JPH03287030A - Optical fiber radiation thermometer - Google Patents

Optical fiber radiation thermometer

Info

Publication number
JPH03287030A
JPH03287030A JP2087507A JP8750790A JPH03287030A JP H03287030 A JPH03287030 A JP H03287030A JP 2087507 A JP2087507 A JP 2087507A JP 8750790 A JP8750790 A JP 8750790A JP H03287030 A JPH03287030 A JP H03287030A
Authority
JP
Japan
Prior art keywords
emissivity
measured
spectral
temperature
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2087507A
Other languages
Japanese (ja)
Inventor
Ryoichi Yoshinaga
吉永 良一
Tomio Tanaka
田中 富三男
Takashi Ohira
尚 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2087507A priority Critical patent/JPH03287030A/en
Publication of JPH03287030A publication Critical patent/JPH03287030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To secure the optical path to a body to be measured even in a narrow place and a place where measurement environment is inferior and to accurately measure the temperature and emissivity at the same time by transmitting two spectral radiation brightness signals which differ in conditions from the body to be measured to a photodetector by using an optical fiber. CONSTITUTION:The optical fiber 2 transmits the radiation brightness from the body 1 to be measured to the detector 3. The best spectral radiation conditions (wavelength and polarization) for the body 1 to be measured can be selected by the detector 3 and two spectral radiation conditions are easily obtained. A parameter input part 41 inputs the parameter of the relational equation between two known spectral emissivity values which correspond to the two selected spectral radiation conditions and are characteristic to the body to be measured to an arithmetic part 5 and a parameter input part 42 inputs the parameter of a black body furnace calibration function showing the relation between the spectral radiation brightness signal of the detector 3 and real temperature to the arithmetic part 5. The arithmetic part 5 finds the real emissivity on the emissivity function which is the function between the two corresponding spectral emissivity values from the two spectral radiation brightness signals to find the real temperature at the same time.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は鉄や非鉄の製造プロセスにおいて放射率が変化
する物体の温度と放射率を光ファイバを用いて同時に測
定する光フアイバ放射測温装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is an optical fiber radiation temperature measurement device that simultaneously measures the temperature and emissivity of an object whose emissivity changes during the manufacturing process of ferrous and non-ferrous metals using an optical fiber. Regarding.

〔従来の技術〕[Conventional technology]

従来の放射測温では、被測定物体の放射率が既知である
必要があったが、鉄や非鉄の製造プロセスにおいては、
被測定物体の放射率が変化してしまう場合があり、その
ために従来の放射温度計は十分信頼されていないのが現
状である。しかも測定環境が悪く、狭い場所では正確な
測温は期待できない。これらの問題に対処するために、
種々の改善策が提案されているが、いずれも実際の放射
率変化に対して根本的な解決手段となっていない。
Conventional radiation temperature measurement requires the emissivity of the object to be measured to be known, but in the manufacturing process of ferrous and non-ferrous metals,
At present, the emissivity of the object to be measured may change, and for this reason, conventional radiation thermometers are not sufficiently reliable. Moreover, the measurement environment is poor, and accurate temperature measurements cannot be expected in small spaces. To address these issues,
Various improvement measures have been proposed, but none of them provide a fundamental solution to the actual emissivity change.

例えば、2色温度計は2つの分光放射率間の比が一定で
あるという仮定のもとでしか有効でない。
For example, a two-color thermometer is only valid under the assumption that the ratio between the two spectral emissivities is constant.

さらに参照放射源を使って被測定物体表面での鏡面反射
効果を利用する方法(特許第1368788号〉がある
が被測定物体表面の粗さが変化するという懸念がある。
Furthermore, there is a method (Japanese Patent No. 1,368,788) that utilizes a specular reflection effect on the surface of the object to be measured using a reference radiation source, but there is a concern that the roughness of the surface of the object to be measured changes.

