JPH03283611A - Method for laser anneal - Google Patents

Method for laser anneal

Info

Publication number
JPH03283611A
JPH03283611A JP8536190A JP8536190A JPH03283611A JP H03283611 A JPH03283611 A JP H03283611A JP 8536190 A JP8536190 A JP 8536190A JP 8536190 A JP8536190 A JP 8536190A JP H03283611 A JPH03283611 A JP H03283611A
Authority
JP
Japan
Prior art keywords
film
substrate
laser light
thickness
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8536190A
Other languages
Japanese (ja)
Inventor
Toshiharu Suzuki
俊治 鈴木
Takashi Noguchi
隆 野口
Hironori Tsukamoto
塚本 弘範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8536190A priority Critical patent/JPH03283611A/en
Publication of JPH03283611A publication Critical patent/JPH03283611A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve throughput of a manufacture process by radiating laser light after forming a reflection preventing film whose thickness is different from that of a treated body. CONSTITUTION:A source region coated part 4a and a drain region coated part 4b of a reflection preventing film 4 are formed to have a film thickness which realizes maximum absorption rate of laser light, for example. LDD region coated parts 4c, 4d are formed thinner than source/drain coated parts 4a, 4b. After the reflection preventing film 4 is formed to have different film thicknesses for each part of a P-type Si substrate 1 in this way, boron ion is activated, which is implanted irradiating an entire region of the substrate 1 with laser light 5 wherein energy is set to a specified value. Thereby, it is possible to change an annealing temperature of the substrate 1 in accordance with a film thickness, to change activation rate of implanted ion and to control a film thickness of the reflection preventing film 4 readily. Throughput of a manufacture process can be improved in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はレーザアニール方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a laser annealing method.

[発明の概要] 本発明は、半導体装置の製造プロセス等で用いられるレ
ーザアニール方法において、 被処理体上に膜厚が異なる反射防止膜を形成した後、レ
ーザ光を照射することにより、反射防止膜の場所毎に異
なる膜厚に応じて被処理体の実効的なアニール温度を変
えることができるようにしたものである。
[Summary of the Invention] The present invention provides a laser annealing method used in the manufacturing process of semiconductor devices, etc., in which antireflection is achieved by forming antireflection films with different thicknesses on an object to be processed and then irradiating the object with laser light. The effective annealing temperature of the object to be processed can be changed depending on the film thickness, which varies depending on the location of the film.

[従来の技術] 薄膜トランジスタ(TPT)のような半導体装置の熱処
理には、スポットビーム内のエネルギー分布を均一化す
る技術が開発されてきたことから、例えば、TPT用P
型ポリシリコン(以下、単にr’ff2siという)薄
膜の結晶性改善、アルミニウムのりフロー、チタン(1
’i)のシリサイド化やナイトライド化、極浅pn接合
の形成等の実用化のために、308nmの短波長レーザ
(XeClエキシマレーザ)光を照射するというような
、レーザアニール方法が利用されてきている。
[Prior Art] For heat treatment of semiconductor devices such as thin film transistors (TPT), techniques have been developed to make the energy distribution within a spot beam uniform.
Improvement of crystallinity of type polysilicon (hereinafter simply referred to as r'ff2si) thin film, aluminum glue flow, titanium (1
For the practical application of 'i) to silicide, nitride, and formation of ultra-shallow pn junctions, laser annealing methods such as irradiation with 308 nm short wavelength laser (XeCl excimer laser) have been used. ing.

この種のレーザアニール方法の中には、例えば特開昭5
8−116730号公報に開示されているように、被処
理体としてのP型Si基板やP型Si薄膜にレーザ光を
照射すると、被処理体表面での反射により、30〜40
%程度のエネルギーが吸収されるだけであるので、被処
理体上に反射防止膜を形成して、その吸収効率を高める
方法が知られている。
Among this type of laser annealing methods, for example,
As disclosed in Japanese Patent No. 8-116730, when a P-type Si substrate or a P-type Si thin film is irradiated with a laser beam as an object to be processed, the laser beam is reflected by the surface of the object to be processed.
% of the energy is absorbed, therefore, a method is known in which an antireflection film is formed on the object to be processed to increase its absorption efficiency.

