JPH032881B2 - - Google Patents

Info

Publication number
JPH032881B2
JPH032881B2 JP13372681A JP13372681A JPH032881B2 JP H032881 B2 JPH032881 B2 JP H032881B2 JP 13372681 A JP13372681 A JP 13372681A JP 13372681 A JP13372681 A JP 13372681A JP H032881 B2 JPH032881 B2 JP H032881B2
Authority
JP
Japan
Prior art keywords
microcrystalline cellulose
water
etherification
carboxymethylated
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13372681A
Other languages
Japanese (ja)
Other versions
JPS5834802A (en
Inventor
Takahiro Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP13372681A priority Critical patent/JPS5834802A/en
Publication of JPS5834802A publication Critical patent/JPS5834802A/en
Publication of JPH032881B2 publication Critical patent/JPH032881B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は微結晶セルロースの表面をカルボキシ
メチル化して得られるセルロース誘導体及びその
製法に関するものである。ここで云う微結晶セル
ロースとは、パルプ、リンター、木綿などのセル
ロース原料を酸加水分解に付し、非結晶領域を洗
滌、除去した後、磨砕、精製、乾燥して得られる
微粉末セルロースで、通常粒径100μ以下の粉体
である。微結晶セルロースは成形性、分散懸濁安
定性、チキソトロピー性、生理的無害性及び無味
無臭、無色性などの特徴のため種々の用途に利用
されている。即ち、医薬品賦形剤、過助剤、食
品添加剤、分散剤、粘度改良剤などに用いられて
いる。特に食品には低カロリー増量剤としての機
能も重視されるようになつて来ている。 しかしながら、微結晶セルロースだけではゾ
ル、ゲル、コロイドの乳化懸濁安定剤や増粘剤と
しては実用上充分でなく、水溶性高分子を併用す
る必要がある。また、微結晶セルロースは舌ざわ
りが悪いので、その添加量が制限されるか、ある
いは水溶性高分子との併用や水溶性高分子でコー
テイングした微結晶セルロースが用いられている
(特開昭53−72868、特開昭54−157875、特開昭55
−34006など)。これらの水溶性高分子との併用、
あるいはコーテイングしたものの使用でも味覚の
点では不充分か、粘度が上りすぎて流動性が失わ
れるなど利用面で難しいものである。 本発明は微結晶セルロースの表面層だけをカル
ボキシメチル化することにより、分散・懸濁安定
性を増大せしめる一方、微結晶セルロースに滑ら
かな舌ざわり性を賦与させ、食品添加物として好
適なものとすることができることを見出したこと
にある。微結晶セルロースの表面をカルボキシメ
チル化する方法及びその製品の繊維用糊剤への応
用が特公昭45−19438に示されている。該明細書
には水を媒体として水酸化ナトリウム水溶液で微
結晶セルロースを処理し、モノクロル酢酸水溶液
を加え、カルボキシメチル化微結晶セルロースを
得る方法が示されている。しかしながらこのよう
にして作製されたカルボキシメチル化微結晶セル
ロースは皮膜形成性、アルカリ可溶性などの性能
を有し、むしろカルボキシメチルセルロースに近
く、粉体流動性、崩壊性などの特性が失われ、賦
形剤などの用途には不適である。特公昭45−
19438は微結晶セルロースの表面を主にカルボキ
シメチル基を導入したものであるが、この方法で
はそれでも若干内部にまでエーテル化が浸透して
しまう。微結晶セルロースの特性をかえることな
くカルボキシメチルエーテル化するにはその反応
をごく表面層にのみ止める必要がある。 本発明者らは鋭意研究の結果、微結晶セルロー
スのごく表面層のみをカルボキシメチルエーテル
化する方法として、有機溶媒を反応媒法としたス
ラリー法を用い、しかも反応系内の水の量を極め
て制限された範囲で使用することにより目的とす
る微結晶セルロース誘導体を得ることに成功し
た。即ち、本発明は脂肪族アルコール/水混合溶
媒中にモノクロル酢酸を溶かし、次いで微結晶セ
ルロースを加えてスラリー化した後、水酸化ナト
リウムを添加してエーテル化する製法において、
混合溶媒中の水の濃度を5%以下で行うことによ
りアルセル化の際の膨潤と内部浸透を抑制しつつ
反応させ、且つエーテル化度が全体として0.05〜
0.8となるようにして得られる微結晶セルロース
カルボキシメチルエーテル及びその製法に関する
ものである。 本発明の微結晶セルロース誘導体は賦形剤、懸
濁安定剤、食品添加剤などの用途に使用すること
ができ、分散安定性、保形性、舌ざわりなどが原
料微結晶セルロースに比べて改良されたものであ
る。本発発明の微結晶セルロース誘導体の用途と
して好適なものは、例えば乾式打錠用賦形剤、ア
イスクリーム、マヨネーズ、サラダドレツシン
グ、パン、化粧用クリーム、化粧用乳液などであ
る。 以下に実施例をあげて本発明を説明するが、エ
ーテル化度、粉体としての平均粒径、流動性、水
に対する分散性は次の方法で試験し、数値化し
た。 1 エーテル化度(DS) 乾燥試料1gを精秤し、定量紙に包んで白金
ルツボ又は磁製ルツボ中に入れ、静かに加熱して
炭化した後、600℃を越えない温度で灰化し、冷
却後500mlビーカーにルツボを移し、水約250mlを
加え、更にN/10H2SO450mlを正確に加え30分
間煮沸する。これを冷却し、フエノールフタレイ
ン指示薬を加え、過剰の酸をN/10NaOH溶液に
て滴定する。同様に空試験を行ない、次式により
エーテル化度を求める。 A=(B−S)×F/乾燥試料g−アルカリ度 注1 エーテル化度(モル)=162×A/10000−80A B:空試験に要したN/10NaOHの使用量
(ml) S:実試験 〃 F:N/10NaOH溶液の力価 注)アルカリ度の求め方 乾燥試料約1gを精秤し、水約200mlを加えて溶
解する。これにN/10H2SO4、5mlを正確に加
えて10分間煮沸し、冷却した後フエノールフタレ
イン指示薬を加えN/10NaOHにて滴定する。 アルカリ度=5F′−N/10NaOH(ml)数×F/乾燥試
料g F:N/10NaOH溶液の力価 F′:N/10H2SO4〃 2 平均粒径 乾式篩分法によるメデイアン径 3 流動性指数 パウダーテスター((株)細川粉体工学研究所製)
を使つてゆるみ見掛比重、固め見掛比重、安息
角、スパチユラ角、粒度分布を測定し、総合的に
指数化したもの、数値が大きい程流動性が良いこ
とになる。 (参考資料) 「パウダーテスターよる粉粒体の流動特性試験と
その応用」 横山藤平(株)細川粉体工学研究所 昭和51年6月3日、日本粉体工業協会主催 粉体工業講座(第23回) 4 水への分散性 乾燥試料30gをとり、水270mlを加え、高速度
(毎分8000回転以上)で5分間混ぜた後、その100
mlを100mlのメスシリンダーに入れ、6時間放置
後の上澄液の厚みを測定し、分散層の厚みを100
として換算したもの。従つて数値が小さい程分散
性が良いことになる。 微結晶セルロースの製造例 市販の亜硫酸木材パルプを細断し、0.5%塩酸
