JPS5932898Y2 - multicolor radiation thermometer - Google Patents

multicolor radiation thermometer

Info

Publication number
JPS5932898Y2
JPS5932898Y2 JP16672676U JP16672676U JPS5932898Y2 JP S5932898 Y2 JPS5932898 Y2 JP S5932898Y2 JP 16672676 U JP16672676 U JP 16672676U JP 16672676 U JP16672676 U JP 16672676U JP S5932898 Y2 JPS5932898 Y2 JP S5932898Y2
Authority
JP
Japan
Prior art keywords
radiation
measured
radiation thermometer
temperature
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16672676U
Other languages
Japanese (ja)
Other versions
JPS5384381U (en
Inventor
晋 服部
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP16672676U priority Critical patent/JPS5932898Y2/en
Publication of JPS5384381U publication Critical patent/JPS5384381U/ja
Application granted granted Critical
Publication of JPS5932898Y2 publication Critical patent/JPS5932898Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Description

【考案の詳細な説明】 これまでの放射温度計では、被画定物が非黒体の場合に
は、被測定物のその状態における表面の放射率が既知で
なければ、表面温度を求めることができない。
[Detailed explanation of the invention] With conventional radiation thermometers, when the object to be measured is a non-black body, the surface temperature cannot be determined unless the emissivity of the surface of the object in that state is known. Can not.

したがって、このような放射温度計では、表面に酸化物
などが介在し、しかも、その介在物の占める割合が時間
的に変化する場合は、表面の平均放射率も共に変化する
ので、表面温度の測定が不可能になっていた。
Therefore, in such a radiation thermometer, if oxides etc. are present on the surface, and the proportion of these inclusions changes over time, the average emissivity of the surface will also change, so the surface temperature will change. measurement was no longer possible.

本考案は、このような状態においても、表面温度が測定
しうるようにした放射温度計に関するものである。
The present invention relates to a radiation thermometer that can measure surface temperature even under such conditions.

この多色放射温度計は、レンズまたは凹面鏡で構成した
対物系1、プリズムまたは回折格子あるいはフィルタで
構成した分光器2、複数個の放射検出素子またはホトダ
イオードアレーなどの複合検出素子で構成した放射検出
器3で、図1のように構成する。
This polychromatic radiation thermometer consists of an objective system 1 made up of a lens or a concave mirror, a spectrometer 2 made up of a prism, a diffraction grating, or a filter, and a radiation detection device made up of a composite detection element such as a plurality of radiation detection elements or a photodiode array. The container 3 is configured as shown in FIG.

この図1の構成では、被測定物4からの放射は、対物系
1によって分光器2の入射スリット面に結像して、分光
器2で2波長又はそれ以上の波長帯域の放射に分光され
、放射検出器3の各々の検出素子に波長帯域の異なる放
射が入射する。
In the configuration shown in FIG. 1, the radiation from the object to be measured 4 is imaged by the objective system 1 on the entrance slit surface of the spectrometer 2, and the spectrometer 2 separates the radiation into radiation in two or more wavelength bands. , radiation having different wavelength bands is incident on each detection element of the radiation detector 3.

この多色放射温度計では、このようにして得られた各々
の検出素子出力を増巾し、分光された各々の波長での、
被測定物の分光放射輝度に比例した信号を得る。
In this polychromatic radiation thermometer, the output of each detection element obtained in this way is amplified, and the output of each detected element is amplified.
Obtain a signal proportional to the spectral radiance of the object to be measured.

各波長での分光放射輝度は、放射温度計校正用の黒体炉
などで校正でき、この校正値と測定した分光放射輝度と
を比較すれば、被測定物4のその波長での輝度温度が求
まる。
The spectral radiance at each wavelength can be calibrated using a blackbody furnace for radiation thermometer calibration, and by comparing this calibration value with the measured spectral radiance, the brightness temperature of the measured object 4 at that wavelength can be determined. Seek.

被測定物4の表面温度は、この各波長での輝度温度と、
表面に存在する各成分の放射率とから算出する。
The surface temperature of the object to be measured 4 is determined by the brightness temperature at each wavelength,
It is calculated from the emissivity of each component present on the surface.

次に、介在物が1成分の場合を例にして、その測定原理
を説明する。
Next, the measurement principle will be explained using the case where the inclusion is one component as an example.

表面の介在物が1成分の被測定物では、2つの波長λ7
.λ2に幻するその表面の分光放射輝度L(λ1)、L
(λ2)は (AE11+BE1□)P(λ0.T)−L(λ1)
(1)(AE21 + BE22 ) P (λ2.T
)−L(λ2)(2)A=1−B
(3)となる。
For a measured object with one component of inclusions on the surface, two wavelengths λ7
.. The spectral radiance L(λ1) of the surface appearing at λ2, L
(λ2) is (AE11+BE1□)P(λ0.T)-L(λ1)
(1) (AE21 + BE22) P (λ2.T
)-L(λ2)(2)A=1-B
(3) becomes.