従って正確な測定が困難であることが多い。Therefore, accurate measurements are often difficult.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一般に放射率は波長等の測定系で定義される条件と材質
などの非測定対象物体の物質的条件によって定まる。従
って測定系だけの条件を考えても波長、方向性(角度)
、偏光成分が異なる無数の放射率が定義可能であり、さ
らに測定対象の材質、処理条件、表面粗さ、酸化還元の
程度、熱履歴、温度等の影響を考慮に入れると放射率は
種々のパラメータで決まる。即ち放射率の設定は簡単に
行うことは出来ない。まして被測定物体の物質的条件の
変化によって放射率が変化する場合、放射率の設定は非
常に困難となる。また、狭い場所や測定環境が悪い場所
では通常のレンズ系では被測定対象物との光路が確保出
来ない。本発明は上述の問題点を解決するために案出さ
れたものであって、測定系で定義される条件のうち、波
長、偏光成分、測定角度のうち少なくとも1つ以上の条
件が異なる2つの分光放射率の関係が被測定物体の物質
的条件に固有であることに着目し、2つの分光放射率の
関係を予め求めておくことにより温度と放射率を同時に
正確に求めることを目的としたものである。
Generally, the emissivity is determined by the conditions defined by the measurement system, such as the wavelength, and the physical conditions of the non-measured object, such as the material. Therefore, even if we consider only the conditions of the measurement system, the wavelength, directionality (angle)
, it is possible to define an infinite number of emissivities with different polarization components, and if the effects of the material to be measured, processing conditions, surface roughness, degree of redox, thermal history, temperature, etc. are taken into account, the emissivity can be varied. Determined by parameters. That is, emissivity cannot be set easily. Furthermore, if the emissivity changes due to changes in the physical conditions of the object to be measured, setting the emissivity becomes extremely difficult. Furthermore, in a narrow place or a place where the measurement environment is poor, a normal lens system cannot secure an optical path to the object to be measured. The present invention has been devised to solve the above-mentioned problems, and the present invention has been devised to solve the above-mentioned problems. Focusing on the fact that the relationship between spectral emissivity is unique to the physical conditions of the object to be measured, we aimed to accurately determine temperature and emissivity at the same time by determining the relationship between two spectral emissivities in advance. It is something.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の光フアイバ放射温度計は、被測定物体からの熱
放射のうち波長、偏光状態、測定角度のうち少なくとも
1つ以上の条件が異なる2種類の分光放射輝度信号を伝
送する光フアイバ手段、伝送された分光放射輝度信号を
光検出器によって光電変換する手段、該分光放射輝度に
対応する2つの分光放射率間の被測定物体に固有な関係
式を定めるパラメータを人力する手段、2つの分光放射
輝度信号と分光放射率間の関係式から被測定物体の温度
と放射率を求める演算手段、求められた温度と放射率を
出力する手段を有し、該演算手段は2つの分光放射率間
の被測定物体に固有な既知の関係式を解くことによって
、被測定物体の温度と放射率を同時に求めることを特徴
とするものである。
The optical fiber radiation thermometer of the present invention includes an optical fiber means for transmitting two types of spectral radiance signals that differ in at least one condition among the wavelength, polarization state, and measurement angle among thermal radiation from an object to be measured; A means for photoelectrically converting the transmitted spectral radiance signal by a photodetector, a means for manually inputting parameters defining a relational expression specific to the object to be measured between two spectral emissivities corresponding to the spectral radiance, and two spectral radiance signals. The calculation means calculates the temperature and emissivity of the object to be measured from the relational expression between the radiance signal and the spectral emissivity, and the means outputs the obtained temperature and emissivity. This method is characterized in that the temperature and emissivity of the object to be measured are simultaneously determined by solving a known relational expression specific to the object to be measured.

〔作 用〕[For production]

以下に本発明の作用を具体的に説明する。いま、互いに
異なる二つの分光放射率をEX’EYとし、二つの分光
放射率の関係が実験的に既知であり第4図で表現できる
とする。
The effects of the present invention will be specifically explained below. Let us now assume that two different spectral emissivities are EX'EY, and that the relationship between the two spectral emissivities is experimentally known and can be expressed as shown in FIG.

この関係を材料Aの放射率関数として次の(1)式で表
現する。
This relationship is expressed as the emissivity function of material A by the following equation (1).