溶液中で125℃、1時間加水分解して得られた酸
不溶解残査を中和・洗滌し、磨砕し、噴霧乾燥し
た。乾燥物を35メツシユの篩で粗大物を除き、平
均粒径65μ、重合度200、結晶化度75の白色の微
結晶セルロースAを得た。得られた微結晶セルロ
ースAの赤外線吸収スペクトラムを第1図に示
す。 比較例 1 製造例で得られた微結晶セルロースAをイソプ
ロパノール/水混合溶媒を用い、均一なエーテル
化反応生成物が得られる公知の条件下でカルボキ
シメチル化した。 微結晶セルロースA100gをイソプロパノール
(IPA)1180gと水100gとNaOH40gの混合溶液系
に入れ、室温で90分間撹拌した。このスラリー系
に50%のモノクロル酢酸(MCA)のIPA溶液60g
を入れ室温で30分間撹拌した後、60℃に昇温し、
2時間継続させた。反応終了後固形分を75%メタ
ノール水溶液で洗滌し、エタノールで置換後乾燥
した。得られた白色微粉末をBとする。Bの赤外
線吸収スペクトラムを第2図に示す。 実施例 1〜5及び比較例 2 製造例で得られた微結晶セルロースAを、
IPA/水混合溶媒を用い、且つ水の量が少い条件
下でカルボキシメチル化した。 イソプロパノール(IPA)1180gに所定量の水
とモノクロル酢酸(MCA)を溶かし、次いで
A100gを入れ、スラリー状態にした。このスラリ
ー系に所定量の水酸化ナトリウム(NaOH)を顆
粒状で少しづつ撹拌状態で加えて後、昇温し反応
させた。反応終了後固形分を75%メタノール水溶
液で洗滌し、エタノールで置換後乾燥した。 反応条件を表−1に、エーテル化度及びその他
の物性測定値を表−2に示す。又、実施例−2、
4の製品の赤外吸収スペクトラムをそれぞれ第3
図、第4図に示す。
The present invention relates to a cellulose derivative obtained by carboxymethylating the surface of microcrystalline cellulose and a method for producing the same. The microcrystalline cellulose referred to here is finely powdered cellulose obtained by subjecting cellulose raw materials such as pulp, linter, and cotton to acid hydrolysis, washing and removing amorphous regions, and then grinding, refining, and drying. , usually a powder with a particle size of 100μ or less. Microcrystalline cellulose is used for various purposes due to its characteristics such as moldability, dispersion/suspension stability, thixotropy, physiological harmlessness, tasteless, odorless, and colorless properties. That is, it is used in pharmaceutical excipients, super-aids, food additives, dispersants, viscosity modifiers, and the like. In particular, the function of foods as low-calorie bulking agents is becoming more important. However, microcrystalline cellulose alone is not practically sufficient as an emulsion suspension stabilizer or thickener for sols, gels, and colloids, and a water-soluble polymer must be used in combination. In addition, since microcrystalline cellulose has a unpleasant texture, the amount added is limited, or microcrystalline cellulose is used in combination with a water-soluble polymer or coated with a water-soluble polymer (Japanese Patent Application Laid-Open No. 1983-1999-1). 72868, 1978-157875, 1978 Japanese Patent Publication
−34006 etc.). Combined use with these water-soluble polymers,
Alternatively, even if a coated product is used, it is difficult to use because the taste is insufficient or the viscosity increases too much and fluidity is lost. The present invention increases dispersion/suspension stability by carboxymethylating only the surface layer of microcrystalline cellulose, while imparting smooth texture to the microcrystalline cellulose, making it suitable as a food additive. The goal is to discover what can be done. A method of carboxymethylating the surface of microcrystalline cellulose and the application of the product to a sizing agent for textiles are disclosed in Japanese Patent Publication No. 19438/1983. The specification describes a method of obtaining carboxymethylated microcrystalline cellulose by treating microcrystalline cellulose with an aqueous sodium hydroxide solution using water as a medium and adding an aqueous monochloroacetic acid solution. However, the carboxymethylated microcrystalline cellulose produced in this way has properties such as film-forming properties and alkali solubility, and is rather similar to carboxymethylcellulose. It is unsuitable for applications such as agents. Special Public Service 1977-