[発明が解決しようとする課題] 前述したレーザアニール方法においては、反射防止膜の
膜厚がレーザ光が照射される被処理体の全領域にわたっ
て路間−に形成しであるので、レーザのエネルギーを所
定値に設定したまま、レーザ光を被処理体に照射すると
、当該被処理体全域が同一のアニール温度になる。この
ため、被処理体に熱処理をしたくない領域が存在してい
ても、その領域も熱処理され、不純物の再分布等の好ま
しくない結果を招いてしまう。このようなことから、被
処理体の部分毎にレーザ光のエネルギー密度を制御しつ
つ照射して、その部分毎が必要なアニール温度となるよ
うに熱処理しているので、スルーブツトを上げるにも限
度があった。
[Problems to be Solved by the Invention] In the laser annealing method described above, since the antireflection film is formed between the paths over the entire area of the object to be irradiated with the laser beam, the laser energy If the object to be processed is irradiated with a laser beam while keeping the value set at a predetermined value, the entire area of the object will be at the same annealing temperature. Therefore, even if there is a region in the object to be treated that is not desired to be heat-treated, that region is also heat-treated, resulting in undesirable results such as redistribution of impurities. For this reason, the energy density of laser light is irradiated to each part of the object to be processed while controlling it, and each part is heat-treated to the required annealing temperature, so there is a limit to increasing throughput. was there.

また、反射防止膜の膜厚が被処理体の全領域にわたって
路間−になっていることから、TPTのリーク電流防止
のためのライトリ−ドープドドレイン−ソース(Lig
htly  DopedDrain−9ource;以
下、単にLDDという)を形成する場合には、イオン注
入に際して、ソース、ドレイン領域が高濃度に、LDD
領域が低濃度となるように、ソース、ドレイン領域とL
DD領域とでイオン注入のドーズを変えているので、作
業性が悪いという不都合がある。
In addition, since the thickness of the anti-reflection film is uniform across the entire area of the object to be processed, lightly doped drain-source (LiG) is used to prevent TPT leakage current.
When forming a doped drain-9source (hereinafter simply referred to as an LDD), the source and drain regions are highly doped during ion implantation.
The source and drain regions and L
Since the dose of ion implantation is different between the DD region and the DD region, there is a disadvantage that workability is poor.

[課題を解決す−るための手段] そこで本発明は、被処理体上に膜厚が異なる反射防止膜
を形成した後、レーザ光を照射する。
[Means for Solving the Problems] Accordingly, in the present invention, antireflection films having different thicknesses are formed on an object to be processed, and then laser light is irradiated.

[作用] 例えばレーザ光の反射率が最小となる膜厚から最大とな
る膜厚までの範囲で、反射防止膜の膜厚を被処理体の部
分毎に異ならせる。そして、エネルギーを所定値に設定
したレーザ光で、被処理体の全領域を一応に照射すると
、アニール温度が反射防止膜の部分毎に異なる膜厚に応
じて変わる。
[Function] For example, the thickness of the antireflection film is varied for each part of the object to be processed, within the range from the minimum thickness to the maximum thickness for laser beam reflectance. Then, when the entire area of the object to be processed is irradiated with a laser beam whose energy is set to a predetermined value, the annealing temperature changes depending on the thickness of the antireflection film, which differs from part to part.

[実施例] 第1図は、TPTのLDDを示すものであって、同図に
おいて、 夏はボロンイオン(B′″)を注入 したPy11Si基板、2はゲート酸化膜、3はゲート
電極、4は反射防止膜である。この反射防止膜4は、例
えば5totで形成されており、P型Si基板lのソー
ス領域1aを覆う部分(以下、単にソース領域被覆部分
という)4aと、P型Si基板lのドレイン領域1bを
覆う部分(以下、単にドレイン領域被覆部分という)4
bと、P型Si基板lのLDD領域1c、ldを覆う部
分(以下、単にLDD領域被覆部分という)4c、4d
とに区分しである。このソース領域被覆部分4aとドレ
イン領域被覆部分4bとは、例えばレーザ光の反射率が
最小、即ちレーザ光の吸収率が最大となる膜厚になって
いる。LDD領域被覆部分4c、4dは、ソース、ドレ
イン領域被覆部分4a。
[Example] Figure 1 shows a TPT LDD, in which summer shows a Py11Si substrate implanted with boron ions (B'''), 2 a gate oxide film, 3 a gate electrode, 4 is an anti-reflection film. This anti-reflection film 4 is formed of, for example, 5 tot, and has a portion 4a covering the source region 1a of the P-type Si substrate l (hereinafter simply referred to as the source region covering portion) and a portion 4a of the P-type Si substrate l. A portion of the substrate l that covers the drain region 1b (hereinafter simply referred to as a drain region covering portion) 4
b, and portions 4c and 4d of the P-type Si substrate l that cover the LDD regions 1c and ld (hereinafter simply referred to as LDD region covering portions).
It is divided into two parts. The source region covering portion 4a and the drain region covering portion 4b have a thickness such that, for example, the reflectance of the laser beam is at a minimum, that is, the absorption rate of the laser beam is at a maximum. The LDD region covering portions 4c and 4d are the source and drain region covering portion 4a.

