JPH03288448A - Field-effect transistor - Google Patents

Field-effect transistor

Info

Publication number
JPH03288448A
JPH03288448A JP9060790A JP9060790A JPH03288448A JP H03288448 A JPH03288448 A JP H03288448A JP 9060790 A JP9060790 A JP 9060790A JP 9060790 A JP9060790 A JP 9060790A JP H03288448 A JPH03288448 A JP H03288448A
Authority
JP
Japan
Prior art keywords
layer
gaas
type
semiconductor layer
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9060790A
Other languages
Japanese (ja)
Inventor
Hideo Toyoshima
豊島 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9060790A priority Critical patent/JPH03288448A/en
Publication of JPH03288448A publication Critical patent/JPH03288448A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain a field effect transistor excellent in characteristics by using an InAs/GaAs superlattice structure. CONSTITUTION:By molecular beam epitaxial growth method, an undoped GaAs buffer layer 2 is grown on the surface of a semi-insulating GaAs substrate 1. An InAs layer of mono-molecular-layer thickness and a GaAs layer 4 of m-molecular-layer thickness form one unit. A superlattice layer wherein n-periods of the above units are laminated is grown. Further the following are continuously grown; an N-type Al0.15Ga0.85As spacer layer 5, an Si doped N-type Al0.15Ga0.85 As electron supplying layer 6, and an Si-doped N-type GaAs cap layer 7. Hence, as compared with a transistor of conventional structure having equivalent In composition wherein InGaAs is used as the channel, the following are all improved by scores percent: low electric field mobility, mutual conductance, current gain, and cutoff frequency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2次元電子ガスを利用する電界効果トンジスタ
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a field effect transistor that utilizes two-dimensional electron gas.

〔従来の技術〕[Conventional technology]

G a A s / N型A 1. G a A s選
択ドープ構造を用いた2次元電子ガストランジスタは、
高周波帯用低雑音素子として優れた特性をもっている。
G a As / N type A 1. A two-dimensional electron gas transistor using a G a As selectively doped structure is
It has excellent characteristics as a low noise element for high frequency bands.

家庭用の衛星放送受信機の増幅素子として、広く普及し
ている。
It is widely used as an amplification element in home satellite broadcast receivers.

さらにこのトランジスタの特性を改善するため、I n
GaAs歪層をチャネルとする選択ドープ構造を用いて
、雑音特性の向上を計ったトランジスタの開発が進めら
れている。
In order to further improve the characteristics of this transistor, I n
2. Description of the Related Art Transistors with improved noise characteristics using a selectively doped structure with a GaAs strained layer as a channel are being developed.

Hendersen et al、によってIEEE 
ELECTRON DEVICE LETTER3vo
l、EDL−7,1986に発表されたInGaAs歪
層チャネルトランジスタについて、第2図を参照して説
明する。
IEEE by Hendersen et al.
ELECTRON DEVICE LETTER3vo
The InGaAs strained layer channel transistor published in EDL-7, 1986 will be explained with reference to FIG.

半絶縁性GaAs基板1の表面に、分子線エピタキシャ
ル成長(MBE)法により、 厚さ1μmのノンドープ
GaAsバッファ層2、厚さ150人のノンドープI 
n 0.15G a o、 g5A s ii子チャネ
ル層11、厚さ30人のN型A A’ 0.15Ga 
(1,65Asスペーサ層5、Siを3X1018cm
−’ドープした厚さ350人のA 11(1,15G 
a o、 g5A S電子供給層6、Siを3X10”
cm−’ドープした厚さ400人のN型GaAsキャッ
プ層7が連続成長されている。
A non-doped GaAs buffer layer 2 with a thickness of 1 μm and a non-doped I layer with a thickness of 150 μm are formed on the surface of a semi-insulating GaAs substrate 1 by molecular beam epitaxial growth (MBE).
n 0.15G ao, g5A s ii channel layer 11, thickness 30 N type A A' 0.15Ga
(1,65As spacer layer 5, Si 3X1018cm
-' doped thickness 350 A 11 (1,15G
ao, g5A S electron supply layer 6, Si 3X10”
A 400 cm-' doped N-type GaAs cap layer 7 is successively grown.

電子ビーム直接描画法によりN型GaAsキャップ層7
とN型A J (1,15G a O,8SA S電子
供給層6とがリセスエッチングされて、ゲート長0.2
5μmのゲート電極8が形成され、オーミック接触する
ソース電極9とドレイン電極10とが形成されている。
N-type GaAs cap layer 7 is formed by electron beam direct writing method.
and the N-type A
A gate electrode 8 with a thickness of 5 μm is formed, and a source electrode 9 and a drain electrode 10 which are in ohmic contact are formed.