ここでEllおよびE2□は被測定物の介在物が除去さ
れた状態におけるλ1とλ2の波長に対する放射率、E
1□およびE22は介在物のλ1とλ2の波長に列する
放射率、P(λ1.T)およびP(λ2.T)は温度T
の黒体のλ1とλ2の波長に列する分光放射輝度、Bは
介在物の占める面積の割合である。
Here, Ell and E2□ are the emissivities for wavelengths λ1 and λ2 in the state where inclusions are removed from the object to be measured, and E
1□ and E22 are the emissivities aligned with the wavelengths λ1 and λ2 of the inclusion, P(λ1.T) and P(λ2.T) are the temperature T
The spectral radiance aligned with the wavelengths λ1 and λ2 of a black body, B is the area ratio occupied by inclusions.

分光放射輝度と輝度温度との関係は L(λ1)−P(λ1.S1) (4)L
(λ2 ) −p (λ2.S2) ただし、SlおよびS2は、λ1と 被測定物の輝度温度 P(λ、T)はウィーンの式から (5) λ2の波長での P(λ、T) C1λ−”exp( 2 耳) C2= 0.014388 tn ’ Kで表わされる
ので、(1) 、 (2) 、 (3)式からA、Bを
消去し、(4) 、 (5) 、 (6)式を代入すれ
ば、または が得られる。
The relationship between spectral radiance and brightness temperature is L(λ1)-P(λ1.S1) (4)L
(λ2) -p (λ2.S2) However, Sl and S2 are λ1 and the brightness temperature of the object to be measured P(λ, T) is calculated from the Wien equation (5) P(λ, T) at the wavelength of λ2 Since it is expressed as C1λ−”exp(2 ears) C2=0.014388 tn′ K, we can eliminate A and B from equations (1), (2), and (3), and obtain (4), (5), ( 6) By substituting the expression, or is obtained.

(7)および(8)式は、Ell 1 Ej21 E2
11 E22が前もって測定されていて既知であれば、
表面の真温度Tが、輝度温度81 + 82のみの関数
T=F(Sl、S2) (9)で求まる
ことを表わしている。
Equations (7) and (8) are Ell 1 Ej21 E2
11 If E22 has been measured in advance and is known, then
This shows that the true temperature T of the surface is determined by the function T=F(Sl, S2) (9) of only the brightness temperature 81 + 82.

したがって、放射温度計を前もって校正して、各々の放
射検出器出力と各波長での輝度温度との関係を求めてお
けば、介在物の割合に関係なく表面温度Tが算出できる
Therefore, by calibrating the radiation thermometer in advance and determining the relationship between the output of each radiation detector and the brightness temperature at each wavelength, the surface temperature T can be calculated regardless of the proportion of inclusions.

この多色放射温度計では、放射率El 1 、 Et
2(+1または2)の差が小さい波長帯域λiと、Ej
In this polychromatic radiation thermometer, the emissivity El 1 , Et
2 (+1 or 2) wavelength band λi and Ej
.

Ej2(J’=2または1)の差が大きい波長帯域λj
(i\j)とを適当に選んで測定すれば、表面温度Tを
精度よく求めることができる。
Wavelength band λj where the difference in Ej2 (J'=2 or 1) is large
By appropriately selecting and measuring (i\j), the surface temperature T can be determined with high accuracy.

Tの値は、Sl、S2の実測値から表などを利用すれば
容易に求まり、演算回路6を附加すれば、直読もできる
The value of T can be easily determined from the measured values of Sl and S2 by using a table or the like, and can also be directly read by adding an arithmetic circuit 6.

この多色放射温度計は、介在物が2成分の被測定物の場
合は、3つの波長でそれぞれの波長に刻する輝度温度8
1 + S2 + S3を測定すれば、真温度Tは、(
9)式を導いたと同様にしてSl、S2.S3の関数で
表わすことができ T=F(Sl、 S2. S3) (10)
それから真温度Tが算出できる。
This multicolor radiation thermometer uses three wavelengths to inscribe a brightness temperature of 8 for each wavelength in the case of a measured object with two components.
1 + S2 + S3, the true temperature T is (
9) In the same manner as the equation was derived, Sl, S2. It can be expressed as a function of S3: T=F(Sl, S2.S3) (10)
Then, the true temperature T can be calculated.

同様にして、介在物がn成分のときは、(n+1)色の
輝度温度S1.S2.・・・・・・、Sn、Sn+1の
測定から、原理的には次式で T=F(S、、82.・−・−8n、Sn+1)
(]υ真温度Tが求まる。
Similarly, when the inclusion is n component, the brightness temperature S1 of the (n+1) color. S2. ......, from the measurement of Sn, Sn+1, in principle T=F(S,, 82..--8n, Sn+1) using the following formula.
(]υTrue temperature T is found.

