JPH03287028A - Radiation thermometer - Google Patents

Radiation thermometer

Info

Publication number
JPH03287028A
JPH03287028A JP2087505A JP8750590A JPH03287028A JP H03287028 A JPH03287028 A JP H03287028A JP 2087505 A JP2087505 A JP 2087505A JP 8750590 A JP8750590 A JP 8750590A JP H03287028 A JPH03287028 A JP H03287028A
Authority
JP
Japan
Prior art keywords
emissivity
measured
spectral
temperature
real
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2087505A
Other languages
Japanese (ja)
Inventor
Ryoichi Yoshinaga
吉永 良一
Tomio Tanaka
田中 富三男
Takashi Ohira
尚 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2087505A priority Critical patent/JPH03287028A/en
Publication of JPH03287028A publication Critical patent/JPH03287028A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To accurately measure temperature and emissivity at the same time with two spectral radiation brightness signals including information on real temperature and real emissivity by performing arithmetic processing based upon an emissivity characteristic function inherent to a body to be measured which is found previously by experimentation. CONSTITUTION:A photodetector 2 diffracts radiation brightness from the body 1 to be measured into N with >=2 different wavelength ranges and a polarizer 3 detects respective polarized components to obtain N polarized spectral radiation brightness signal sequences 4. A selecting circuit 5 selects the best combination of wavelength and polarization for the body 1 to be measured among 2N sequences, and a parameter showing the relation between two known spectral emissivity values corresponding to the two selected spectral radiation conditions and the parameter of a black body furnace calibration function showing the relation between the spectral radiation brightness signal and real temperature are inputted from an input part 6 to an arithmetic part 7. The arithmetic part 7 finds the real emissivity on the emissivity characteristic function from the relational equation inherent to the body 1 to be measured between the two corresponding spectral emissivity values according to the two selected spectral radiation brightness signals, thereby finding the real temperature at the same time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鉄や非鉄の製造プロセスにおいて放射率が変化
する物体の温度と放射率を同時に測定する放射測温装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a radiation thermometer that simultaneously measures the temperature and emissivity of an object whose emissivity changes during the manufacturing process of ferrous and non-ferrous metals.

〔従来の技術〕[Conventional technology]

従来の放射測温では、被測定物体の放射率が既知である
必要があったが、鉄や非鉄の製造プロセスにおいては、
被測定物体の放射率が変化してしまう場合があり、その
ために従来の放射温度計は十分信頼されていないのが現
状である。
Conventional radiation temperature measurement requires the emissivity of the object to be measured to be known, but in the manufacturing process of ferrous and non-ferrous metals,
At present, the emissivity of the object to be measured may change, and for this reason, conventional radiation thermometers are not sufficiently reliable.

この放射率変動問題に対処するために、種々の改善策が
提案されているがいずれも測定装置が複雑であったり、
複雑な演算を行うなど、実用化に当たって種々の制約を
うける為、その応用は極めて特殊な分野に限られている
のが現状である。
Various improvement measures have been proposed to deal with this emissivity fluctuation problem, but all of them require complicated measurement equipment,
Currently, its application is limited to very specific fields because it is subject to various constraints when put into practical use, such as the need to perform complex calculations.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一報に放射率は波長等の測定系で定義される条件と材質
などの非測定対象物体の物質的条件によって定まる。従
って測定系だけの条件を考えても波長、方向性(角度)
、偏光成分が異なる無数の放射率が定義可能であり、さ
らに測定対象の材質、処理条件、表面粗さ、酸化還元の
程度、熱履歴、温度等の影響を考慮に入れると放射率は
種々のパラメータで決まる。即ち放射率の設定は簡単に
行うことは出来ない、まして被測定物体の物質的条件の
変化によって放射率が変化する場合、放射率の設定は非
常に困難となる0本発明は上述の問題点を解決するため
に案出されたものであって、測定系で定義される条件の
うち、波長もしくは偏光成分について異なる二つの分光
放射率の関係が被測定物体の物質的条件に固有であるこ
とに着目し、予め二つの分光放射率の関係を実験的に求
めることにより真温度と真の放射率の情報を包含した二
つの分光放射輝度信号をもとにして温度と放射率を同時
に正確に知ることを目的としたものである。
Emissivity is determined by the conditions defined by the measurement system, such as the wavelength, and the material conditions of the object, such as the material. Therefore, even if we consider only the conditions of the measurement system, the wavelength, directionality (angle)
, it is possible to define an infinite number of emissivities with different polarization components, and if the effects of the material to be measured, processing conditions, surface roughness, degree of redox, thermal history, temperature, etc. are taken into account, the emissivity can be varied. Determined by parameters. In other words, it is not easy to set the emissivity, and it is extremely difficult to set the emissivity when the emissivity changes due to changes in the physical conditions of the object to be measured. Among the conditions defined in the measurement system, the relationship between two spectral emissivities that differ in terms of wavelength or polarization component is unique to the physical conditions of the object being measured. By focusing on the relationship between the two spectral emissivities and experimentally determining the relationship between the two spectral emissivities, we can accurately measure temperature and emissivity at the same time based on two spectral radiance signals that include information on true temperature and true emissivity. The purpose is to know.