I n G a A s電子チャネル層11はノンドー
プGaAsバッファ層2と格子定数が異なるため、弾性
的に変形した歪層になっている。
Since the InGaAs electron channel layer 11 has a different lattice constant from the non-doped GaAs buffer layer 2, it is an elastically deformed strained layer.

転位が発生しないで良好な結晶性を保つことのできるI
nn組成比上厚さには制約があり、通常In組成X=0
.15、厚さ150人が用いられる。
I that can maintain good crystallinity without generating dislocations
There are restrictions on the thickness due to the nn composition ratio, and usually the In composition is X=0.
.. 15, thickness 150 people is used.

InGaAsをチャネルとするトランジスタがGaAs
をチャネルとする従来のトランジスタよりも高性能を発
揮する理由は、JnGaAsはGaAsよりも電子親和
力が大きいため電子の閉じ込め効果が増し、GaAsよ
りもI nGaAsの方が電子輸送特性が優れているた
めとされている。
A transistor with InGaAs channel is GaAs
The reason why JnGaAs exhibits higher performance than conventional transistors with a channel is that JnGaAs has a larger electron affinity than GaAs, which increases the electron confinement effect, and InGaAs has better electron transport properties than GaAs. It is said that

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

I nGaAsをチャネルとするトランジスタの特性を
向上させるためには、In組成Xをさらに大きくしなけ
ればならないが、組成Xの増加につれてI n X G
 a 1−X A sとGaAsとの格子定数比が大き
くなり、I n X G a 1−x A sの歪み量
が大きくなってしまう。
In order to improve the characteristics of a transistor using InGaAs as a channel, the In composition X must be further increased, but as the composition X increases, the In
The lattice constant ratio between a 1-X As and GaAs increases, and the amount of strain in In X Ga 1-x As increases.

そのため成長モードが2次元的成長から3次元的成長に
移行し易く、それにつれて転位が発生してもはや良好な
結晶は得られない。
Therefore, the growth mode tends to shift from two-dimensional growth to three-dimensional growth, and dislocations occur accordingly, making it no longer possible to obtain a good crystal.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の電界効果トランジスタは、半導体基板表面に高
純度半導体層とP型半導体層とのうちの一つである第1
の半導体層が形成され、さらに前記第1の半導体層より
も電子親和力が大きく格子定数の異なる第2の半導体層
と、前記第1の半導体層と同一結晶の第3の半導体層と
からなる超格子層チャネルが形成され、その上に電子親
和力の小さい第3の半導体層が形成されているものであ
る。
The field effect transistor of the present invention includes a first layer, which is one of a high-purity semiconductor layer and a P-type semiconductor layer, on the surface of a semiconductor substrate.
a semiconductor layer is formed, and a second semiconductor layer having a larger electron affinity and a different lattice constant than the first semiconductor layer, and a third semiconductor layer having the same crystal as the first semiconductor layer. A lattice layer channel is formed, and a third semiconductor layer having low electron affinity is formed thereon.

〔実施例〕〔Example〕

本発明の一実施例について、第1図を参照して説明する
An embodiment of the present invention will be described with reference to FIG.

半絶縁性GaAs基板1の表面に、分子線エピタキシャ
ル成長(MBE)法により550℃の温度で、厚さ80
00人のノンドープGaAsバッファ層2を成長し、1
分子層厚(#3人)のInAs層3とm(yl=自然数
)分子層厚(ξ3人〉のGaAs層4とを一単位として
、これをn(n=自然数)周期積層した超格子層を成長
し、さらに厚さ30人のN型A 11 o、 15 G
 a o、 85 A Sスペーサ層5、Siを2X1
0”cm−’ドープした厚さ400人のN型A j’ 
(1,15G a O,B5A S電子供給層6、Si
を3X10”cm−’ドープした厚さ400人のN型G
 a A sキャラプ層7を連続成長させる。
The surface of the semi-insulating GaAs substrate 1 is grown to a thickness of 80° C. by molecular beam epitaxial growth (MBE) at a temperature of 550° C.
Grow a non-doped GaAs buffer layer 2 with 1
A superlattice layer in which an InAs layer 3 with a molecular layer thickness (#3 people) and a GaAs layer 4 with a molecular layer thickness of m (yl=natural number) (ξ3 people) are stacked in n (n=natural number) periods as one unit. Grows further 30 thick N type A 11 o, 15 G
a o, 85 A S spacer layer 5, Si 2X1
0"cm - 'Doped Thickness 400 N Type A j'
(1,15G a O, B5A S electron supply layer 6, Si
400 N-type G doped with 3X10"cm-'
a A s carapace layer 7 is grown continuously.

