JPS6135493B2 - - Google Patents

Info

Publication number
JPS6135493B2
JPS6135493B2 JP3492680A JP3492680A JPS6135493B2 JP S6135493 B2 JPS6135493 B2 JP S6135493B2 JP 3492680 A JP3492680 A JP 3492680A JP 3492680 A JP3492680 A JP 3492680A JP S6135493 B2 JPS6135493 B2 JP S6135493B2
Authority
JP
Japan
Prior art keywords
temperature
ratio
spectral radiant
radiant energy
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3492680A
Other languages
Japanese (ja)
Other versions
JPS56130624A (en
Inventor
Toshihiko Ide
Toshifusa Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Works Ltd filed Critical Chino Works Ltd
Priority to JP3492680A priority Critical patent/JPS56130624A/en
Publication of JPS56130624A publication Critical patent/JPS56130624A/en
Publication of JPS6135493B2 publication Critical patent/JPS6135493B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 この発明は、被測定対象からの放射エネルギー
を利用して被測定対象の温度を測定する放射温度
測定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radiation temperature measuring method for measuring the temperature of an object to be measured using radiant energy from the object.

従来、放射温度計には、被測定対象の物体から
の放射エネルギー量より物体温度を求める単色温
度計、異なる2波長の分光放射エネルギーの比よ
り物体温度を求める2色温度計があつた。ところ
が物体には固有の放射率があるため、単色温度計
では黒体、2色温度計では波長に対する放射率の
比が一定である灰色体のみ正しい温度が測定でき
るだけで、一般の物体の真温度を測定することは
困難であつた。
Conventionally, radiation thermometers include monochromatic thermometers that determine the object temperature from the amount of radiant energy from the object to be measured, and two-color thermometers that determine the object temperature from the ratio of spectral radiant energy of two different wavelengths. However, since objects have their own emissivity, a monochrome thermometer can only measure the correct temperature of a black body, and a two-color thermometer can only measure the correct temperature of a gray body, which has a constant ratio of emissivity to wavelength. It was difficult to measure.

この発明の目的は、以上の点に鑑み、一般の物
体においても放射率の影響を除去し、物体の表面
温度を測定できる放射温度測定方法を提供するこ
とである。
In view of the above points, it is an object of the present invention to provide a radiation temperature measuring method that can measure the surface temperature of a general object while eliminating the influence of emissivity.

この発明の原理は以下のようである。 The principle of this invention is as follows.

求める真温度をTとし、選択された3波長λ
,λ,λに対する分光放射エネルギーを
E1(λ,T),E2(λ,T),E3(λ
T)とする。
Let the desired true temperature be T, and the selected three wavelengths λ
The spectral radiant energy for 1 , λ 2 , λ 3 is
E 11 , T), E 22 , T), E 33 ,
T).

黒体条件では、例えば波長λ,λにするエ
ネルギーの比率R12は、 R12=E(λ,T)/E(λ,T) …(1) となり、λ,λは既知であるから、(1)式をT
について解いて真温度が、 T=f12(R12) …(2) として求まる。これが通常の2色温度計である。
Under the blackbody condition, for example, the ratio R 12 of energy for wavelengths λ 1 and λ 2 is R 12 = E 11 , T)/E 22 , T) (1), and λ 1 , Since λ 2 is known, equation (1) can be reduced to T
The true temperature can be found as T=f 12 (R 12 )...(2). This is a normal two-color thermometer.

ところが、一般には、物体の種類、条件、波長
等により放射率を異にし、波長λ,λ,λ
に対する放射率をε,ε,εとすれば、(1)
式は、 R12′=ε・E(λ,T)/ε・E(λ
,T)…(3) となる。これより求まる温度T12は、 T12=f12(R12′) …(4) となり、ε=εのときのみT=T12と正しい
温度を示し、ε≠εでは誤差を生じる。
However, in general, the emissivity varies depending on the type of object, conditions, wavelength, etc., and wavelengths λ 1 , λ 2 , λ 3
If the emissivity for each is ε 1 , ε 2 , ε 3 , then (1)
The formula is R 12 ′=ε 1・E 11 ,T)/ε 2・E 2
2
, T)…(3). The temperature T 12 found from this becomes T 12 = f 12 (R 12 ′) ...(4), and only when ε 1 = ε 2 , T = T 12 , which is the correct temperature, and when ε 1 ≠ ε 2 , the error is eliminated. arise.

〓〓〓〓
常に真温度を求める為に、この発明は次のよう
にする。
〓〓〓〓
In order to always obtain the true temperature, this invention is performed as follows.

波長λ,λに対する比率は、 R23′=ε・E(λ・T)/ε・E(λ
,T)…(5) となり、これより求まる温度T23は、 T23=f23(R23′) …(6) となる。
The ratio for the wavelengths λ 2 and λ 3 is R 23 ′=ε 2・E 22・T)/ε 3・E 3
3
, T)...(5), and the temperature T23 found from this is T23 = f23 ( R23 ')...(6).

