JPH03281756A - Fe-ni alloy sheet for shadow mask and its manufacture - Google Patents

Fe-ni alloy sheet for shadow mask and its manufacture

Info

Publication number
JPH03281756A
JPH03281756A JP2210242A JP21024290A JPH03281756A JP H03281756 A JPH03281756 A JP H03281756A JP 2210242 A JP2210242 A JP 2210242A JP 21024290 A JP21024290 A JP 21024290A JP H03281756 A JPH03281756 A JP H03281756A
Authority
JP
Japan
Prior art keywords
alloy
rsk
surface roughness
rolling
thin plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2210242A
Other languages
Japanese (ja)
Other versions
JPH07116558B2 (en
Inventor
Tadashi Inoue
正 井上
Masayuki Kinoshita
木下 正行
Tomoyoshi Okita
大北 智良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to PCT/JP1991/000182 priority Critical patent/WO1991012345A1/en
Priority to DE69126252T priority patent/DE69126252T2/en
Priority to EP91903834A priority patent/EP0468059B1/en
Priority to KR1019910701357A priority patent/KR940008930B1/en
Priority to US07/768,918 priority patent/US5252151A/en
Publication of JPH03281756A publication Critical patent/JPH03281756A/en
Publication of JPH07116558B2 publication Critical patent/JPH07116558B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the generation of nonuniformity in an Fe-Ni alloy sheet at the time of etching and piercing and its contact printing at the time of annealing flat masks by specifying the surface roughness of an alloy thin strip as well as the Si content in the alloy and its distribution. CONSTITUTION:This Fe-Ni alloy sheet is a one constituted of, by weight, 0.01 to 0.15% Si, 34 to 38% Ni and the balance Fe and in which the sheet thickness of the alloy steel strip is equal to that of flat masks serving for the manufacture a shadow mask including a stage of laminating many pieces of the flat masks and executing annealing treatment. Then, its surface roughness Ra is regulated to 0.3 to 0.7, its skewness Rsk, i.e., the bias index in the height direction of a roughness curve is regulated to 0.3 to 1.0 and the conditions in the inequality I are satisfied. Furthermore, the componental segregating rate of Si in the formula II on the surface of the alloy sheet immediately before etching is regulated to <=10%. For manufacturing this sheet, a dull roll is used at the time of final cold rolling or temper rolling and the above surface roughness is provided on the surface of the thin sheet.

Description

【発明の詳細な説明】 「発明の目的」 (産業上の利用分野) 本発明はシャドウマスク用Fe−Ni合金薄板およびそ
の製造方法に係り、カラーテレビブラウン管のシャドウ
マスクを製造するためのFe−Ni系合金薄板において
エツチング穿孔性が優れ、特に穿孔時のムラ発生を防止
し、かつ穿孔後のフラットマスクを焼鈍するときの密着
焼付を防止し適切な製品を得るための技術に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Industrial Field of Application) The present invention relates to a Fe-Ni alloy thin plate for a shadow mask and a method for manufacturing the same. The present invention relates to a technique for obtaining an appropriate product with excellent etching perforation properties in a Ni-based alloy thin plate, and in particular, preventing unevenness during perforation and preventing adhesion seizure when annealing a flat mask after perforation.

(従来の技術) 近年、カラーテレビの高品位化に伴い、色ずれの問題に
対応できる低熱膨張のシャドウマスク材料としてFe−
Ni系のインバー合金が注目されているが、この合金は
従来の低炭素鋼によるシャドウマスク材に比し、エツチ
ング穿孔時におけるフラットマスクのムラ発生および穿
孔後のフラットマスクを焼鈍するときに密着焼付性が著
しい。
(Prior art) In recent years, with the increasing quality of color televisions, Fe-
Ni-based invar alloys are attracting attention, but compared to conventional shadow mask materials made of low carbon steel, this alloy causes unevenness of the flat mask during etching and adhesion baking when annealing the flat mask after drilling. Significantly sexual.

これらのうち、前者の問題を解決すべく、■特開昭61
−39344号公仰、■特開昭62−243780号公
報、■同243781号公報および■同243782号
公報が提案されている。
Among these, in order to solve the former problem,
-39344 publication, (1) Japanese Patent Application Laid-Open No. 62-243780, (2) Japanese Patent Application Laid-open No. 243781, and (2) Japanese Patent Application Laid-open No. 243782.