実際の測定では、介在物が3成分以上では、真温度Tの
計算値は測定誤差に大きく影響される。
In actual measurements, when there are three or more components of inclusions, the calculated value of the true temperature T is greatly influenced by measurement errors.

しかし、この場合でも、 T1=F(S、 、 S2. S3) (
1,2)T、、=F (S2. S3. S4)
(1,3)T3=F(S3. S4. Sl)
(14)T4 = F (S4 、81
、S2 ) (15)のように、4色の
輝度温度81 、 S2 、 S3 + S4を組み合
わせて真温度T1.T2.T3.T4を計算して比較す
ると、3番目以後の成分の有無などが判定できて、低頻
度で混入する異物などによって生ずる異常値を除くこと
ができる。
However, even in this case, T1=F(S, , S2. S3) (
1,2)T,,=F (S2.S3.S4)
(1,3)T3=F(S3.S4.Sl)
(14) T4 = F (S4, 81
, S2 ) As shown in (15), the brightness temperatures 81 , S2 , S3 + S4 of the four colors are combined to obtain the true temperature T1. T2. T3. By calculating and comparing T4, it is possible to determine the presence or absence of the third and subsequent components, and it is possible to remove abnormal values caused by foreign substances that are mixed in at a low frequency.

【図面の簡単な説明】[Brief explanation of drawings]

図1は本考案の多色放射温度計の構成図である。 図1中の1は対物系、2は分光器、3は複数個の放射検
出素子で構成した放射検出器である。
FIG. 1 is a block diagram of the multicolor radiation thermometer of the present invention. In FIG. 1, 1 is an objective system, 2 is a spectroscope, and 3 is a radiation detector composed of a plurality of radiation detection elements.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 被測定物からの放射を2つの波長帯域又はそれ以上の波
長帯域に分光する分光器とその分光された2色又はそれ
以上の多色の各々の放射輝度を検出する2個以上の放射
検出素子で構成した放射検出器とを備え、各検出素子で
検出した分光放射輝度の信号に基づいて介在物の割合を
算出することによって、その割合が変化する被測定物の
表面温度を測定することを特徴とする多色放射温度計。
A spectrometer that separates radiation from an object to be measured into two or more wavelength bands, and two or more radiation detection elements that detect the radiance of each of the separated two or more colors. By calculating the proportion of inclusions based on the spectral radiance signal detected by each detection element, it is possible to measure the surface temperature of the object to be measured as the proportion changes. Features a multicolor radiation thermometer.
JP16672676U 1976-12-14 1976-12-14 multicolor radiation thermometer Expired JPS5932898Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16672676U JPS5932898Y2 (en) 1976-12-14 1976-12-14 multicolor radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16672676U JPS5932898Y2 (en) 1976-12-14 1976-12-14 multicolor radiation thermometer

Publications (2)

Publication Number Publication Date
JPS5384381U JPS5384381U (en) 1978-07-12
JPS5932898Y2 true JPS5932898Y2 (en) 1984-09-14

Family

ID=28774452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16672676U Expired JPS5932898Y2 (en) 1976-12-14 1976-12-14 multicolor radiation thermometer

Country Status (1)

Country Link
JP (1) JPS5932898Y2 (en)

Also Published As

Publication number Publication date
JPS5384381U (en) 1978-07-12

Similar Documents

Publication Publication Date Title
JPS5932898Y2 (en) multicolor radiation thermometer
KR20040010172A (en) Emissivity distribution measuring method and apparatus
JPH0464417B2 (en)
JPH0882598A (en) Moisture meter
JPS6058412B2 (en) radiation thermometer
JPS55144513A (en) Measuring method of emissivity
KR930010542A (en) Surface condition measuring device
JPH04355308A (en) Multilayer film thickness measuring device
JPS6119925B2 (en)
JPS6135493B2 (en)
JPH0510822A (en) Radiation temperature measuring instrument
JPS5939692B2 (en) two color thermometer
JPH0464016B2 (en)
JPH0462013B2 (en)
JPH0462009B2 (en)
JPH0531732B2 (en)
JPS63234125A (en) Optical temperature measuring instrument
JPS6057225A (en) Radiation thermometer
JPS6058411B2 (en) radiation thermometer
JPS61209340A (en) Optical measuring apparatus
JPS6130727A (en) Method for measuring temperature of object and radiation thermometer using the same
JPS63243822A (en) Data processing method for array type detector
JPH03287031A (en) Spectral emissivity measuring instrument
JPS59226836A (en) Radiation thermometer
JPH04361125A (en) Measuring apparatus of radiation temperature based on two spectral radiation detection signals