〔課題を解決するための手段〕 本発明の放射温度計は、被測定物体がちの熱放射のうち
波長、測定角度のうち少なくとも一つ以上の条件が異な
る二つ以上の熱放射について検出する手段と、検出した
熱放射を二つの直線偏光成分に分離検出する手段と、得
られた複数の分光放射輝度信号から任意の異なった二つ
の分光放射条件(波長、偏光、測定角度)を選択する手
段と、該選択した二つの分光放射条件に対応する二つの
分光放射率間の被測定物体に固有な間係式を定めるパラ
メータを入力する手段と、真温度と選択した二つの分光
放射輝度信号の間の関係式を定めるパラメータを入力す
る手段と、任意に選択した二つの分光放射輝度信号をも
とにして、二つの分光放射率間の被測定物体に固有な関
係式がら、被測定物体の温度と放射率を同時に算出する
演算手段とを具備することを特徴とするものである。
[Means for Solving the Problems] The radiation thermometer of the present invention is a means for detecting two or more thermal radiations that differ from each other in at least one condition among the wavelength and the measurement angle among the thermal radiations that tend to be measured from an object to be measured. , a means for separating and detecting the detected thermal radiation into two linearly polarized components, and a means for selecting two arbitrary different spectral radiation conditions (wavelength, polarization, measurement angle) from the plurality of obtained spectral radiance signals. and a means for inputting a parameter defining a relational expression specific to the object to be measured between the two spectral emissivities corresponding to the two selected spectral radiance conditions, Based on the means for inputting parameters that determine the relational expression between the two spectral emissivities and two arbitrarily selected spectral radiance signals, the relational expression unique to the measured object between the two spectral emissivities is determined. The present invention is characterized by comprising calculation means for calculating temperature and emissivity at the same time.

0作 用〕 以下に本発明の作用を具体的に説明する。いま、互いに
異なる二つの分光放射率をEx 、EYとし、二つの分
光放射率の関係が実験的に既知であり第3図で表現でき
るとする。
0 Effect] The effect of the present invention will be specifically explained below. Let us now assume that two different spectral emissivities are Ex and EY, and that the relationship between the two spectral emissivities is experimentally known and can be expressed as shown in FIG.

この関係を材料Aの放射率間数として次の(1)式で表
現する。
This relationship is expressed as the emissivity ratio of material A by the following equation (1).