超格子を構成するInAsはその厚さを2分子層以上に
成長すると、現状ではGaAsとの7%もある格子不整
のため、結晶性が大幅に劣化するので1分子層厚を用い
た。
If the InAs constituting the superlattice were grown to a thickness of two or more molecular layers, the crystallinity would be significantly degraded due to the lattice mismatch with GaAs, which currently is as much as 7%, so a one-molecular layer thickness was used.

また従来技術のI nx Ga1−XASと等価なIn
組成Xをもった超格子を得るために、たとえばX=0.
14なら超格子を構成するGaAs層4の厚さはm=6
 <分子層)、X=0.17ならm=5、X=0.25
ならm=3と選べば良い。
In addition, Inx Ga1-XAS of the prior art is equivalent to
To obtain a superlattice with composition X, for example, X=0.
14, the thickness of the GaAs layer 4 constituting the superlattice is m=6
<molecular layer), if X=0.17, m=5, X=0.25
In that case, you should choose m=3.

このような数分子層の厚さのGaAsとInASとから
構成される超格子においては、電子キャリアの波動関数
は超格子全体に広がっている。
In such a superlattice made of GaAs and InAS with a thickness of several molecular layers, the wave function of electron carriers is spread throughout the superlattice.

本実施例においてはm=4、n=10<周期)およびm
=3、n=10の2種類の超格子を有する結晶構造をそ
れぞれエピタキシャル成長し、さらに電子ビーム直接描
画法によりゲート長0.25μmのリセス構造ゲート電
f!8を形成し、オーミック接触するソース電極9、ド
レイン電極10を形成して2種類のトランジスタを作成
した。
In this example, m=4, n=10<period) and m
A crystal structure having two types of superlattices, n=3 and n=10, was epitaxially grown, and then a recessed gate electrode with a gate length of 0.25 μm was formed using the electron beam direct writing method. 8 was formed, and a source electrode 9 and a drain electrode 10 which were in ohmic contact were formed to fabricate two types of transistors.

その結果等価なIn組成を有する従来構造のIn G 
a A sをチャネルとするトランジスタと比較して、
低電界移動度、相互コンダクタンス、電流利得、遮断周
波数について、いずれも数十%の向上が確認された。
As a result, InG of the conventional structure with equivalent In composition
Compared to a transistor whose channel is a A s,
Improvements of several tens of percent in low-field mobility, mutual conductance, current gain, and cut-off frequency were confirmed.

超格子構造におけるこのような特性向上は、InGaA
s層戒長後のG成長s層戒長時に、2次元性の成長モー
ドを回復するため、(等価的に)大きなIn組成Xでも
良好な結晶性が得られるためと予想される。
Such property improvement in the superlattice structure is due to InGaA
G growth after s-layer lengthening This is expected to be because good crystallinity can be obtained even with (equivalently) large In composition X because the two-dimensional growth mode is restored during s-layer lengthening.

本実施例では選択ドープ構造のトランジスタについて述
べたが、ゲート電極金属/N+型GaAS/ノンドープ
A11GaAs/ノンドープGaASからなる、S I
 S (Sem1conductor Insulat
orSemiconductor )型トランジスタな
どにも適用することができる。
In this example, a transistor with a selectively doped structure has been described, but an S I
S (Sem1conductor Insulat
The present invention can also be applied to semiconductor type transistors, etc.

〔発明の効果〕〔Effect of the invention〕

InAs/GaAs超格子構造を用いることにより、特
性の優れた電界効果トランジスタが得られた。
By using the InAs/GaAs superlattice structure, a field effect transistor with excellent characteristics was obtained.