即ち■はシャドウマスク用素材の表面粗さ(中心線平均
粗さRa)を0.1〜0.4μmとすることにより開孔
形状の規則性および開孔のシャドウマスク全体における
均一性を得ている。又■はシャドウマスク用素材の表面
粗度(Ra)を0.2〜0.7 ii m、S…(基準
長さ内における表面粗度を示す断面曲線の凹凸間隔平均
値)を100μm以下、結晶粒度を粒度番号で8.0以
上とすることによりエツチング穿孔後のムラ品位の高い
マスクを提供している。
That is, (2) obtains regularity of the aperture shape and uniformity of the apertures throughout the shadow mask by setting the surface roughness (center line average roughness Ra) of the shadow mask material to 0.1 to 0.4 μm. There is. In addition, ■ indicates that the surface roughness (Ra) of the shadow mask material is 0.2 to 0.7 ii m, S... (the average value of the unevenness interval of the cross-sectional curve showing the surface roughness within the standard length) is 100 μm or less, By setting the crystal grain size to a grain size number of 8.0 or more, a mask with high quality unevenness after etching and perforation is provided.

更に■は前記■の規定に加えてRe(i3過孔径αl/
エツチング孔径α2)を0.9以上とすることによりエ
ツチング穿孔後のムラ品位の高いマスクを提供している
。なお■はエンチング素材の集合組織を強冷延−再結晶
焼鈍によって集積させ、且つ結晶粒度を粒度番号で8.
0以上とし、その後に前記■に記載の表面粗度への調整
をダルロールによる冷間加工度を3〜15%としてエツ
チング穿孔後のムラ品位の高いマスクを製造しようとす
るものである。
Furthermore, in addition to the provisions of ■, ■Re(i3 through hole diameter αl/
By setting the etching hole diameter α2) to 0.9 or more, a mask with high quality unevenness after etching is provided. Note that (■) is obtained by accumulating the texture of the etched material by intense cold rolling and recrystallization annealing, and by increasing the grain size to 8.
0 or more, and then adjust the surface roughness as described in (1) above to a degree of cold working using dull rolls of 3 to 15% to produce a mask with high quality unevenness after etching and perforation.

一方上記した後者の問題を解決するに好ましい提案はな
されていない。
On the other hand, no suitable proposal has been made to solve the latter problem mentioned above.

即ち■特開昭62−238003号公報の如き従来の低
炭素鋼フラットマスクの焼鈍時密着焼付を表面粗度の適
正化、即ちRaを0.2〜2. Outaで、Rsk(
粗さ曲線の高さ方向における偏りの指標)を0以上とす
るような提案はみられるとしてもFe−Ni系インバー
合金のフラットマスクにおける焼鈍時密着焼付防止に関
する好ましい技術は見当らない。
That is, (1) the adhesion baking during annealing of a conventional low carbon steel flat mask as disclosed in JP-A No. 62-238003 is performed by optimizing the surface roughness, that is, Ra of 0.2 to 2. Outa, Rsk (
Although there have been proposals to set the index of deviation in the height direction of the roughness curve to 0 or more, there is no preferred technique for preventing adhesion seizure during annealing in flat masks of Fe--Ni-based invar alloys.

(発明が解決しようとする課題) 上記したエツチング穿孔時におけるフラン!・マスクの
ムラ品位向上を図った前記■〜■の技術では何れも曲面
プレス前の焼鈍における密着2焼付防止が達成されてい
ない。又■では上述のように従来における低炭素鋼フラ
ットマスクの焼鈍時密着焼付を防止しているのみで、実
際のインバー合金強度は低炭素鋼に比して高く、その曲
面プレス前の焼鈍温度は低炭素鋼の場合に比し高く採ら
ざるを得す、ブラウン管メーカーではFe−Niインバ
ー合金のフラットマスク焼鈍を数十枚〜数百枚重ね合わ
せて810〜1100℃という低炭素鋼フラットマスク
の焼鈍温度よりも相当の高温で行っているのが現状であ
る。このような焼鈍温度においては前記■の技術ではイ
ンバー合金フラットマスク焼鈍時の焼付防止をなし得な
い。
(Problems to be Solved by the Invention) Fran during the above-mentioned etching drilling! - None of the techniques (1) to (3) above, which aim to improve the quality of mask unevenness, have achieved adhesion 2 prevention of seizure during annealing before curved surface pressing. In addition, as mentioned above, the method only prevents adhesion seizure during annealing of conventional low carbon steel flat masks, but the actual strength of the invar alloy is higher than that of low carbon steel, and the annealing temperature before curved pressing is Cathode ray tube manufacturers have to anneal low-carbon steel flat masks at temperatures of 810 to 1100°C by stacking dozens to hundreds of Fe-Ni invar alloy flat masks. The current situation is that it is performed at a considerably higher temperature than the actual temperature. At such an annealing temperature, the above technique (1) cannot prevent seizure during annealing of an invar alloy flat mask.

従って従来のFe−Ni系インバー合金のシャドウマス
ク用素材においてエツチング穿孔時のJ、う発生を防止
し、又穿孔後の焼鈍時密着焼付を適切に防止する技術が
確立されていない。
Therefore, no technology has been established for preventing the occurrence of J and cavities during etching and perforation in conventional Fe--Ni-based invar alloy shadow mask materials, and for appropriately preventing adhesion seizure during annealing after perforation.