19438 mainly introduces carboxymethyl groups onto the surface of microcrystalline cellulose, but with this method, etherification still penetrates slightly into the inside. In order to convert microcrystalline cellulose into carboxymethyl ether without changing its properties, it is necessary to limit the reaction to only the very surface layer. As a result of extensive research, the present inventors found that a slurry method using an organic solvent as a reaction medium was used to carboxymethyl etherify only the very surface layer of microcrystalline cellulose, and the amount of water in the reaction system was extremely small. By using it within a limited range, we succeeded in obtaining the desired microcrystalline cellulose derivative. That is, the present invention is a manufacturing method in which monochloroacetic acid is dissolved in an aliphatic alcohol/water mixed solvent, then microcrystalline cellulose is added to form a slurry, and sodium hydroxide is added to etherify the mixture.
By keeping the concentration of water in the mixed solvent at 5% or less, the reaction can be carried out while suppressing swelling and internal penetration during alcelization, and the degree of etherification can be maintained at 0.05 to 0.05 as a whole.
0.8, and a method for producing the same. The microcrystalline cellulose derivative of the present invention can be used as an excipient, suspension stabilizer, food additive, etc., and has improved dispersion stability, shape retention, texture, etc. compared to the raw material microcrystalline cellulose. It is something that Suitable applications for the microcrystalline cellulose derivative of the present invention include, for example, excipients for dry tableting, ice cream, mayonnaise, salad dressings, bread, cosmetic creams, and cosmetic emulsions. The present invention will be explained below with reference to Examples. The degree of etherification, average particle size as a powder, fluidity, and dispersibility in water were tested and quantified by the following methods. 1 Degree of etherification (DS) Accurately weigh 1 g of the dry sample, wrap it in quantitative paper, place it in a platinum crucible or porcelain crucible, heat it gently to carbonize it, then ash it at a temperature not exceeding 600℃, and then cool it. Transfer the crucible to a 500 ml beaker, add about 250 ml of water, then add exactly 50 ml of N/10H 2 SO 4 and boil for 30 minutes. It is cooled, phenolphthalein indicator is added and excess acid is titrated with N/10N a OH solution. Perform a blank test in the same manner, and determine the degree of etherification using the following formula. A = (B-S) x F/dry sample g-alkalinity Note 1 Degree of etherification (mol) = 162 x A/10000-80A B: N/10N required for blank test Amount of a OH used (ml) S: Actual test 〃 F: Potency of N/10N a OH solution Note) How to determine alkalinity Accurately weigh approximately 1 g of the dry sample and dissolve it by adding approximately 200 ml of water. Accurately add 5 ml of N/10H 2 SO 4 and boil for 10 minutes. After cooling, add a phenolphthalein indicator and titrate with N/10N a OH. Alkalinity = 5F'-N/10N a Number of OH (ml) x F/g dry sample F: N/10N a Potency of OH solution F': N/10H 2 SO 4 〃 2 Average particle size Dry sieving method Median diameter 3 Flowability index Powder tester (manufactured by Hosokawa Powder Engineering Institute Co., Ltd.)