E、=f  (EX)           (1)添
字のX・Yは波長、測定角度もしくは偏光成分の異なる
測定条件のことを表し、その組合せとして例えば2波長
型、偏光型、2波長偏光型が考えられる。本発明の特徴
は二つ以上の波長または測定角度の条件が異なる熱放射
について、それぞれ偏光成分を検出し、その中から任意
の組合せを選択することにより被測定物体に最適な放射
率特性関数を使って温度と放射率を求めることにあり、
以下にその過程について説明する。先ず、放射計が黒体
炉で校正されると、真温度と放射計出力の関係は第5図
に示され(2)(3)式で表現できる。
E, = f (EX) (1) The subscripts X and Y represent measurement conditions with different wavelengths, measurement angles, or polarization components, and possible combinations thereof include, for example, 2-wavelength type, polarization type, and 2-wavelength polarization type. . The feature of the present invention is to detect the polarization components of two or more thermal radiations with different wavelengths or measurement angle conditions, and to select an arbitrary combination from them to determine the emissivity characteristic function that is most suitable for the object being measured. The purpose is to find temperature and emissivity using
The process will be explained below. First, when the radiometer is calibrated in a blackbody furnace, the relationship between the true temperature and the radiometer output is shown in FIG. 5 and can be expressed by equations (2) and (3).

即ちパラメータA、B、Cは校正によって決定される。That is, parameters A, B, and C are determined by calibration.

To ;真温度  LX  、Ly  ;放射計出力C
2;放射の第二定数 A、B、C;黒体炉校正関数のパラメータExa 、E
yo :真の放射率 第6図は未知の真温度T。と真の放射率EXO。
To; true temperature LX, Ly; radiometer output C
2; Second constants of radiation A, B, C; Parameters of blackbody furnace calibration function Exa, E
yo: true emissivity Figure 6 is the unknown true temperature T. and true emissivity EXO.

EYOの両者の情報を包含した放射計の出力りつLYを
示しく4)(5)式で表せる。
The output signal LY of the radiometer that includes information on both EYO and EYO can be expressed by equation 4) (5).

し、  =  EXo−L、  (λ、、To)   
          (4)LY= E、。・L、 (
λy、’ro)       (5)この時点では真の
温度と放射率は未知であるから、仮定温度Tを与えて(
2)式より見かけの放射輝度Lx’ + Lv’を求め
る。従って(6)、  (7)式より見かけの放射率が
求められる。
and = EXo−L, (λ,,To)
(4) LY=E,.・L, (
λy, 'ro) (5) Since the true temperature and emissivity are unknown at this point, given the assumed temperature T, (
2) Obtain the apparent radiance Lx' + Lv' from the formula. Therefore, the apparent emissivity can be calculated from equations (6) and (7).

本発明の第二の特徴は予備知識としてもつ放射率特性関
数fを参照して見かけの放射率ExEyが真の放射率E
xo5Ey。と一致する操作を行って解を求めることに
ある。これを第7図で説明すると、見かけの放射率(E
x ’ ET ) は、−組の入力信号(LX  、L
y ”)に対して、仮定温度Tを変化させたときに0曲
線上を動く。一方、真の放射率がとりうるExo、Ey
。はf曲線上にあるから6曲線との交点が求める真の放
射率で、そのとき仮定した温度Tは真の温度T0となる
。この6曲線とf関数曲線とは、真の温度T0が同じで
も真の放射率が異なれば異なった位置で交差する。
The second feature of the present invention is to determine whether the apparent emissivity ExEy is the true emissivity E by referring to the emissivity characteristic function f held as prior knowledge.
xo5Ey. The purpose is to find a solution by performing operations that match the . To explain this using Figure 7, the apparent emissivity (E
x' ET) is the − pair of input signals (LX, L
y'') moves on the 0 curve when the assumed temperature T is changed.On the other hand, the true emissivity of Exo, Ey
. Since is on the f curve, the intersection with the 6th curve is the true emissivity to be determined, and the temperature T assumed at that time becomes the true temperature T0. These six curves and the f-function curve intersect at different positions if the true emissivity is different even if the true temperature T0 is the same.

ここで、被測定物体に最適な異なる測定条件のの組合せ
とは6曲線とf曲線が安定に交わることを意味する。第
8図に示すように6曲線とf曲線の傾きが近づく程、放
射率変化によって交点が不安定となり精度が悪くなる。
Here, the combination of different measurement conditions that is optimal for the object to be measured means that the 6 curve and the f curve intersect stably. As shown in FIG. 8, as the slopes of the 6th curve and the f curve become closer, the intersection becomes unstable due to changes in emissivity, and the accuracy deteriorates.

従って被測定物体によって異なる測定条件の組合せを最
適に選択することで常に安定した解を求めることが可能
となる。
Therefore, by optimally selecting a combination of measurement conditions that differ depending on the object to be measured, it is possible to always obtain a stable solution.