「発明の構成」 (課題を解決するための手段) 本発明は上記したような実情に鑑み、エツチング穿孔性
が優れ、特に穿孔時のムラ発生を防止し、かつ穿孔後の
フラットマスクを焼鈍するときの密着焼付を防止したF
e−Ni系インバー合金のシャドウマスク用素材を得べ
く、検討を重ねて創案されたものであって、以下の如く
である。
"Structure of the Invention" (Means for Solving the Problems) In view of the above-mentioned circumstances, the present invention has excellent etching perforation properties, particularly prevents unevenness during perforation, and anneals a flat mask after perforation. F that prevents adhesion seizure when
In order to obtain a material for a shadow mask made of an e-Ni-based invar alloy, the invention was developed after repeated studies, and is as follows.

1、  Si:0.01〜0.15wt%、Ni:34
〜38−1χを含有し、残部がFeおよび不可避的不純
物から成り、かつその合金鋼帯の板厚はフラットマスク
の多数枚を積み重ねて焼鈍処理する工程を含むシャドウ
マスクの製造に供する該フラットマスクと実質上向等で
あり、その表面粗度(Ra)が0.3〜0.7μ鴎で、
しかも粗さ曲線の高さ方向における片寄り指標であるス
キューネス(Rsk)が0.3〜1.0で、且つ、 (Ra)≧1/3(Rsk ) +9.5の条件を満足
し、またエツチング直前での合金板の表面におけるSi
の成分偏析率 が工0%以下であることを特徴とするシャドウマスク用
Pe−Ni合金薄板; 2、前記1項の成分および表面粗度を有し、しかも該表
面?■度の異方性が、下記式、 Ra  (L)−Ra  (c)  l  ≦0.1/
JmRsk  (L)   Rsk  (c)  l 
≦0.2但しRa(L) 、Rsk(L)は圧延方向に
おける測定値で、Ra(c) 、Rsk(e)は圧延方
向と垂直な方向における測定値である。
1. Si: 0.01-0.15wt%, Ni: 34
~38-1χ, with the remainder consisting of Fe and unavoidable impurities, and the plate thickness of the alloy steel strip is a flat mask used for manufacturing a shadow mask, which includes a step of stacking and annealing a large number of flat masks. and the surface roughness (Ra) is 0.3 to 0.7μ,
Moreover, the skewness (Rsk), which is an index of deviation in the height direction of the roughness curve, is 0.3 to 1.0, and the conditions of (Ra)≧1/3 (Rsk) +9.5 are satisfied, and Si on the surface of the alloy plate just before etching
A Pe-Ni alloy thin plate for a shadow mask, characterized in that the component segregation rate is 0% or less; 2. It has the components and surface roughness of item 1 above, and the surface? The degree of anisotropy is expressed by the following formula, Ra (L) - Ra (c) l ≦0.1/
JmRsk (L) Rsk (c) l
≦0.2 However, Ra(L) and Rsk(L) are measured values in the rolling direction, and Ra(c) and Rsk(e) are measured values in a direction perpendicular to the rolling direction.

の関係を満足することを特徴とするシャドウマスク用F
e−Ni合金薄板; 3、前記1項の成分を有する薄板を製造するに測定値で
、Ra(c)、Rsk(c)は圧延時にダルロ一ルを用
い、前記1項の表面粗度を該薄板の表面に付与すること
を特徴とするシャドウマスク用Fe −Ni合金薄板の
製造方法;4、前記1項の成分を有する薄板を製造する
に測定値で、Ra(c)、Rsk(c)は圧延時にダル
ロールを用い、前記2項の表面粗度を該薄板の表面に付
与することを特徴とするシャドウマスク用Fe−Ni合
金薄板の製造方法。
F for a shadow mask characterized by satisfying the relationship
e-Ni alloy thin plate; 3. Ra (c) and Rsk (c) are the measured values when manufacturing a thin plate having the components listed in item 1 above. A method for producing a Fe-Ni alloy thin plate for a shadow mask, characterized in that the thin plate is coated with the thin plate having the components listed in item 1 above. ) is a method for producing a Fe--Ni alloy thin plate for a shadow mask, characterized in that a dull roll is used during rolling to give the surface of the thin plate the surface roughness of item 2 above.