Ey = f (Ex )            (
1)添字のX、Yは波長、測定角度もしくは偏光成分の
異なる測定条件のことを表し、その組きせとして例えば
2波長型、偏光型、2波長偏光型が考えられる0本発明
の特徴は二つ以上の波長または測定角度の条件が異なる
熱放射について、それぞれ偏光成分を検出し、その中か
ら任意の組合せを選択することにより被測定物体に最適
な放射率特性間数を使って温度と放射率を求めることに
あり、以下にその過程について説明する。先ず、放射計
が黒体炉で校正されると、真温度と放射計出力の関係は
第4図に示され(2)(3)式で表現できる。
Ey = f (Ex) (
1) The subscripts X and Y represent measurement conditions with different wavelengths, measurement angles, or polarization components, and their combinations include, for example, two-wavelength type, polarization type, and two-wavelength polarization type.The features of the present invention are as follows: By detecting the polarization components of thermal radiation with different wavelengths or measurement angle conditions, and selecting an arbitrary combination from among them, temperature and radiation The purpose is to find the ratio, and the process will be explained below. First, when the radiometer is calibrated in a blackbody furnace, the relationship between the true temperature and the radiometer output is shown in FIG. 4 and can be expressed by equations (2) and (3).

即ちパラメータA、B、Cは校正によって決定される。That is, parameters A, B, and C are determined by calibration.

To ;真温度  1.x、1.Y;放射計出力C2;
放射の第二定数 A、B、C,黒体炉校正開数のパラメータE XOI 
Evo ;真の放射率 第5図は未知の真温度T。と真の放射率EX。
To; true temperature 1. x, 1. Y; Radiometer output C2;
Second radiation constants A, B, C, blackbody furnace calibration numerical parameter E XOI
Evo; true emissivity Figure 5 is unknown true temperature T. and true emissivity EX.

EYoの両者の情報を包含した放射計の出力しアt、y
を示しく4)(5’)式で表せる。
The output of the radiometer containing information on both EYo and y is
4) It can be expressed by equation (5').

Lx −Ex0’ Lb(λ、、To)      (
4)Lv =Eyo ・Lb(λY、To)     
 (5)この時点では真の温度と放射率は未知であるが
ら、仮定温度Tを与えて(2)式より見がけの放射輝度
り、’、 t、y’を求める。従って(6)、(7)式
より見かけの放射率が求められる。
Lx −Ex0' Lb(λ,,To) (
4) Lv=Eyo・Lb(λY, To)
(5) Although the true temperature and emissivity are unknown at this point, the assumed temperature T is given and the apparent radiance, ', t, y' is determined from equation (2). Therefore, the apparent emissivity can be determined from equations (6) and (7).

Lx      Lb(λX+1) 本発明の第二の特徴は予備知識としてもつ放射率特性間
数fを参照して見かけの放射率Ex 。
Lx Lb(λX+1) The second feature of the present invention is to calculate the apparent emissivity Ex with reference to the emissivity characteristic number f that is held as prior knowledge.

EYが真の放射率E XO、E y6と一致する操作を
行って解を求めることにある。これを第6図で説明する
と、見かけの放射率(E x 、 E y)は、−組の
入力信号<Lx、LY)に対して、仮定温度Tを変化さ
せたときに0曲線上を動く、一方、真の放射率がとりう
るExo y Evoはf曲線上にあるから0曲線との
交点が求める真の放射率で、そのとき仮定した温度Tは
真の温度T0となる。この0曲線とf関数曲線とは、真
の温度T。が同じでも真の放射率が異なれば、異なった
位置で交差する。
The purpose is to find a solution by performing an operation in which EY matches the true emissivity E XO, E y6. To explain this with Fig. 6, the apparent emissivity (E , On the other hand, since Exo y Evo, which the true emissivity can take, is on the f curve, the intersection with the 0 curve is the true emissivity determined, and the temperature T assumed at that time becomes the true temperature T0. The 0 curve and the f-function curve are the true temperature T. Even if they are the same, if the true emissivity is different, they will intersect at different positions.

ここで、被測定物体に最適な異なる測定条件の組合せと
は0曲線とf曲線が安定に交わることを意味する。第7
図に示すように0曲線とf曲線の傾きが近づく程、放射
率変化によって交点が不安定となり精度が悪くなる。従
って被測定物体によって異なる測定条件の組合せを最適
に選択することで常に安定した解を求めることが可能と
なる。
Here, the combination of different measurement conditions that is optimal for the object to be measured means that the 0 curve and the f curve intersect stably. 7th
As shown in the figure, as the slopes of the 0 curve and the f curve become closer, the intersection becomes unstable due to changes in emissivity, and the accuracy deteriorates. Therefore, by optimally selecting a combination of measurement conditions that differ depending on the object to be measured, it is possible to always obtain a stable solution.