The loosened apparent specific gravity, hardened apparent specific gravity, angle of repose, angle of spatula, and particle size distribution are measured using the , and the values are comprehensively converted into an index. The larger the value, the better the fluidity. (Reference material) "Flow characteristic test of powder and granular material using powder tester and its application" Yokoyama Tohei Co., Ltd. Hosokawa Powder Technology Research Institute June 3, 1976, Powder Industry Lecture (No. 1) sponsored by the Japan Powder Industry Association 23 times) 4 Dispersibility in water Take 30 g of a dry sample, add 270 ml of water, mix at high speed (more than 8000 revolutions per minute) for 5 minutes, and then
ml into a 100 ml graduated cylinder, and after standing for 6 hours, measure the thickness of the supernatant liquid, and calculate the thickness of the dispersed layer by 100 ml.
Converted as . Therefore, the smaller the numerical value, the better the dispersibility. Production example of microcrystalline cellulose Commercially available sulfite wood pulp is shredded and hydrolyzed in a 0.5% hydrochloric acid solution at 125°C for 1 hour. The resulting acid-insoluble residue is neutralized and washed, and the resulting pulp is ground. Spray dried. The dried product was passed through a 35-mesh sieve to remove coarse materials, yielding white microcrystalline cellulose A having an average particle size of 65 μm, a degree of polymerization of 200, and a degree of crystallinity of 75. The infrared absorption spectrum of the obtained microcrystalline cellulose A is shown in FIG. Comparative Example 1 Microcrystalline cellulose A obtained in Production Example was carboxymethylated using an isopropanol/water mixed solvent under known conditions to obtain a uniform etherification reaction product. 100 g of microcrystalline cellulose A was placed in a mixed solution system of 1180 g of isopropanol (IPA), 100 g of water, and 40 g of NaOH , and the mixture was stirred at room temperature for 90 minutes. Add 60g of 50% monochloroacetic acid (MCA) to this slurry system in IPA.
After stirring at room temperature for 30 minutes, raise the temperature to 60℃,
It continued for 2 hours. After the reaction was completed, the solid content was washed with a 75% aqueous methanol solution, replaced with ethanol, and then dried. The obtained white fine powder is designated as B. The infrared absorption spectrum of B is shown in FIG. Examples 1 to 5 and Comparative Example 2 Microcrystalline cellulose A obtained in the production example,
Carboxymethylation was carried out using an IPA/water mixed solvent with a small amount of water. Dissolve the specified amount of water and monochloroacetic acid (MCA) in 1180g of isopropanol (IPA), then
Add 100g of A to make a slurry. A predetermined amount of sodium hydroxide (N a OH) was added little by little in the form of granules to this slurry system while stirring, and then the temperature was raised to cause a reaction. After the reaction was completed, the solid content was washed with a 75% aqueous methanol solution, replaced with ethanol, and then dried. The reaction conditions are shown in Table 1, and the degree of etherification and other physical property measurements are shown in Table 2. Moreover, Example-2,
The infrared absorption spectra of the 4 products are shown in the 3rd column.
As shown in Fig. 4.