(作用) 上記したような本発明について説明すると、本発明はシ
ャドウマスク用のインバー合金を対象としているが、事
実上問題のない熱膨脹特性として平均熱膨脹係数(30
〜100℃)の上限を2.0x l Q −6/ ℃と
し、この熱膨脹特性はNilに依存するもので、上述し
た平均熱膨脹係数の条件を満たず成分範囲は−t%(以
下単に%という)で、Ni量が34〜38%の場合であ
るから本発明合金のNi量としてはこの34〜38%と
する。なおこのNi量は必要とされる熱膨張係数に応し
−F記範囲内において適当に選択される。
(Function) To explain the present invention as described above, the present invention targets an invar alloy for shadow masks, and has an average coefficient of thermal expansion (30
~100°C) is set at 2.0x l Q -6/°C, and this thermal expansion characteristic depends on Nil, and the component range is -t% (hereinafter simply referred to as %) as it satisfies the above-mentioned condition for the average coefficient of thermal expansion. ), and the Ni content is 34 to 38%, so the Ni content of the alloy of the present invention is set to 34 to 38%. The amount of Ni is appropriately selected within the range -F depending on the required coefficient of thermal expansion.

次に本発明が目標とするエツチング性およびフラットマ
スク焼鈍時の密着焼付防止は表面粗度の適正化と合金中
Si量およびその分布適正化が同時に満たされて始めて
達成される。即ちSiはFe−Ni系インバー合金にお
いて焼鈍時の密着焼付防止に有効な元素であって、この
Siが0.01%以上となるとこの焼付防止に有効な酸
化膜が形成される。
Next, the etching properties and prevention of adhesion seizure during flat mask annealing, which are the goals of the present invention, can only be achieved when the surface roughness and the amount and distribution of Si in the alloy are optimized at the same time. That is, Si is an element effective in preventing adhesion seizure during annealing in Fe--Ni based invar alloys, and when this Si is 0.01% or more, an oxide film effective in preventing this seizure is formed.

一方このSiが0.15%を越えるとエツチング穿孔時
のムラ発生が著しくなるのでこれを上限とし、これらか
らして焼付が防止でき、しかもエツチング穿孔時にムラ
発生のないSilとして0.01〜0.15%と定めた
。なおSi量がこの範囲内の場合でも合金板表面でのS
iの成分変動が大きいと、局部的にエツチング穿孔状態
の差に起因するムラ発生や焼鈍時に形成される酸化膜の
性状に差が生じ、結果として局部的に焼付くなどの問題
が発生するため斯様な成分変動は制御されねばならない
。従って本発明では上記SiNの規定に加え、エツチン
グ直前での合金板表面におけるSiの成分偏析率、を1
0%以下とすることにより一ト記 の成分変動によるエ
ツチング穿孔性の局部的劣化、焼鈍時の局部的焼付を解
決する。なお、このSiの成分偏析率が10%以下であ
っても最小濃度部で0401%未満となったり、最大濃
度部で0,15%を超えるような場合には焼鈍時の焼付
、エツチング穿孔時のムラがそれぞれ発生するので、こ
のようなことにならないように制御する。
On the other hand, if this Si exceeds 0.15%, the occurrence of unevenness during etching becomes significant, so this is set as the upper limit, and based on these, it is 0.01 to 0. .15%. Note that even if the amount of Si is within this range, S on the surface of the alloy plate
If the component variation of i is large, problems such as localized unevenness due to differences in etching and perforation conditions and differences in the properties of the oxide film formed during annealing will occur, resulting in localized seizures. Such component fluctuations must be controlled. Therefore, in the present invention, in addition to the above-mentioned specifications for SiN, the segregation rate of Si on the alloy plate surface immediately before etching is set to 1.
By setting it to 0% or less, local deterioration of etching perforability due to component fluctuations and local seizure during annealing can be solved. Even if the Si component segregation rate is 10% or less, if it is less than 0.401% in the minimum concentration area or exceeds 0.15% in the maximum concentration area, it may cause seizing during annealing or during etching or drilling. Therefore, control is required to prevent this from occurring.

本発明で意図する焼鈍時の焼付防止効果およびエツチン
グ穿孔時のムラ発生の抑制は上述したような成分規定に
加えて、表面粗度の適正化が必要である。即ち第1図は
、S≦0.0025%で、Si:0、O1〜0.15%
(板面内の何れの場所でもStは0.01〜0.15%
) 、Stの成分偏析率≦10%の合金板についてエツ
チング穿孔性、焼鈍時の密着焼付きについて調査し、そ
れら両者を共に満足する領域を表面粗度のパラメータR
aおよびRskで示したものである。Rskが何れの値
の場合でもRaが0.7μ−を超える場合にはエツチン
グ穿孔時のムラ発生が著しくなり、一方Raが0.3μ
鋺未満の場合にはフラットマスク焼鈍時の密着焼付が全
面に発生し、且つフラットマスクの均一密着性不良が発
生するので本発明におけるRaの範囲は0.3〜0.7
μ醜とする。
In order to achieve the anti-seizure effect during annealing and the suppression of unevenness during etching and perforation as intended by the present invention, it is necessary to optimize the surface roughness in addition to the above-mentioned component specifications. That is, in FIG. 1, S≦0.0025%, Si: 0, O1~0.15%
(St is 0.01 to 0.15% at any location within the plate surface.
), etching perforation and adhesion seizure during annealing were investigated for alloy plates with a St component segregation rate ≦10%, and the area satisfying both of them was determined by the surface roughness parameter R.
a and Rsk. No matter what value Rsk is, if Ra exceeds 0.7μ-, unevenness during etching becomes noticeable;
If the Ra value is less than 0.5, adhesion seizure will occur on the entire surface during flat mask annealing, and the flat mask will have poor uniform adhesion, so the range of Ra in the present invention is 0.3 to 0.7.
μ Make it ugly.