このように本発明の放射温度計においては、検出器から
の複数の分光放射輝度のうち異なる測定条件の組合せを
最適に選択することにより被測定物体に最適な放射率特
性関数が得られ正確な測温が可能になる。
In this way, in the radiation thermometer of the present invention, by optimally selecting a combination of different measurement conditions among a plurality of spectral radiances from the detector, the optimal emissivity characteristic function for the object to be measured can be obtained and accurate Temperature measurement becomes possible.

〔実施例〕〔Example〕

以下、図を参照しながら実施例に基づいて本発明の特徴
を具体的に説明する。第1図は本発明の構成を示したも
ので1は被測定物体、2は光検出器で、被測定物体から
の放射輝度を二つ以上の異なる波長域でN個に分光し3
のポラライザーで検出した波長のそれぞれ偏光成分を検
出する。従って、2N個の偏光された分光放射輝度信号
列4を得る。5は得られた2N個の分光放射輝度信号の
中から、被測定物体に対して最適な二つの分光放射条件
(波長、偏光)の組合せを選択する回路である。6のパ
ラメータ入力部6.では選択した二つの分光放射条件に
対応する被測定物体に固有な既知の二つの分光放射率間
の関係を表す関係式のパラメータを入力する。一方、パ
ラメータ入力部6□では選択した二つの分光放射条件に
対応した検出器の分光放射輝度信号と真温度の関係を表
す黒体炉校正関数のパラメータ(ABC三定数)を入力
する。これらのパラメータは予め内部に記憶しておき、
分光放射条件の組合せを選択した時に自動的に置数する
ことも可能である。7の演算部では選択した二つの分光
放射輝度信号をもとにして、対応する二つの分光放射率
間の関係式である放射率特性関数上の真の放射率を求め
ることにより、同時に真の温度が求まる。
Hereinafter, the features of the present invention will be specifically explained based on examples with reference to the drawings. Fig. 1 shows the configuration of the present invention, where 1 is an object to be measured, 2 is a photodetector, and 3 is a photodetector that separates the radiance from the object to be measured into N parts in two or more different wavelength ranges.
Detects the polarization component of each wavelength detected by the polarizer. Therefore, 2N polarized spectral radiance signal sequences 4 are obtained. Reference numeral 5 denotes a circuit for selecting a combination of two spectral radiation conditions (wavelength, polarization) optimal for the object to be measured from among the obtained 2N spectral radiance signals. 6 parameter input section 6. Now, parameters of a relational expression representing the relationship between two known spectral emissivities specific to the object to be measured corresponding to the two selected spectral radiation conditions are input. On the other hand, in the parameter input section 6□, parameters (ABC three constants) of a blackbody furnace calibration function representing the relationship between the spectral radiance signal of the detector and the true temperature corresponding to the two selected spectral radiation conditions are input. These parameters are stored internally in advance,
It is also possible to automatically set the number when a combination of spectral radiation conditions is selected. In the calculation section 7, based on the two selected spectral radiance signals, the true emissivity on the emissivity characteristic function, which is the relational expression between the two corresponding spectral emissivities, is calculated, and the true emissivity is calculated at the same time. Find the temperature.

