention, and FIG. 2 is a half-sectional view showing a battery (A) of the present invention and a comparative example (
A graph showing the cycle characteristics of the battery (Xl) to (X3); FIG. 3 is a graph showing the cycle characteristics of the battery (B) of the present invention and the battery (Y) of the comparative example; FIG. (C
) A graph showing the cycle characteristics of the (C) battery and the (Z) battery of the comparative example. FIG. Figure 1 Figure 2 1... Positive electrode, 2... Negative electrode, 3... Separator.

Claims (1)

【特許請求の範囲】[Claims] (1)二酸化マンガンを主体とする正極と、リチウム又
はリチウム−アルミニウム合金から成る負極と、非水電
解液とを備えた非水電解液二次電池において、 前記非水電解液として、少なくともブチレンカーボネー
トを含む溶媒に、フッ素含有リチウム塩から成る溶質が
溶解されたものを用いることを特徴とする非水電解液二
次電池。
(1) In a non-aqueous electrolyte secondary battery comprising a positive electrode mainly made of manganese dioxide, a negative electrode made of lithium or a lithium-aluminum alloy, and a non-aqueous electrolyte, the non-aqueous electrolyte is at least butylene carbonate. A non-aqueous electrolyte secondary battery characterized in that a solute consisting of a fluorine-containing lithium salt is dissolved in a solvent containing fluorine-containing lithium salt.
JP2089726A 1990-04-03 1990-04-03 Nonaqueous electrolyte secondary battery Pending JPH03289064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2089726A JPH03289064A (en) 1990-04-03 1990-04-03 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2089726A JPH03289064A (en) 1990-04-03 1990-04-03 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH03289064A true JPH03289064A (en) 1991-12-19

Family

ID=13978770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2089726A Pending JPH03289064A (en) 1990-04-03 1990-04-03 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH03289064A (en)

Similar Documents

Publication Publication Date Title
JP7091242B2 (en) Secondary battery and its manufacturing method
JP2006092974A (en) Nonaqueous electrolyte battery
JP2006269374A (en) Nonaqueous electrolyte battery
JP2680685B2 (en) Non-aqueous electrolyte secondary battery
JP2000277146A (en) Rectangular nonaqueous electrolyte secondary battery
JPH0520874B2 (en)
JP2735842B2 (en) Non-aqueous electrolyte secondary battery
JPH1092467A (en) Nonaqueous electrolyte secondary battery
JPH10255767A (en) Set battery for use in electric vehicle
JPH1131508A (en) Nonaqueous electrolyte secondary battery
JP3396990B2 (en) Organic electrolyte secondary battery
JP2830365B2 (en) Non-aqueous electrolyte secondary battery
JPH07230824A (en) Nonaqueous electrolyte battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JPH08241731A (en) Organic electrolytic secondary battery
JPS6362869B2 (en)
JP2002083631A (en) Organic electrolytic solution secondary battery
JPH07230825A (en) Nonaqueous electrolyte battery
JP3123749B2 (en) Non-aqueous electrolyte secondary battery
JP3049973B2 (en) Non-aqueous electrolyte secondary battery
JPH04351860A (en) Non-aqueous electrolyte battery
JPH03289064A (en) Nonaqueous electrolyte secondary battery
JP2730641B2 (en) Lithium secondary battery
JPH04169075A (en) Nonaqueous electrolyte battery
JP3418715B2 (en) Organic electrolyte secondary battery