4bよりも膜厚が薄くなっている。このように反射防止
膜4をP型Si基板1の部分毎に異なる膜厚に形成した
後、エネルギーを所定値に設定した例えば308nmの
短波長レーザ(XeClエキシマレーザ)光5を反射防
止膜4に向けて照射して、P型Si基板1の熱処理を行
うことにより、I)型Si基板1に注入されているボロ
ンイオンの活性化を行う。
The film thickness is thinner than that of 4b. After forming the anti-reflection film 4 in different thicknesses for each part of the P-type Si substrate 1 in this way, a short wavelength laser (XeCl excimer laser) light 5 of, for example, 308 nm with energy set to a predetermined value is applied to the anti-reflection film 4. By irradiating the P-type Si substrate 1 with heat treatment, the boron ions implanted into the I)-type Si substrate 1 are activated.

ここで、反射防止膜4としてのSiOxの膜厚とXeC
lエキシマレーザ光5の反射率との関係を測定したとこ
ろ、第2図に示すような結果を得た。この第2図の測定
結果からは、SiOxの膜厚に応じて反射率を65%〜
33%まで、即ち吸収率を35%〜67%まで変化する
ことができ、膜厚が500人で反射率が33%の最小値
(吸収率は67%の最大値)となり、膜厚が0と100
0人で反射率が65%の最大値(吸収率は35%の最小
値)となることがわかる。
Here, the film thickness of SiOx as the antireflection film 4 and the XeC
When the relationship with the reflectance of the excimer laser beam 5 was measured, the results shown in FIG. 2 were obtained. From the measurement results shown in Figure 2, the reflectance varies from 65% to 65% depending on the SiOx film thickness.
It is possible to change the absorption rate up to 33%, that is, from 35% to 67%, and when the film thickness is 500, the reflectance is the minimum value of 33% (the absorption coefficient is the maximum value of 67%), and the film thickness is 0. and 100
It can be seen that the reflectance reaches a maximum value of 65% (the absorption coefficient reaches a minimum value of 35%) when there is no person.

また、膜厚500人のS i O*なる反射防止膜f1
°無によるボロンイオン注入P型St膜に、XeC1エ
キシマレーザ光でのレーザアニールを行って、そのシー
ト抵抗を測定したところ、第3図に示すような結果を得
た。この測定結果からは、反射防止膜を形成して、P型
Si膜表面の反射率を低下させることにより、反射防止
膜の無いものに比べて、注入イオンの活性化率が高くな
ることがわかる。
In addition, an anti-reflection film f1 of S i O * with a film thickness of 500
When a p-type St film with no boron ion implantation was laser annealed with XeC1 excimer laser light and its sheet resistance was measured, the results shown in FIG. 3 were obtained. These measurement results show that by forming an anti-reflection film to lower the reflectance of the P-type Si film surface, the activation rate of implanted ions becomes higher than when there is no anti-reflection film. .

このような第2図および第3図の測定結果にもとづいて
、第1図に示した一実施例の構造について考察する。ソ
ース領域被覆部分4aとドレイン領域被覆部分4bとL
DD領域被覆部分4c、4dとからなる膜厚の異なる5
insで形成した反射防止膜4を通して、ボロンイオン
注入P型Si基板lを、エネルギーを所定値に設定した
XeClエキシマレーザ光5の照射によるレーザアニー
ルを行うと、ソース、ドレイン領域1a、lbとLDD
領域1c、ldとでは、反射防止膜4の膜厚に応じて、
実効的なアニール温度が変わる。具体的には、上記反射
防止膜4におけるソース、ドレイン領域被覆部分4a、
4bとLDD領域被覆部分4c、4dとの膜厚の関係か
ら、ソース、ドレインla、lbのアニール温度がLD
D領域Ic、ldのアニール温度よりも高いので、ソー
ス。
Based on the measurement results shown in FIGS. 2 and 3, the structure of the embodiment shown in FIG. 1 will be considered. Source region covering portion 4a, drain region covering portion 4b and L
5 having different film thicknesses consisting of DD region covering portions 4c and 4d
When laser annealing is performed by irradiating the boron ion-implanted P-type Si substrate 1 with XeCl excimer laser light 5 whose energy is set to a predetermined value through the antireflection film 4 formed with ins, the source and drain regions 1a and lb and the LDD are
In the regions 1c and ld, depending on the thickness of the antireflection film 4,
Effective annealing temperature changes. Specifically, the source and drain region covering portions 4a of the antireflection film 4,
4b and the LDD region covering portions 4c and 4d, the annealing temperature of the source and drain la and lb is set to LD.
Since the annealing temperature is higher than that of D regions Ic and ld, the source.