このように本発明の放射温度計においては、検出器から
の複数の分光放射輝度のうち異なる測定条件の組合せを
最適に選択することにより被測定物体に最適な放射率特
性関数が得られ正確な測温が可能になる。
In this way, in the radiation thermometer of the present invention, by optimally selecting a combination of different measurement conditions among a plurality of spectral radiances from the detector, the optimal emissivity characteristic function for the object to be measured can be obtained and accurate Temperature measurement becomes possible.

〔実施例] 以下、図を参照しながら実施例に基づいて本発明の特徴
を具体的に説明する。第1図は本発明の構成を示したも
ので1は被測定物体、2は光ファイバで被測定物体から
の放射輝度を検出器3へ光伝送する。分光放射条件(波
長、偏光)は光ファイバーあるいは検出器で被測定物体
に最適な組合・せを選定することができる。例えば単一
モードファイバフィルタによる2波長型、偏光ファイバ
、ポラライザによる偏光型である。4のパラメータ入力
部41では選択した二つの分光放射条件に対応する被測
定物体に固有な既知の二つの分光放射率間の関係を表す
関係式のパラメータを人力する。
[Examples] Hereinafter, the features of the present invention will be specifically explained based on Examples with reference to the drawings. FIG. 1 shows the configuration of the present invention, where 1 is an object to be measured, and 2 is an optical fiber for optically transmitting the radiance from the object to a detector 3. In FIG. The optimum combination of spectral emission conditions (wavelength, polarization) for the object to be measured can be selected using optical fibers or detectors. Examples include a two-wavelength type using a single mode fiber filter, and a polarizing type using a polarizing fiber and a polarizer. In the parameter input section 41 of No. 4, parameters of a relational expression representing the relationship between two known spectral emissivities specific to the object to be measured corresponding to the two selected spectral radiation conditions are input manually.

一方、パラメータ入力部42では選択した2つの分光放
射条件に対応した検出器の分光放射輝度信号と真温度の
関係を表す黒体炉校正関数のパラメータ(ABC三定数
〉を入力する。5の演算部では二つの分光放射輝度信号
をもとにして、対応する二つの分光放射率間の関係式で
ある放射率特性関数上の真の放射率を求めることにより
、同時に真の温度が求まる。
On the other hand, the parameter input section 42 inputs the parameters (ABC three constants) of the blackbody furnace calibration function that represents the relationship between the spectral radiance signal of the detector and the true temperature corresponding to the two selected spectral radiation conditions. In the part, the true emissivity on the emissivity characteristic function, which is a relational expression between the two corresponding spectral emissivities, is determined based on the two spectral radiance signals, and the true temperature is determined at the same time.

第2図に演算部の実施例を図式的に示す。1の被測定物
体からの放射輝度は2の光ファイバーを伝送され3の検
出器で2つの分光放射輝度信号Lx ・LYとなる。演
算には被測定物体に固有な既知の2つの分光放射率間の
関係を表す関係式のパラメータ12と該分光放射輝度信
号と真温度の関係を表す黒体炉校正パラメータ13が必
要である。
FIG. 2 schematically shows an embodiment of the calculation section. The radiance from the object to be measured (1) is transmitted through the optical fiber (2) and becomes two spectral radiance signals Lx and LY by the detector (3). The calculation requires a parameter 12 of a relational expression that expresses the relationship between two known spectral emissivities specific to the object to be measured, and a blackbody furnace calibration parameter 13 that expresses the relationship between the spectral radiance signal and the true temperature.