(4),(6)式より求まる温度は、それぞれ、真温度
Tより所定の誤差△T12,△T23をもつている。
この誤差を解消して真温度Tを求めるため次の演
算を行う。
The temperatures determined from equations (4) and (6) have predetermined errors ΔT 12 and ΔT 23 from the true temperature T, respectively.
In order to eliminate this error and obtain the true temperature T, the following calculation is performed.

T123=T12+α(T12−T23) …(7) T12=T+△T12,T23=T+△T23を代入する
と次のようになる。
T 123 = T 12 + α (T 12 - T 23 )...(7) Substituting T 12 = T + ΔT 12 and T 23 = T + ΔT 23 results in the following.

T123=(T+△T12)+α(△T12−△T23) …(8) つまり、T12,T23の差の誤差分(△T12−△
T23)と、T12の真温度Tに対する誤差分△T12
が相殺されるようαを求めればよい。つまり、 △T12+α(△T12−△T23)=〇 …(9) の条件から α=−△T12/△T12−△T23 …(10) とすれば(8)式は T123=T …(11) となり、常に真温度を示すことになる。なお(7)式
を変形して次のような演算をしてもよい。
T 123 = (T + △T 12 ) + α (△T 12 − △T 23 ) …(8) In other words, the error of the difference between T 12 and T 23 (△T 12 − △
α should be determined so that T 23 ) and the error ΔT 12 of T 12 with respect to the true temperature T are canceled out. In other words, if we set α=−△T 12 /△T 12 −△T 23 …(10) from the condition of △T 12 + α (△T 12 −△T 23 )=〇 …(9), equation (8) becomes T 123 =T (11), which always indicates the true temperature. Note that the following calculation may be performed by modifying equation (7).

T123=(1+α)T12−αT23 …(12) 次に、この発明の一実施例を第1図について説
明する。被測定対象1からの放射エネルギーは、
集光レンズ2により集光され、フイルタの載置さ
れた回転セクタ、回折格子等よりなる分光器3に
より3つの波長λ,λ,λについての分光
放射エネルギーが選択透過され、検出器4に入射
され電気信号に変換される。この検出器4の出力
信号は増幅器5により増幅され、分光器3の同期
信号により前記選択波長毎の信号ε1E1,ε2E2
ε3E3が取り出される。この信号分離器6の第
1、第2の分光放射エネルギーε1E1,ε2E2は第
1の割算器71により比率演算されて前記(3)式の
R12′が得られ、又、第2、第3の分光放射エネル
ギーε2E2,ε,E3は第2の割算器72により
比率演算されて前記(5)式のR23′が得られ、演算器
81,82にてそれぞれ前記(4),(6)式のT12=f12
(R12′),T23=f23(R23′)の演算を行い温度信号
T12,T23とされ、加減算器9にて、前記(7)式の
加減算処理され、前記(11)式の真温度信号T123
(=T)が出力端子10より得られる。なお加減
算器9は演算増幅器を用いて容易に構成でき、
又、マイクロコンピユータを用いたデイジタル演
算処理を行つてもよい。
T 123 =(1+α)T 12 −αT 23 (12) Next, an embodiment of the present invention will be described with reference to FIG. The radiant energy from the measured object 1 is
The light is focused by a condenser lens 2, and the spectral radiant energy of three wavelengths λ 1 , λ 2 , λ 3 is selectively transmitted through a spectrometer 3 consisting of a rotating sector on which a filter is mounted, a diffraction grating, etc., and is transmitted to a detector. 4 and is converted into an electrical signal. The output signal of this detector 4 is amplified by an amplifier 5, and the synchronization signal of the spectrometer 3 generates the signals ε 1 E 1 , ε 2 E 2 ,
ε 3 E 3 is taken out. The first and second spectral radiant energies ε 1 E 1 , ε 2 E 2 of the signal separator 6 are subjected to a ratio calculation by the first divider 71 to obtain the equation (3) above.
R 12 ′ is obtained, and the second and third spectral radiant energies ε 2 E 2 , ε 3 , and E 3 are ratio-calculated by the second divider 72 to obtain R 23 ′ in the above equation (5). are obtained, and the calculation units 81 and 82 calculate T 12 = f 12 in the above equations (4) and (6), respectively.
(R 12 ′), T 23 = f 23 (R 23 ′) and calculate the temperature signal.
T 12 and T 23 are added and subtracted by the above equation (7) in the adder/subtractor 9, and the true temperature signal T 123 is obtained from the above equation (11).
(=T) is obtained from the output terminal 10. Note that the adder/subtracter 9 can be easily configured using an operational amplifier.
Alternatively, digital calculation processing may be performed using a microcomputer.

例えば波長λ=1.75μm、λ=2.05μm、
λ=2.35μmとし、T123=T12+2.5(T12
T23)とすれば、第2図に示すように、この方式
では2色方式に比較し各温度について真値に対す
る誤差は約1/10以下の極めて高精度なものとな
る。なお、図中r12,r23は放射比率(ε/ε
,ε/ε)を表わす。
For example, wavelength λ 1 = 1.75 μm, λ 2 = 2.05 μm,
λ 3 = 2.35 μm, T 123 = T 12 + 2.5 (T 12
T 23 ), as shown in FIG. 2, this method has extremely high accuracy with an error of less than about 1/10 of the true value for each temperature compared to the two-color method. In addition, r 12 and r 23 in the figure are the radiation ratio (ε 1
2 , ε 23 ).