ドレイン領域1a、lbでは注入イオンの活性化率が高
く、LDD領域1c、ldでは注入イオンの活性化率が
低くなる。したがって、ソース、ドレイン領域1a、l
bとLDD領域1c、Idともに同一濃度のイオン注入
を行うとともに、エネルギーを所定値に設定したレーザ
光の照射を行っても、反射防止膜4の膜厚の相違に応じ
て、注入イオンの高濃度なるソース、ドレイン領域1a
The activation rate of implanted ions is high in the drain regions 1a and lb, and the activation rate of implanted ions is low in the LDD regions 1c and ld. Therefore, source and drain regions 1a, l
Even if ions are implanted at the same concentration into both the LDD region 1c and Id and the laser beam is irradiated with energy set to a predetermined value, the implanted ion concentration will vary depending on the difference in the thickness of the anti-reflection film 4. Concentration source and drain regions 1a
.

Ibと注入イオンの低濃度なるLDD領域1c。LDD region 1c with low concentration of Ib and implanted ions.

ldとが形成できる。ld can be formed.

なお、本発明は前記実施例に限定されるものではなく、
例えば第4図に示すように、ソース、ドレイン領域被覆
部分4a、4bの膜厚を反射率が最小の500人に設定
し、LDD領域被覆部分4e、4fの膜厚をソース、ド
レイン領域被覆部分4a、4bの膜厚よりも厚くするこ
とも、第2図の測定結果から明らかなように、前記実施
例と同様に適用可能である。
Note that the present invention is not limited to the above embodiments,
For example, as shown in FIG. 4, the film thickness of the source and drain region covering portions 4a and 4b is set to 500, which has the minimum reflectance, and the film thickness of the LDD region covering portions 4e and 4f is set to the source and drain region covering portion. As is clear from the measurement results in FIG. 2, it is also possible to make the film thicker than those of 4a and 4b in the same manner as in the above embodiment.

また、反射防止膜4は5iOz以外のシリコンナイトラ
イド(SiN)あるいはシリコンオキシナイトライド(
SiON)等で構成することも可能である。
Further, the antireflection film 4 is made of silicon nitride (SiN) or silicon oxynitride (SiN) other than 5iOz.
It is also possible to configure it using SiON) or the like.

さらに、本発明は、TPT以外の半導体装置、あるいは
半導体装置以外でも適用できる。
Furthermore, the present invention can be applied to semiconductor devices other than TPT or devices other than semiconductor devices.