第2図に演算部の実施例を図式的に示す。入力データと
して1の被測定物体に対して最適な任意に選択した二つ
の分光放射輝度信号LX、L、と、選択した二つの分光
放射条件(波長、偏光)に対応する被測定物体に固有な
既知の二つの分光放射率間の関係を表す関係式のパラメ
ータ12と該分光放射輝度信号と真温度の関係を表す黒
体炉校正パラメータ13が必要である。パラメータ12
、13はキーボード等により入力する方法と内部に記憶
して被測定物体に最適な任意の二つの分光放射条件を選
択するとき自動的に対応するパラメータを取り出す方法
のいずれでもよい、演算は先ず14の仮定温度Tを与え
ることによって15の黒体炉校正関数により見かけの黒
体分光放射輝度信号LX’、 LY’を求めることによ
り16、17の割り算回路で見かけの放射率を18上の
ε′8.ε′アとして求める。一方、該分光放射条件に
対応する二つの分光放射率の被測定物体に固有な関係を
表す放射率特性間数19は真の放射率(ε8°、εア。
FIG. 2 schematically shows an embodiment of the calculation section. As input data, two arbitrarily selected spectral radiance signals LX, L, which are optimal for one measured object, and a signal unique to the measured object corresponding to the two selected spectral radiation conditions (wavelength, polarization) are input. A parameter 12 of a relational expression representing the relationship between two known spectral emissivities and a blackbody furnace calibration parameter 13 representing the relationship between the spectral radiance signal and true temperature are required. Parameter 12
, 13 may be input using a keyboard or the like, or stored internally and automatically retrieved when selecting any two spectral radiation conditions that are optimal for the object to be measured. By giving the assumed temperature T of 8. Find it as ε′a. On the other hand, the emissivity characteristic equation 19, which expresses the relationship unique to the measured object between the two spectral emissivities corresponding to the spectral radiation conditions, is the true emissivity (ε8°, εa).

)がとりうる組合せとして21の2次元平面内に曲線f
で示される。即ち、この曲線上に存在する真の放射率を
とりうる時の仮定温度Tが真の温度T0を示すことにな
る。従って20で仮定温度Tを変化させながら、22で
見かけの放射率が曲線f上の真の放射率と一致する仮定
温度を求めることにより真の温度T。が得られる。
) is a possible combination of curves f in 21 two-dimensional planes.
It is indicated by. That is, the assumed temperature T at which the true emissivity that exists on this curve can be taken indicates the true temperature T0. Therefore, while changing the assumed temperature T at 20, the true temperature T is determined at 22 by finding the assumed temperature at which the apparent emissivity matches the true emissivity on the curve f. is obtained.

また、第1図において、測定角度の異なる光検出器2を
複数個設けることによって、測定角度の条件が異なる分
光放射輝度信号を得ることができ、それだけ測定条件の
選択の幅が拡がる。
Further, in FIG. 1, by providing a plurality of photodetectors 2 with different measurement angles, it is possible to obtain spectral radiance signals with different measurement angle conditions, and the range of selection of measurement conditions is expanded accordingly.

〔発明の効果〕〔Effect of the invention〕

以上、述べたように本発明によれば、予め実験的に求め
た被測定物体に固有な放射率特性関数をもとに演箪を行
なうので合理的に真の温度と放射率が求められる。さら
には異なる3つの分光放射条件(測定角度、波長、偏光
〉の組合せにより被測定物体の放射率変化のプロセスに
あった最適な放射率特性間数を選択できるため精度よく
測温できる。
As described above, according to the present invention, the true temperature and emissivity can be reasonably determined because the calculation is performed based on the emissivity characteristic function unique to the object to be measured, which has been determined experimentally in advance. Furthermore, by combining three different spectral radiation conditions (measurement angle, wavelength, and polarization), it is possible to select the optimum number of emissivity characteristics that matches the emissivity change process of the object to be measured, allowing accurate temperature measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の概略の構成を示すブロック図、第2図
は実!1例を図式的に説明した図、第3図〜第7図は本
発明の詳細な説明するための図。 図において、 1・・・被測定物体、  4・・・分光放射輝度信号列
。 真温度丁0 EX 第 図 EX 185−
Fig. 1 is a block diagram showing the general configuration of the present invention, and Fig. 2 is the actual structure! A diagram schematically explaining one example, and FIGS. 3 to 7 are diagrams for explaining the present invention in detail. In the figure, 1... object to be measured, 4... spectral radiance signal sequence. True temperature 0 EX Diagram EX 185-

Claims (1)