パラメータ12.13はキーボード等により入力する方
法と内部に記憶して自動的にパラメータを取り出す方法
のいずれでもよい。演算は先ず14の仮定温度Tを与え
ることによって15の黒体炉校正関数により見かけの黒
体分光放射輝度信号LX′L 、 /を求めることによ
り16.17の割り算回路で見かけの放射率を18上の
ε′8 、ε′、として求める。一方、該分光放射条件
に対応する2つの分光放射率の被測定物体に固有な関係
を表す放射率特性関数19は真の放射率(εxo’ ε
、。)がとりうる組合せとして21の2次元平面内に曲
線fで示される。即ち、この曲線上に存在する真の放射
率をとりうる時の仮定温度Tが真の温度T。を示すこと
になる。従って20で仮定温度Tを変化させながら、2
2で見かけの放射率が曲線f上の真の放射率と一致する
仮定温度を求めることにより真の温度Toが得られる。
The parameters 12 and 13 may be input using a keyboard or the like, or stored internally and automatically retrieved. The calculation begins by giving the assumed temperature T of 14 and calculating the apparent black body spectral radiance signal L Obtain as ε'8 and ε' above. On the other hand, the emissivity characteristic function 19 representing the relationship specific to the measured object between the two spectral emissivities corresponding to the spectral radiation conditions is the true emissivity (εxo' ε
,. ) is shown by a curve f in 21 two-dimensional planes as possible combinations. That is, the assumed temperature T at which the true emissivity that exists on this curve can be taken is the true temperature T. will be shown. Therefore, while changing the assumed temperature T by 20,
2, the true temperature To can be obtained by finding a hypothetical temperature at which the apparent emissivity matches the true emissivity on the curve f.

第3図に光路確保と分光放射条件(偏光、波長)選定の
ための光ファイバーの組合せ例を示す。
Figure 3 shows examples of optical fiber combinations for securing the optical path and selecting spectral radiation conditions (polarization, wavelength).

(A)欄に示す構成においてはファイバー先端にポララ
イザ30を設けてP偏光とS偏光の成分にして、それぞ
れを2本の単一モードファイバ31.32で光伝送する
。(B)欄に示す構成においてはファイバー先端にハー
フミラ−33をつけて2つの光路を分け、それぞれをP
偏光ファイバ34、S偏光ファイバ35に通す、(C)
欄に示す構成においてはファイバ37の後端にフィルタ
36を設け2つの波長に分光する。(D)欄に示す構成
においてはファイバ先端に設けたハーフミラ−40で2
つの光路に分けて所定の波長を透過する単一モードファ
イバ38.39で2つの波長に分光する。
In the configuration shown in column (A), a polarizer 30 is provided at the tip of the fiber to convert the polarized light into P-polarized light and S-polarized light, which are then optically transmitted through two single mode fibers 31 and 32. In the configuration shown in column (B), a half mirror 33 is attached to the fiber tip to separate two optical paths, and each
Passing through polarizing fiber 34 and S polarizing fiber 35, (C)
In the configuration shown in the column, a filter 36 is provided at the rear end of the fiber 37 to separate the light into two wavelengths. In the configuration shown in column (D), the half mirror 40 provided at the tip of the fiber
The light is separated into two wavelengths using single mode fibers 38 and 39 that transmit a predetermined wavelength into two optical paths.

また、第1図の構成において測定角度の異なるファイバ
を複数本設けることによって測定角度の条件を変えるこ
とができる。
Furthermore, by providing a plurality of fibers with different measurement angles in the configuration shown in FIG. 1, the measurement angle conditions can be changed.

〔発明の効果〕〔Effect of the invention〕

辺上、述べたように本発明によれば、狭い場所やあるい
は環境の悪い場所において光ファイバを用いることによ
り光路を確保し、同時にファイバーによって偏光や波長
選定が可能であり、2つの分光放射条件が容易に得られ
る。一方、予め実験的に求めた被測定物体に固有な放射
率特性関数をもとに演算を行なうので合理的な真の温度
と放射率を求めることができ、さらには異なる2つの分
光放射条件(波長、偏光、角度)の組合せにより被測定
物体の放射率変化のプロセスにあった最適な放射率特性
関数を選定できるため精度よく測温できる。
As mentioned above, according to the present invention, an optical path can be secured by using an optical fiber in a narrow place or a place with a bad environment, and at the same time polarization and wavelength selection can be performed using the fiber, and two spectral radiation conditions can be achieved. can be easily obtained. On the other hand, since the calculation is performed based on the emissivity characteristic function unique to the measured object, which has been determined experimentally in advance, it is possible to obtain a reasonable true temperature and emissivity. By combining wavelength, polarization, and angle), it is possible to select the optimal emissivity characteristic function that matches the emissivity change process of the object being measured, making it possible to measure temperature with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の概略の構成を示すブロック図、第2図
は実施例を図式的に説明した図、第3図は光ファイバー
による実施例を示す構成図、 第4図〜第8図は本発明の詳細な説明するための図。 図において、 1・・・被測定物体、  2・・・光ファイバ、3・・
・検出器、     4・・・パラメータ入力部。 (B) 入Y (C) 第 図 X 第 図 真温度T。 第 図 第 図 EX 第 図 第 図
FIG. 1 is a block diagram showing the general configuration of the present invention, FIG. 2 is a diagram schematically explaining an embodiment, FIG. 3 is a configuration diagram showing an embodiment using optical fibers, and FIGS. 4 to 8 are FIG. 2 is a diagram for explaining the present invention in detail. In the figure, 1... object to be measured, 2... optical fiber, 3...
・Detector, 4...Parameter input section. (B) Entering Y (C) Figure X Figure true temperature T. Figure Figure EX Figure Figure Figure EX