【表】【table】

【表】【table】

【表】 比較例−3及び4 微結晶セルロースAを特公昭45−19438に示さ
れた水を溶媒とする方法によりカルボキシメチル
化した。即ち、同公報記載の実施例−1における
市販微結晶セルロースにかえてAを用いた他は同
様にしてカルボキシメチル化微結晶セルロースを
得た。即ちA600gに45%水酸化ナトリウム水溶液
を1.1加え、5℃に冷却しながら30分間撹拌し
た後、46%モノクロル酢酸水溶液を0.55及び1.20
と添加量をかえ60℃で1時間反応させた。反応
が進むに従い正成物の表面が溶媒に溶けた状態に
なつた。特にモノクロル酢酸1.20添加の方は糊
状になつた。冷却後塩酸中和して遊離とし、メタ
ノール添加による沈澱、遠心分離、水酸化ナトリ
ウム添加によるナトリウム塩再生、メタノール沈
澱、乾燥を行つたが、その過程で粒子同志の溶着
が認められ、原料微結晶セルロースとは異つた粒
子形状のものとなつた。 生成物のエーテル化度及び透明度の測定結果を
表−3に示す。透明度は次の方法で試験し、数値
化した。 透明度 高さ250m/m、内径25m/m、厚さ2m/mの
ガラス円筒の底に厚さ2m/mの良質ガラス板を
密着させ、このガラス円筒を巾1m/m、間隔
1m/mの15本の平行線を黒く書いた白紙の上に
置く。このガルス円筒の中に試料の1%懸濁水溶
液を入れて上部から透視するとき、線が判別でき
なくなる1%懸濁水溶液の高さを透明度とする。 試料が水に良く溶ける程透明度は大きくなる。
[Table] Comparative Examples 3 and 4 Microcrystalline cellulose A was carboxymethylated by the method described in Japanese Patent Publication No. 45-19438 using water as a solvent. That is, carboxymethylated microcrystalline cellulose was obtained in the same manner as in Example 1 described in the same publication, except that A was used instead of commercially available microcrystalline cellulose. That is, 45% sodium hydroxide aqueous solution was added to 600 g of A, and after stirring for 30 minutes while cooling to 5°C, 46% monochloroacetic acid aqueous solution was added at 0.55 and 1.20 g.
The amount of addition was changed and the reaction was carried out at 60°C for 1 hour. As the reaction progressed, the surface of the product became dissolved in the solvent. In particular, when 1.20% of monochloroacetic acid was added, the mixture became pasty. After cooling, it was neutralized with hydrochloric acid to release it, precipitated by adding methanol, centrifuged, sodium salt regenerated by adding sodium hydroxide, precipitated with methanol, and dried, but during the process, welding of particles was observed, and the raw material microcrystals. The particle shape was different from that of cellulose. Table 3 shows the results of measuring the degree of etherification and transparency of the product. Transparency was tested and quantified by the following method. Transparency A high-quality glass plate with a thickness of 2m/m is tightly attached to the bottom of a glass cylinder with a height of 250m/m, an inner diameter of 25m/m, and a thickness of 2m/m.
Place 15 parallel lines of 1m/m on a blank sheet of black paper. When a 1% aqueous suspension of a sample is placed in this Gallus cylinder and viewed from above, the height of the 1% aqueous suspension at which lines cannot be distinguished is defined as transparency. The better the sample dissolves in water, the greater the transparency.