【特許請求の範囲】[Claims] 1、被測定物体からの熱放射のうち波長、測定角度のう
ち少なくとも一つ以上の条件が異なる二つ以上の熱放射
について検出する手段と、検出した熱放射を二つの直線
偏光成分に分離検出する手段と、得られた複数の分光放
射輝度信号から任意の異なった二つの分光放射条件(波
長、偏光、測定角度)を選択する手段と、該選択した二
つの分光放射条件に対応する二つの分光放射率間の被測
定物体に固有な関係式を定めるパラメータを入力する手
段と、真温度と選択した二つの分光放射輝度信号の間の
関係式を定めるパラメータを入力する手段と、任意に選
択した二つの分光放射輝度信号をもとにして、二つの分
光放射率間の被測定物体に固有な関係式から、被測定物
体の温度と放射率を同時に算出する演算手段とを具備す
ることを特徴とする放射温度計。
1. Means for detecting two or more thermal radiations from an object to be measured that differ in at least one condition among wavelength and measurement angle, and separating and detecting the detected thermal radiation into two linearly polarized components. means for selecting any two different spectral radiation conditions (wavelength, polarization, measurement angle) from the plurality of obtained spectral radiance signals; A means for inputting parameters defining a relational expression specific to the object to be measured between the spectral emissivity and a means for inputting parameters defining a relational expression between the true temperature and the two selected spectral radiance signals; and calculation means for simultaneously calculating the temperature and emissivity of the object to be measured from a relational expression specific to the object to be measured between the two spectral emissivities based on the two spectral radiance signals obtained. A characteristic radiation thermometer.
JP2087505A 1990-04-03 1990-04-03 Radiation thermometer Pending JPH03287028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2087505A JPH03287028A (en) 1990-04-03 1990-04-03 Radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2087505A JPH03287028A (en) 1990-04-03 1990-04-03 Radiation thermometer

Publications (1)

Publication Number Publication Date
JPH03287028A true JPH03287028A (en) 1991-12-17

Family

ID=13916842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2087505A Pending JPH03287028A (en) 1990-04-03 1990-04-03 Radiation thermometer

Country Status (1)

Country Link
JP (1) JPH03287028A (en)

Similar Documents

Publication Publication Date Title
JPH0285730A (en) Method for measuring temperature of object with changing surface state by radiation
US5868496A (en) Non-contact surface temperature, emissivity, and area estimation
US6016190A (en) Method and apparatus for true temperature determination
US5690429A (en) Method and apparatus for emissivity independent self-calibrating of a multiwavelength pyrometer
US5314249A (en) Surface condition measurement apparatus
IL122258A (en) Method and system for determining temperature and/or emissivity function of objects by remote sensing
RU2083961C1 (en) Method of measurement of temperature and emissivity of surface
Sade et al. Spectral emissivity and temperature measurements of selective bodies using multiband fiber-optic radiometry
JPH03287028A (en) Radiation thermometer
JPH03287031A (en) Spectral emissivity measuring instrument
JPH03287029A (en) Scanning type radiation thermometer
KR0159954B1 (en) Surface condition measurement apparatus
JPH03287030A (en) Optical fiber radiation thermometer
Dai et al. Peak-wavelength method for temperature measurement
JPS6215424A (en) Object temperature measuring method utilizing radiation
JPH0510822A (en) Radiation temperature measuring instrument
JPH0933353A (en) Method for measuring radiation temperature and temperature measuring device therefor
RU2421695C2 (en) Method for noncontact measurement of thermal characteristics of moving object
JPH04355308A (en) Multilayer film thickness measuring device
JPH03287025A (en) Method and device for measurement of temperature and emissivity of body and circumferential temperature
JPH05164615A (en) Radiation-temperature measuring apparatus
JPH05164616A (en) Multiple-wavelength type radiation thermometer
JPS5932898Y2 (en) multicolor radiation thermometer
JPS5834769B2 (en) Housiyaondokei
JPH04361125A (en) Measuring apparatus of radiation temperature based on two spectral radiation detection signals