Claims (1)

【特許請求の範囲】[Claims] 1、被測定物体からの熱放射のうち波長、偏光状態、測
定角度のうち少なくとも1つ以上の条件が異なる2種類
の分光放射輝度信号を伝送する光ファイバー手段、伝送
された分光放射輝度信号を光検出器によって光電変換す
る手段、該分光放射輝度に対応する2つの分光放射率間
の被測定物体に固有な関係式を定めるパラメータを入力
する手段、2つの分光放射輝度信号と分光放射率間の関
係式から被測定物体の温度と放射率を求める演算手段、
求められた温度と放射率を出力する手段を有し、該演算
手段は2つの分光放射率間の被測定物体に固有な既知の
関係式を解くことによって、被測定物体の温度と放射率
を同時に求めることを特徴とする光ファイバー放射温度
計。
1. Optical fiber means for transmitting two types of spectral radiance signals that differ in at least one of the wavelength, polarization state, and measurement angle of thermal radiation from the object to be measured; means for photoelectric conversion by a detector; means for inputting parameters that define a relational expression specific to the object to be measured between two spectral emissivities corresponding to the spectral radiance; calculation means for calculating the temperature and emissivity of the object to be measured from the relational expression;
It has a means for outputting the obtained temperature and emissivity, and the calculation means calculates the temperature and emissivity of the object to be measured by solving a known relational expression specific to the object to be measured between the two spectral emissivities. An optical fiber radiation thermometer characterized by simultaneous measurement.
JP2087507A 1990-04-03 1990-04-03 Optical fiber radiation thermometer Pending JPH03287030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2087507A JPH03287030A (en) 1990-04-03 1990-04-03 Optical fiber radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2087507A JPH03287030A (en) 1990-04-03 1990-04-03 Optical fiber radiation thermometer

Publications (1)

Publication Number Publication Date
JPH03287030A true JPH03287030A (en) 1991-12-17

Family

ID=13916895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2087507A Pending JPH03287030A (en) 1990-04-03 1990-04-03 Optical fiber radiation thermometer

Country Status (1)

Country Link
JP (1) JPH03287030A (en)

Similar Documents

Publication Publication Date Title
US5011295A (en) Method and apparatus to simultaneously measure emissivities and thermodynamic temperatures of remote objects
US5823681A (en) Multipoint temperature monitoring apparatus for semiconductor wafers during processing
JP2002365142A5 (en)
US5690429A (en) Method and apparatus for emissivity independent self-calibrating of a multiwavelength pyrometer
RU2083961C1 (en) Method of measurement of temperature and emissivity of surface
US20030107724A1 (en) Temperature distribution measuring method and apparatus
JP2008268106A (en) Method of measuring temperature information
US6817758B2 (en) Temperature distribution measuring method and apparatus
JPH03287030A (en) Optical fiber radiation thermometer
KR20040010172A (en) Emissivity distribution measuring method and apparatus
JPH03287031A (en) Spectral emissivity measuring instrument
JP4257436B2 (en) Infrared dual wavelength processing method
JPH03287029A (en) Scanning type radiation thermometer
JPH05164615A (en) Radiation-temperature measuring apparatus
JPH0260132B2 (en)
JPH03287028A (en) Radiation thermometer
JPH04355308A (en) Multilayer film thickness measuring device
JPH10104084A (en) Multicolor thermometer
JPS63305228A (en) Radiation thermometer
JPS63100340A (en) Optical temperature sensor
JP3325700B2 (en) Optical fiber radiation thermometer
JPS63205531A (en) Measuring method for temperature by optical fiber
JPH05281046A (en) Optical fiber type radiation temperature measuring device
JPS5932898Y2 (en) multicolor radiation thermometer
JPS63127128A (en) Light power measuring device