【表】【table】

【表】 応用例 1 製造例で得たA及び実施例−1,2で得た表面
カルボキシメチル化微結晶セルロースを用いて医
薬錠剤打錠試験を行つた。これらを賦形剤とし、
アスコルビン酸49%、賦形剤50%、ステアリン酸
マグネシウム0.5%、タルク0.5%の混合物を同一
条件で直接打錠した結果を表−4に示す。
[Table] Application Example 1 A pharmaceutical tablet compression test was conducted using A obtained in Production Example and the surface carboxymethylated microcrystalline cellulose obtained in Examples 1 and 2. These are used as excipients,
Table 4 shows the results of direct compression of a mixture of 49% ascorbic acid, 50% excipients, 0.5% magnesium stearate, and 0.5% talc under the same conditions.

【表】 但し、硬度・磨損度の測定法は次の通りである。 硬度 モンサント硬度計を使用して20個の錠剤の各々
の硬度を測定し、その平均値を採用した。 磨損度 直径30cmの単翼式錠剤磨損度試験機を使つて試
料を50錠仕込み、25回転/分で10分間衝撃を与え
た。衝撃後に錠剤を取り出して破損分離した粉お
よび小粒子を篩別除去して重量を測定し、重量減
をもとの重量に対する百分率で表示した。 応用例 2 製造例で得たA及び実施例−2で得た表面カル
ボキシメチル化微結晶セルロースを用いて乳化安
定性試験を行つた。 水200g、砂糖10g、脱脂粉乳15gの混合スラリ
ーを2セツト(No.1とNo.2)準備し、No.1に
A20g、No.2に表面カルボキシメチル化微結晶セ
ルロース20gを加え、ホモミキサーを使つて同一
条件で乳化した。乳化後の観察結果を表−5に記
載した。
[Table] However, the method for measuring hardness and abrasion is as follows. Hardness The hardness of each of the 20 tablets was measured using a Monsanto hardness meter, and the average value was taken. Abrasiveness Using a single-blade tablet abrasion tester with a diameter of 30 cm, 50 tablets of the sample were loaded and subjected to impact at 25 revolutions/min for 10 minutes. After impact, the tablets were taken out, broken and separated powder and small particles were removed by sieving, and the weight was measured, and the weight loss was expressed as a percentage of the original weight. Application Example 2 An emulsion stability test was conducted using A obtained in Production Example and the surface carboxymethylated microcrystalline cellulose obtained in Example-2. Prepare two sets (No. 1 and No. 2) of mixed slurry of 200 g of water, 10 g of sugar, and 15 g of skim milk powder.
20 g of surface carboxymethylated microcrystalline cellulose was added to 20 g of A, No. 2, and emulsified under the same conditions using a homomixer. The observation results after emulsification are listed in Table-5.