又このようなRaの適正化に加え、焼鈍時の焼イ1き防
止のためにはRskの適正化も必要である。即ちRaが
0.3〜0.7 、crmの範囲でも、Rskが+0.
3未満では、フラットマスク焼鈍時の密着が全面にわた
って発生し、一方Rskが11.0を越える場合ではフ
ラットマスク焼鈍時の局部的焼付きが発生ずる。また、
Ra<  1/a Rsk 十0.5の条件ではフラッ
トマスク焼鈍時の密着が全面にわたり発生ずる。
In addition to such optimization of Ra, it is also necessary to optimize Rsk in order to prevent scorching during annealing. That is, even if Ra is in the range of 0.3 to 0.7 and crm, Rsk is +0.
When Rsk is less than 3, adhesion occurs over the entire surface during flat mask annealing, while when Rsk exceeds 11.0, localized seizure occurs during flat mask annealing. Also,
Under the conditions of Ra < 1/a Rsk 10.5, adhesion during flat mask annealing occurs over the entire surface.

以上より本発明で意図する効果を得るための表面粒度の
条件として、Ra :0.3〜O−7u tm 、Rs
k :0、3〜1.0かつ(Ra)≧−1/3(Rsk
) +0.5と定めた。
From the above, the surface particle size conditions for obtaining the effects intended in the present invention are Ra: 0.3 to O-7utm, Rs
k: 0, 3 to 1.0 and (Ra)≧-1/3 (Rsk
) +0.5.

以上のような、Si量及びその分布の適正化、と表面粗
度の適正化により、Fe−Niインバー合金をシャドウ
マスク用薄板に適用する際でのエツチング穿孔性及び焼
鈍時の密着焼付を防止できるが、フラットマスクの1回
の焼鈍での積層枚数を従来よりも、さらに多くし焼鈍時
のコストの低減を訂ろうとする場合には、上記の表面粗
度の規定に加え、表面粗さの面内での異方性を特定値以
下にしなければならない。即ち表面粗度の異方性をRa
  (L)−Ra  (c)  l  ≦0.1μmR
sk  (L)”−Rsk  (c)  l  ≦0.
2とすることにより、従来よりフラットマスクの積層枚
数を多くした際でも、部分的な焼付きは回避できる。
As described above, by optimizing the amount and distribution of Si and optimizing the surface roughness, it is possible to prevent etching perforation and adhesion seizure during annealing when applying Fe-Ni invar alloy to a thin plate for a shadow mask. However, if you are trying to reduce the cost of annealing by increasing the number of flat masks laminated in one annealing process than before, in addition to the above surface roughness specifications, the surface roughness In-plane anisotropy must be kept below a specific value. That is, the anisotropy of surface roughness is expressed as Ra
(L)-Ra (c) l ≦0.1μmR
sk (L)”−Rsk (c) l ≦0.
2, it is possible to avoid partial burn-in even when the number of laminated flat masks is increased compared to the conventional one.

なお、フラットマスクの焼鈍時の密着焼(」の発生しな
い臨界温度を高くするためには、上記の成分、表面粗度
の規定に加え、Sの低減が有効である。第2図は、Ra
、 Rsk、 Si及びSiの偏析率が本発明範囲内で
かつs31が変化した材料を用いて焼鈍温度を変えて、
密着焼付の状態を調べたものである。S量の低減により
、焼付の生じない臨界の焼鈍温度を高くすることができ
る。
In addition to specifying the above-mentioned components and surface roughness, it is effective to reduce S in order to raise the critical temperature at which contact annealing does not occur during flat mask annealing.
, Rsk, Si and Si segregation rate are within the range of the present invention and s31 is changed by changing the annealing temperature,
The state of contact seizure was investigated. By reducing the amount of S, the critical annealing temperature at which seizure does not occur can be increased.