[発明の効果] 以上のように本発明によれば、エネルギーを所定値に設
定したレーザ光で、被処理体の全領域を一応に照射して
も、被処理体のアニール温度を反射防止膜の部分毎に異
なる膜厚に応じて変えることができる。よって、半導体
装置の製造プロセスのように、同一濃度のイオン注入を
行っても、エネルギーを所定値に設定したレーザ光の照
射を膜厚の異なる反射防止膜を通して行うので、反射防
止膜の膜厚の違いに応じて、注入イオンの活性化率を変
えることができるうえ、反射防止膜の膜厚制御も簡単に
できるので、イオン注入の濃度やレーザ光のエネルギー
を制御する場合に比べて、製造プロセスのスループット
を向上できる。
[Effects of the Invention] As described above, according to the present invention, even if the entire area of the object to be processed is irradiated with a laser beam whose energy is set to a predetermined value, the annealing temperature of the object to be processed may be lowered by the anti-reflection film. It can be changed according to the different film thickness for each part. Therefore, even if ion implantation is performed at the same concentration, as in the manufacturing process of semiconductor devices, irradiation with laser light with a predetermined energy level is performed through anti-reflection films with different thicknesses, so the thickness of the anti-reflection film may vary. The activation rate of the implanted ions can be changed depending on the difference in the ions, and the thickness of the anti-reflection film can also be easily controlled, making manufacturing easier than controlling the ion implantation concentration or laser beam energy. Process throughput can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図は同実
施例の反射防止膜として5iOyの膜厚とXeClエキ
シマレーザ光の反射率との関係を示す測定結果図、第3
図は同実施例のSiOxなる反射防1L膜有無によるボ
ロンイオン注入P型Si膜にXeClエキシマレーザで
のレーザアニールを行った場合のシート抵抗を示す測定
結果図、第4図は本発明の異なる実施例を示す断面図で
ある。 1・・・P型Si基板(被処理体)、4・・・反射防止
膜、4a・・・ソース領域被覆部分、4b・・・ドレイ
ン領域被覆部分、4c、4d・・・LDD領域被覆部分
、5・・・レーザ光。 外 I 6
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, FIG. 2 is a measurement result chart showing the relationship between the film thickness of 5iOy and the reflectance of XeCl excimer laser light as an antireflection film of the same embodiment, and FIG.
The figure is a measurement result diagram showing the sheet resistance when laser annealing is performed using a XeCl excimer laser on a P-type Si film implanted with boron ions with and without an anti-reflection 1L SiOx film of the same example. It is a sectional view showing an example. DESCRIPTION OF SYMBOLS 1... P-type Si substrate (processed object), 4... Antireflection film, 4a... Source region covering part, 4b... Drain region covering part, 4c, 4d... LDD region covering part , 5...Laser light. Outside I 6

Claims (1)

【特許請求の範囲】[Claims] (1)被処理体上に膜厚が異なる反射防止膜を形成した
後、レーザ光を照射することを特徴とするレーザアニー
ル方法。
(1) A laser annealing method characterized by forming anti-reflection films of different thicknesses on an object to be processed and then irradiating the object with laser light.
JP8536190A 1990-03-30 1990-03-30 Method for laser anneal Pending JPH03283611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8536190A JPH03283611A (en) 1990-03-30 1990-03-30 Method for laser anneal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8536190A JPH03283611A (en) 1990-03-30 1990-03-30 Method for laser anneal

Publications (1)

Publication Number Publication Date
JPH03283611A true JPH03283611A (en) 1991-12-13

Family

ID=13856574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8536190A Pending JPH03283611A (en) 1990-03-30 1990-03-30 Method for laser anneal

Country Status (1)

Country Link
JP (1) JPH03283611A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045889A (en) * 2001-08-01 2003-02-14 Nec Corp Field-effect transistor, manufacturing method therefor, liquid crystal display device using the same and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045889A (en) * 2001-08-01 2003-02-14 Nec Corp Field-effect transistor, manufacturing method therefor, liquid crystal display device using the same and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US7091114B2 (en) Semiconductor device and method of manufacturing the same
US5956603A (en) Gas immersion laser annealing method suitable for use in the fabrication of reduced-dimension integrated circuits
JP4942128B2 (en) Methods for forming extremely shallow junctions by laser annealing and rapid thermal annealing.
EP1012879B1 (en) Fabrication method for reduced-dimension integrated circuits
US5399506A (en) Semiconductor fabricating process
JP3277533B2 (en) Method for manufacturing semiconductor device
JPS5823479A (en) Manufacture of semiconductor device
US7145104B2 (en) Silicon layer for uniformizing temperature during photo-annealing
US6645838B1 (en) Selective absorption process for forming an activated doped region in a semiconductor
US8283702B2 (en) Process for manufacturing a large-scale integration MOS device and corresponding MOS device
US4502205A (en) Method of manufacturing an MIS type semiconductor device
US5677213A (en) Method for forming a semiconductor device having a shallow junction and a low sheet resistance
JPH02152226A (en) Manufacture of semiconductor device
TW533482B (en) Method of manufacturing a semiconductor device
JPH03283611A (en) Method for laser anneal
JPS6476737A (en) Manufacture of semiconductor integrated circuit device
US6040224A (en) Method of manufacturing semiconductor devices
JPH0677155A (en) Heat treatment method for semiconductor substrate
US7521277B2 (en) Method for manufacturing semiconductor device with low temperature dopant activation
JP2002246329A (en) Formation method for very shallow p-n junction of semiconductor substrate
US20010018258A1 (en) Method for fabricating semiconductor device
JPH03227525A (en) Manufacture of thin film transistor
JP3063207B2 (en) Method for manufacturing thin film transistor
JPH05299434A (en) Manufacture of semiconductor device
JP2005302883A (en) Method for manufacturing semiconductor device