【表】 応用例 3 微結晶セルロースA及び実施例−2で得た表面
カルボキシメチル化微結晶セルロースを舌の上に
乗せた感触を味わうテストを10人のパネラーで実
施したところ、10人全員共微結晶セルロースAは
多少ザラザラした感触及び異物感を与えるのに対
して、表面カルボキシメチル化微結晶セルロース
の方はなめらかな感触で全く異物感を与えないと
解答した。 応用例 4 次にこれらの微結晶セルロース及び誘導体を添
加したパンを作成した。 前種 小麦粉(強力粉) 1400g イースト 40g イーストフード 4g 水 700g を〓ね、26〜27℃で2時間保持して1次発酵さ
せた。 次に上記前種に下記処方の〓粉を加え本〓し
た。 本〓 小麦粉(薄力粉) 300g 添加物(微結晶セルロースなど) 300g 砂糖 100g 食塩 50g マーガリン 100g ドライミルク 40g 水 600g 〓和後所定のパンローフを得る大きさに分割し、
27℃で10分間熟成、次いでベーキング用型に入れ
て37℃で40分間2次発酵させた。 次いでオーブン中約230℃で45〜70分間焼き上
るまで加熱した。 添加物は次のものである。 No.1 無添加(薄力粉を合計600g使用) No.2 製造例のA No.3 市販の微結晶セルロース(アビセルRC
−N−81) No.4 実施例−2の表面カルボキシメチル化微
結晶セルロース 焼き上りの外見と試食結果を表−6に示す。
[Table] Application example 3 When 10 panelists conducted a test to taste the sensation of placing microcrystalline cellulose A and the surface carboxymethylated microcrystalline cellulose obtained in Example-2 on the tongue, all 10 panelists Microcrystalline cellulose A gave a somewhat rough feel and a foreign body sensation, whereas surface carboxymethylated microcrystalline cellulose had a smooth feel and did not give a foreign body sensation at all. Application Example 4 Next, bread to which these microcrystalline cellulose and derivatives were added was prepared. Preliminary flour (strong flour) 1400g, yeast 40g, yeast food 4g, water 700g were mixed and held at 26-27°C for 2 hours for primary fermentation. Next, the following powder was added to the above mixture and the mixture was prepared. Main flour (soft flour) 300g Additives (microcrystalline cellulose, etc.) 300g Sugar 100g Salt 50g Margarine 100g Dry milk 40g Water 600g After warming, divide into pieces that will make the desired bread loaf.
The mixture was aged at 27°C for 10 minutes, then placed in a baking mold and subjected to secondary fermentation at 37°C for 40 minutes. It was then heated in an oven at about 230°C for 45-70 minutes until baked. The additives are as follows. No. 1 No additives (600g of soft flour used in total) No. 2 Production example A No. 3 Commercially available microcrystalline cellulose (Avicel RC)
-N-81) No. 4 Surface carboxymethylated microcrystalline cellulose of Example-2 The baked appearance and tasting results are shown in Table-6.

【表】 ○:良
△:やや劣る
×:劣る
[Table] ○: Good △: Slightly poor ×: Poor

【図面の簡単な説明】[Brief explanation of the drawing]

図面は微結晶セルロース及び微結晶セルロース
のカルボキシメチル化物のKBr錠剤法で測定した
赤外吸収スペクトラムである。 第1図……微結晶セルロース、第2図……カル
ボキシメチル化物、第3図,第4図……表面カル
ボキシメチル化物。
The figure shows infrared absorption spectra of microcrystalline cellulose and carboxymethylated microcrystalline cellulose measured by the KB r tablet method. Figure 1: Microcrystalline cellulose; Figure 2: carboxymethylated product; Figures 3 and 4: surface carboxymethylated product.

Claims (1)

【特許請求の範囲】[Claims] 1 微結晶セルロースを脂肪族アルコール/水混
合溶媒中でナトリウム・カルボキシメチルエーテ
ル化するにあたり、水/脂肪族アルコールの重量
比が6/100〜2/100の範囲で、かつ水/グルコ
ースのモル比を3〜5の範囲で行い、エーテル化
剤としてモノクロル酢酸と固形水酸化ナトリウム
を用いることを特徴とする微結晶セルロースの粒
子表面をグルコース単位あたり0.05以上0.8以下
の置換度でナトリウム・カルボキシメチルエーテ
ル化した水不溶性で水分散性の微結晶セルロース
誘導体の製造方法。
1 When sodium carboxymethyl etherification of microcrystalline cellulose is carried out in an aliphatic alcohol/water mixed solvent, the weight ratio of water/aliphatic alcohol is in the range of 6/100 to 2/100, and the molar ratio of water/glucose is 3 to 5, and using monochloroacetic acid and solid sodium hydroxide as etherification agents, the particle surface of microcrystalline cellulose is treated with sodium carboxymethyl ether at a substitution degree of 0.05 to 0.8 per glucose unit. A method for producing a water-insoluble and water-dispersible microcrystalline cellulose derivative.
JP13372681A 1981-08-25 1981-08-25 Microcrystalline cellulose derivative and its production Granted JPS5834802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13372681A JPS5834802A (en) 1981-08-25 1981-08-25 Microcrystalline cellulose derivative and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13372681A JPS5834802A (en) 1981-08-25 1981-08-25 Microcrystalline cellulose derivative and its production