分子線エピタキシャル成長装置の発展が著しい今日、こ
の電界効果トランジスタの寄与するところは大きい。
Today, when molecular beam epitaxial growth equipment is rapidly developing, the contribution of this field effect transistor is significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図は従来
技術による電界効果トランジスタを示す断面図である。 1・・・半絶縁性GaAs基板、2・・・ノンドープG
a A s バッファ層、3・・・I nAs層(超格
子層)、4−GaAs層(超格子層) 、5−A Ji
’ o、 15G a Q、 @5A Sスペーサ層、
6−N型A 10.15Gag、g5AS電子供給層、
7・・・N型GaAsキャップ層、8・・・ゲート電極
、9・・・ソース電極、1o・・・ドレイン電極、11
− I n O,15G a o、 g5A s電子チ
ャネル層。
FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG. 2 is a sectional view showing a field effect transistor according to the prior art. 1... Semi-insulating GaAs substrate, 2... Non-doped G
a As buffer layer, 3...InAs layer (superlattice layer), 4-GaAs layer (superlattice layer), 5-A Ji
' o, 15G a Q, @5A S spacer layer,
6-N type A 10.15Gag, g5AS electron supply layer,
7... N-type GaAs cap layer, 8... Gate electrode, 9... Source electrode, 1o... Drain electrode, 11
- InO, 15Gao, g5As electron channel layer.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板表面に高純度半導体層とP型半導体層との
うちの一つである第1の半導体層が形成され、さらに前
記第1の半導体層よりも電子親和力が大きく格子定数の
異なる第2の半導体層と、前記第1の半導体層と同一結
晶の第3の半導体層とからなる超格子層チャネルが形成
され、その上に電子親和力の小さい第3の半導体層が形
成されていることを特長とする電界効果トランジスタ。
A first semiconductor layer, which is one of a high-purity semiconductor layer and a P-type semiconductor layer, is formed on the surface of the semiconductor substrate, and a second semiconductor layer having a larger electron affinity and a different lattice constant than the first semiconductor layer is formed. A superlattice layer channel is formed consisting of a semiconductor layer and a third semiconductor layer having the same crystal as the first semiconductor layer, and a third semiconductor layer having a small electron affinity is formed thereon. field effect transistor.
JP9060790A 1990-04-05 1990-04-05 Field-effect transistor Pending JPH03288448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9060790A JPH03288448A (en) 1990-04-05 1990-04-05 Field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9060790A JPH03288448A (en) 1990-04-05 1990-04-05 Field-effect transistor

Publications (1)

Publication Number Publication Date
JPH03288448A true JPH03288448A (en) 1991-12-18

Family

ID=14003164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9060790A Pending JPH03288448A (en) 1990-04-05 1990-04-05 Field-effect transistor

Country Status (1)

Country Link
JP (1) JPH03288448A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5284782A (en) * 1991-09-12 1994-02-08 Pohang Iron & Steel Co., Ltd. Process for formation of delta-doped quantum well field effect transistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229763A (en) * 1987-03-19 1988-09-26 Fujitsu Ltd Semiconductor device
JPH0227740A (en) * 1988-07-15 1990-01-30 Sanyo Electric Co Ltd Hetero junction field effect transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229763A (en) * 1987-03-19 1988-09-26 Fujitsu Ltd Semiconductor device
JPH0227740A (en) * 1988-07-15 1990-01-30 Sanyo Electric Co Ltd Hetero junction field effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5284782A (en) * 1991-09-12 1994-02-08 Pohang Iron & Steel Co., Ltd. Process for formation of delta-doped quantum well field effect transistor

Similar Documents

Publication Publication Date Title
JP3372470B2 (en) Nitride III-V compound semiconductor device
JPH09107093A (en) Algapsb/gainas low-noise power hemt on gaas substrate, and pseudo-configuration hemt
JPH05251475A (en) Hemt type semiconductor device
JPH0815213B2 (en) Field effect transistor
JPH07183494A (en) Heterojunction fet
US5489549A (en) Method of fabricating n-type antimony-based strained layer superlattice
JP2804041B2 (en) Field-effect transistor
JPH03288448A (en) Field-effect transistor
JPS5963769A (en) High-speed semiconductor element
JPH02130933A (en) Field effect transistor
JP3094500B2 (en) Field effect transistor
JPH09237889A (en) Semiconductor crystal laminate and semiconductor device using the laminate
JP2800770B2 (en) Field effect transistor and method of manufacturing the same
JP2917719B2 (en) Field effect transistor
JP2500457B2 (en) Heterojunction field effect transistor
JPS62211964A (en) Semiconductor device
JP2674490B2 (en) Field effect transistor
JPH0684959A (en) High electron mobility field effect semiconductor device
JP2786208B2 (en) Semiconductor device
JPH0964062A (en) Field effect transistor and manufacture thereof
JPH06244217A (en) Heterojunction semiconductor device
JPH04298050A (en) Heterostructure device having strained carrier supply layer
JPS609174A (en) Semiconductor device
JP2800245B2 (en) Semiconductor device
JPH05235054A (en) Field-effect semiconductor device