このようなSの低減による効果の明確な機構は必ずしも
判然としないが、本発明範囲内Si量のインバー合金に
おけるプレス前焼鈍時に表面に形成される密着防止に有
効なSiの酸化膜形成と、Sの表面偏析が、表面に競合
して起るためではないかと推察される。
Although the clear mechanism of the effect of such a reduction in S is not necessarily clear, the formation of a Si oxide film effective for preventing adhesion, which is formed on the surface during pre-press annealing in an Invar alloy with a Si content within the range of the present invention, It is surmised that this is because surface segregation of S occurs in competition with the surface.

又、Siの偏析低減の手段としては、たとえば、鋼塊又
は連続鋳造(CC)スラブを1200°C×20hrの
加熱をなし、1次分塊での断面減少率20〜60%にて
分塊圧延を行ないその軽分塊スラブを1200℃X20
hrで加熱し、2次分塊での断面減少率30〜50%で
分塊圧延し、徐冷する工程があげられる。この工程の中
では1次の加熱・均熱によるSiの鋼塊偏析低減、1次
分塊での加工及び引き続く加熱・均熱によるSiの鋼塊
偏析及びミクロ偏析の低減促進および2次分塊による加
工並びに引き続く徐冷過程でのSiの鋼塊偏析及びミク
ロ偏析の低減のさらなる促進という大きく分げC3つの
工程における均質化の相乗効果によりはしめてSiの均
質化が達成されているのである。なお分塊前の加熱は、
雰囲気中の8含有量を80ppm以下と極力低くして加
熱中の粒界脆化を抑制し、分塊スラブにおける表面疵の
発生抑制を配慮した。
In addition, as a means of reducing Si segregation, for example, a steel ingot or a continuous casting (CC) slab is heated at 1200°C x 20 hr, and the area is subjected to blooming at a cross-sectional area reduction rate of 20 to 60% in the primary blooming. Rolling is carried out and the light blooming slab is heated at 1200℃ x 20
Examples include a step of heating at 100 hr, followed by blooming rolling at a cross-sectional area reduction rate of 30 to 50% in secondary blooming, and slow cooling. This process involves reducing the segregation of Si in the steel ingot through primary heating and soaking, promoting the reduction of Si ingot segregation and micro-segregation through processing in the primary blooming process and subsequent heating and soaking, and secondary blooming. The homogenization of Si has been achieved through the synergistic effect of homogenization in the three main steps, namely processing and further promotion of the reduction of Si ingot segregation and microsegregation in the subsequent slow cooling process. The heating before blooming is as follows:
The content of 8 in the atmosphere was kept as low as 80 ppm or less to suppress grain boundary embrittlement during heating, and consideration was given to suppressing the occurrence of surface flaws in the blooming slab.

更に本発明で特徴としているシャドウマスク用薄板は上
記のような製造履歴のものに限らず、溶鋼から直接に冷
延素材を鋳造するス1ヘリツブキャスティングまたはス
トリップキャスティングにより鋳造された銅帯を熱延軽
圧下することにより冷延素材を製造する工程を経たもの
でも本発明の効果は充分に発揮される。又このような表
面をもつシャドウマスク用インバー合金素材の製造は最
終冷延または調質圧延時にダルロールを用いて圧延する
ことにより達成し得る。
Furthermore, the thin plate for shadow masks that is featured in the present invention is not limited to those with a manufacturing history as described above. The effects of the present invention can be fully exerted even when the cold-rolled material is produced through rolling and light rolling. Further, production of an invar alloy material for a shadow mask having such a surface can be accomplished by rolling using dull rolls during final cold rolling or temper rolling.

なお、アンバー合金のエツチング穿孔性、特にエツチン
グ穿孔後の孔界面の品質を向上させ、かつエツチング液
程におけるエツチング液の汚れを少なくし、エツチング
の作業性を向上させるためには、合金中の非金属介在物
の組成を第3図に示すN、O。
In addition, in order to improve the etching perforation properties of the amber alloy, especially the quality of the hole interface after etching, and to reduce the contamination of the etching solution during the etching process and improve etching workability, it is necessary to The composition of the metal inclusions is shown in FIG. 3.

CuOMgO系三元状態図の点1,2,3,4.および
5を結んだ5辺形で囲まれた領域外の組成に制御するこ
とが必要である。すなわち、このような介在物の組成制
御により、エツチング直前での非金属介在物はサイズ3
μm以下の球形の介在物が主体となり、展伸性を有する
圧延方向に伸びた線型の介在物が極めて少な(なる結果
エツチング孔の界面における介在物に起因したピントの
形成が抑制され、かつ線状介在物がエツチング液に混入
してエツチング液の汚れることも極めて少なくなる。
Points 1, 2, 3, 4 of the CuOMgO system ternary phase diagram. It is necessary to control the composition to outside the area surrounded by the pentagon connecting 5 and 5. In other words, by controlling the composition of such inclusions, the nonmetallic inclusions immediately before etching are reduced to size 3.
The inclusions are mainly spherical inclusions of μm or less in size, and there are very few linear inclusions that have extensibility and extend in the rolling direction (as a result, the formation of focal points caused by inclusions at the interface of the etching hole is suppressed, and the Contamination of the etching solution due to inclusions in the etching solution is also greatly reduced.