Publications (2)

Publication Number Publication Date
JPS5834802A JPS5834802A (en) 1983-03-01
JPH032881B2 true JPH032881B2 (en) 1991-01-17

Family

ID=15111467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13372681A Granted JPS5834802A (en) 1981-08-25 1981-08-25 Microcrystalline cellulose derivative and its production

Country Status (1)

Country Link
JP (1) JPS5834802A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094401A (en) * 1983-10-31 1985-05-27 Asahi Chem Ind Co Ltd Cellulose dervative having excellent liquid absorption characteristic, its production and structure containing the same
JPH0673860B2 (en) * 1985-07-16 1994-09-21 パイオニア株式会社 Fresnel lens manufacturing mold
FR2784107B1 (en) * 1998-09-15 2005-12-09 Rhodia Chimie Sa SURFACE MODIFIED CELLULOSE MICROFIBRILLES, THEIR PREPARATION PROCESS, AND THEIR USE
US6602994B1 (en) * 1999-02-10 2003-08-05 Hercules Incorporated Derivatized microfibrillar polysaccharide
FR2800378A1 (en) * 1999-11-03 2001-05-04 Saint Louis Sucre Sa Cellulose microfibers used in composites and paints, have hydroxyl groups substituted by ether groups localized at the surface and with a specified degree of surface substitution
JP2008238115A (en) * 2007-03-28 2008-10-09 Nippon Paper Chemicals Co Ltd Additive for bubble-containing composition
JP5894792B2 (en) * 2011-12-28 2016-03-30 花王株式会社 Solid bath agent
JP5894790B2 (en) * 2011-12-28 2016-03-30 花王株式会社 Solid bath agent
JP6031248B2 (en) * 2012-04-10 2016-11-24 アイカ工業株式会社 Coating composition

Also Published As

Publication number Publication date
JPS5834802A (en) 1983-03-01

Similar Documents

Publication Publication Date Title
JP5902697B2 (en) Novel cellulose ethers and their use
JP4675108B2 (en) Soluble associative carboxymethylcellulose, process for its production and use thereof
US3622677A (en) Compressed tablets containing compacted starch as binder-disintegrant ingredient
DE60007298T2 (en) METHYLCELLULOSE WITH IMPROVED GEL STRENGTH
DE60115985T2 (en) Polysaccharides for direct compression
US3639168A (en) Direct compression vehicles
KR101527254B1 (en) Low-substituted hydroxypropylcellulose and solid preparation comprising the same
WO2012091072A1 (en) Skin cleanser composition
JPH032881B2 (en)
JP4698634B2 (en) Bakery mix and bakery
JP6383835B2 (en) Cellulose powder
KR20210053936A (en) Cellulose composition, cellulose molded body, and method for producing cellulose composition
JP3642147B2 (en) Dough composition
US4258179A (en) Coating agents for solid medicaments
JP3752769B2 (en) Water dispersible complex
JP5612152B1 (en) Method for producing modified starch and modified starch
JP2003009770A (en) Water-containing chocolate composition
JP3807565B2 (en) Lubricant for tablets and tablet confectionery
JPS6261041B2 (en)
JP2003501484A (en) Filler binder for tablets
JP7321148B2 (en) Dispersion composition containing carboxymethylcellulose
JP3310233B2 (en) Disintegrant for tablets
JP3056303B2 (en) Bread dough containing micronized cellulose material
JP3403471B2 (en) Castella containing micronized cellulose material
JPH0820556A (en) Production of powdered lactic acid and/or lactic acid salt