以上述べたように、この発明は被測定対象の3
つの分光放射エネルギーの比率の加減算を行い被
測定対象の温度を測定するようにした放射温度測
定方法である。
As mentioned above, this invention can be applied to three types of objects to be measured.
This is a radiation temperature measurement method that measures the temperature of an object by adding and subtracting the ratio of two spectral radiant energies.

従つて、従来の放射温度計の最大の弱点であつ
た放射率の影響を除去することができ高精度な測
定が常時可能となる。又、使用方法は従来の放射
温度計と変らず容易で、保守点検も容易でオンラ
イン測定に好適で、種々の物体の温度測定、広い
用途に適用することができる。又、放射率も演算
の上容易に求めることができる。
Therefore, the influence of emissivity, which was the greatest weakness of conventional radiation thermometers, can be eliminated, and highly accurate measurements are always possible. In addition, it is as easy to use as a conventional radiation thermometer, easy to maintain and inspect, suitable for on-line measurement, and can be applied to temperature measurements of various objects and a wide range of applications. Further, the emissivity can also be easily determined through calculation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例を示すブロツク
構成図、第2図は、温度と誤差の関係を示す説明
図である。 1…被測定対象、2…集光レンズ、3…分光
器、4…検出器、5…増幅器、6…信号分離器、
71,72…割算器、81,82…演算器、9…
加減算器。 〓〓〓〓
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing the relationship between temperature and error. 1... Object to be measured, 2... Condensing lens, 3... Spectrometer, 4... Detector, 5... Amplifier, 6... Signal separator,
71, 72...Divider, 81, 82...Arithmetic unit, 9...
Adder/subtractor. 〓〓〓〓

Claims (1)

【特許請求の範囲】 1 被測定対象からの放射エネルギーのうち、3
つ以上の波長に対応した分光放射エネルギーを選
択して電気信号に変換し、これら選択された分光
放射エネルギーの比率の加減算を行い被測定対象
の温度を測定することを特徴とする放射温度測定
方法。 2 第1又は第2の分光放射エネルギーの比率に
対し、第1および第2の分光放射エネルギーの比
率の差に定数倍して加算または減算するようにし
たことを特徴とする特許請求の範囲第1項記載の
放射温度測定方法。
[Claims] 1. Of the radiant energy from the object to be measured, 3
A radiation temperature measurement method characterized by selecting spectral radiant energy corresponding to three or more wavelengths, converting it into an electrical signal, and adding or subtracting the ratio of these selected spectral radiant energies to measure the temperature of the object to be measured. . 2. The claim 1 is characterized in that the ratio of the first or second spectral radiant energy is added or subtracted by multiplying the difference in the ratio of the first and second spectral radiant energies by a constant. The radiation temperature measurement method according to item 1.
JP3492680A 1980-03-19 1980-03-19 Radiation thermometer Granted JPS56130624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3492680A JPS56130624A (en) 1980-03-19 1980-03-19 Radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3492680A JPS56130624A (en) 1980-03-19 1980-03-19 Radiation thermometer

Publications (2)

Publication Number Publication Date
JPS56130624A JPS56130624A (en) 1981-10-13
JPS6135493B2 true JPS6135493B2 (en) 1986-08-13

Family

ID=12427799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3492680A Granted JPS56130624A (en) 1980-03-19 1980-03-19 Radiation thermometer

Country Status (1)

Country Link
JP (1) JPS56130624A (en)

Also Published As

Publication number Publication date
JPS56130624A (en) 1981-10-13

Similar Documents

Publication Publication Date Title
US3777568A (en) D. c. electronic apparatus for ir radiation temperature measurement
Coates Multi-wavelength pyrometry
US4659234A (en) Emissivity error correcting method for radiation thermometer
US6016190A (en) Method and apparatus for true temperature determination
US3492869A (en) Means of measuring surface temperature by reflection
US5690429A (en) Method and apparatus for emissivity independent self-calibrating of a multiwavelength pyrometer
RU2083961C1 (en) Method of measurement of temperature and emissivity of surface
JPS6135493B2 (en)
JPH0464417B2 (en)
JPS6058412B2 (en) radiation thermometer
JPH034855B2 (en)
JP3293470B2 (en) Radiation thermometer
KR0133637B1 (en) Calibration method for light measuring device and radiation
JPH0462012B2 (en)
JPS5932898Y2 (en) multicolor radiation thermometer
JP2632086B2 (en) Radiation thermometry and radiation thermometer used for the temperature measurement
JPS6111369B2 (en)
GB2113384A (en) Contactless measurement of temperature
JPS6215424A (en) Object temperature measuring method utilizing radiation
JPS6058411B2 (en) radiation thermometer
JPH0462013B2 (en)
JPH06307939A (en) Radiation thermometer
JPH0462009B2 (en)
JPS629238A (en) Method and device for estimating emissivity and radiation temperature
JPH0462010B2 (en)