上記したようなダルロールを得るには放電加工、レーザ
ー加工なども採用し得るが、ジョンドブラスト法によっ
てダル目付けすることが好ましく、この場合においてロ
ール材質としては5KH(硬度Hs85〜95)を採用
し、又径100〜125inφのものを用いることが適
切である。ショツトブラスト法によるロール加工条件と
してはAl2O〜#240のスチールグリソト(Hv 
400〜950)を用い、投射エネルギーとしてはAl
2Oで低目、#240では高目のものを採用する。
Electric discharge machining, laser machining, etc. can be used to obtain the dull roll as described above, but it is preferable to dull the roll by the John de blasting method. In this case, 5KH (hardness Hs 85 to 95) is used as the roll material, Further, it is appropriate to use a diameter of 100 to 125 inches. The roll processing conditions for the shot blasting method are Al2O~#240 steel grisotho (Hv
400 to 950), and the projected energy was Al
Use a low grade for 2O and a high grade for #240.

適正ロール表面粗度を得るには、加工前においてRa:
0.1.f7m以下(Rsk<O)としたものに対し加
工処理してRa:0.4〜0.9 +17m% Rsk
: <0.2、より好ましくはく〜0.5のものとし、
このようなロール粗度として本発明範囲の表面粗度を適
切に得しめる。
To obtain an appropriate roll surface roughness, Ra:
0.1. Ra: 0.4-0.9 +17m% Rsk after processing for f7m or less (Rsk<O)
: <0.2, more preferably ~0.5,
As such a roll roughness, a surface roughness within the range of the present invention can be appropriately obtained.

圧延に関しては、最終冷延またはgP1質圧延に当り前
述したようなダルロールで1パス当Jl)10%以上、
しかも合計2パス以上を採用し、1パス当り10%以上
の圧下をなすことでロール粗度が充分に転写され、しか
も2バス以上とすることより所定のR3にを有効に得し
める。
Regarding rolling, in final cold rolling or gP1 quality rolling, Jl) 10% or more per pass with a dull roll as described above,
Moreover, by employing a total of two or more passes and applying a rolling reduction of 10% or more per pass, the roll roughness is sufficiently transferred, and by using two or more passes, a predetermined R3 can be effectively obtained.

更に具体的な圧延に際して用いられる圧延油としては温
度10〜50℃で粘度7〜8cstのものを0.1〜0
.5 kg / crAで吐出して用い、圧延速度は3
0〜200mpm、圧延時の張力は前方が15〜45k
g/謙lt、後方を10〜40kg/12程度となし、
単位幅当りの圧下刃としては0.15〜0.25)ン/
龍とすることが好ましい。前記した圧延油吐出圧力が0
.1 kg / ct未満であり、あるいは0.5 k
g/cffl超えではその他の条件が適正でも本発明で
目標とする合金薄板の表面粗度が得難い傾向が認められ
、又0.5 kg / cat超えでは表面粗度にムラ
が発生する。又上記したような圧延時の張力条件適正化
によって圧延材である合金薄板の平坦度を良好なレベル
とすることができる。
More specifically, the rolling oil used in rolling is one with a temperature of 10 to 50°C and a viscosity of 7 to 8 cst, and a viscosity of 0.1 to 0.
.. It is used by discharging at 5 kg/crA, and the rolling speed is 3
0~200mpm, tension during rolling is 15~45k at the front
g/kenlt, the rear is about 10-40kg/12,
The rolling blade per unit width is 0.15 to 0.25) n/
Preferably a dragon. The above-mentioned rolling oil discharge pressure is 0
.. less than 1 kg/ct or 0.5 k
If it exceeds 0.5 kg/cffl, it is difficult to obtain the surface roughness of the thin alloy plate targeted by the present invention even if other conditions are appropriate, and if it exceeds 0.5 kg/cat, unevenness occurs in the surface roughness. Further, by optimizing the tension conditions during rolling as described above, the flatness of the rolled alloy thin plate can be brought to a good level.

薄手反圧延に当ってアイアニングロール、アンチクリン
ピンクロールなどが採用され、又中間焼鈍、SR焼鈍と
して軟鋼用連続焼鈍炉HIz?fi度5〜15%、DP
−10〜−30℃の雰囲気ガス)または光輝焼鈍炉(H
z濃度15〜100%、DP20〜−50℃)などが用
いられる。
Ironing rolls, anti-crimping rolls, etc. are used for thin counter-rolling, and continuous annealing furnaces for mild steel, HIz?, are used for intermediate annealing and SR annealing. fi degree 5-15%, DP
-10~-30℃ atmosphere gas) or bright annealing furnace (H
z concentration of 15 to 100%, DP of 20 to -50°C), etc. are used.

(実施例) 上記したような本発明によるものの具体的実施例を示し
、その作用効果の仔細を説明すると以下の如くである。
(Example) A specific example of the invention according to the above-mentioned embodiment will be shown, and details of its operation and effect will be explained as follows.

実施例I。Example I.

次の第1表に示すような成分組成を有する合金陽1〜イ
を電気炉にて出鋼し、その後に取鍋精錬を行うことによ
って7トン鋼塊として得た。
Alloys No. 1 to A having the composition shown in Table 1 below were tapped in an electric furnace and then ladle refined to obtain a 7-ton steel ingot.

なお、出鋼後の取鍋精錬は、CaO: 40%以下のM
gO−CaO系耐火物よりなる取鍋を使用し、溶滓は成
分力<wt%で(Cab)/(CaO)+(JV20:
1)が0.45%以下、MgOが25%以下、5iOz
が15%以下、Siより酸化力の弱い金属の酸化物が3
%以下であるCaOAl2O:+  MgO系のもので
あり、これにより処理することで第1表中の化学成分お
よび後述する第2表のような合金を得た。
In addition, in the ladle refining after tapping, CaO: 40% or less M
A ladle made of gO-CaO-based refractory is used, and the slag is (Cab)/(CaO)+(JV20:
1) is 0.45% or less, MgO is 25% or less, 5iOz
is less than 15%, and metal oxides with weaker oxidizing power than Si are 3
% or less of CaOAl2O:+MgO, and by processing with this, alloys having the chemical compositions shown in Table 1 and those shown in Table 2 to be described later were obtained.

上記したようにして得られた各鋼塊を手入れの後、12
00℃で20時間加熱し、1次分塊にて断面減少率60
%で分塊圧延を行い、しかるのち1200℃で20時間
加熱し、2次分塊にて断面減少率45%で分塊圧延を行
い、徐冷することにより、合金隘1よりa % fの供
試材を得、合金隘2は供試材g、合金Il&13は供試
材h1合金隘4は供試材iとして夫々用意した。なお供
試材すの材料は7トン鋼塊を手入れ後、1200℃にて
15時間加熱し、1次分塊にて断面減少率78%で分塊
圧延を行い徐冷することによりスラブを準備した。
After cleaning each steel ingot obtained as described above, 12
Heating at 00℃ for 20 hours, the area reduction rate was 60 in the primary blooming.
%, followed by heating at 1200°C for 20 hours, secondary blooming with a cross-section reduction rate of 45%, and slow cooling. Test materials were obtained, and alloy number 2 was prepared as test material g, alloy Il & 13 was prepared as test material h, and alloy number 4 was prepared as test material i, respectively. The material for the test material is a 7-ton steel ingot, heated at 1200℃ for 15 hours, subjected to primary blooming with a cross-section reduction rate of 78%, and slowly cooled to prepare a slab. did.

これらのスラブを手入れし酸化防止剤を塗布後、加熱温
度1100℃で加熱してから熱間圧延を行った。なおこ
の際、1000℃以上での合計圧下率は82%であり、
850℃以上での合計圧下率は98%であって、熱間圧
延された熱延コイルの巻取り温度は550〜750℃で
あった。
After cleaning these slabs and coating them with an antioxidant, they were heated at a heating temperature of 1100° C. and then hot rolled. At this time, the total rolling reduction rate at 1000°C or higher was 82%,
The total rolling reduction at 850°C or higher was 98%, and the winding temperature of the hot-rolled coil was 550 to 750°C.

上記のようにして得られた熱延コイルは脱スケール後、
冷延、焼鈍を繰返し、最終冷延または調質圧延時にダル
ロールを用いて圧延することにより後述する第3表に示
す表面粗度を有する板厚0、25 mlの合金板を夫々
前た。なお、エツチングテスト材の介在物の形態、大き
さ分類は、原板の圧延方向における板厚断面で測定した
。測定方法は800倍にて6012検鏡し、視野内すべ
ての介在物の厚さ、長さを測定し、(長さ/厚さ)≦3
を球状介在物、(長さ/厚さ)〉3を線状介在物として
分類し、かつそれらの介在物のサイズ別の個数(111
当り)で表記した。
After descaling the hot-rolled coil obtained as above,
Cold rolling and annealing were repeated, and alloy plates with thicknesses of 0 and 25 ml having surface roughness shown in Table 3, which will be described later, were prepared by rolling using dull rolls during final cold rolling or temper rolling, respectively. The morphology and size classification of inclusions in the etching test material were measured in the thickness section of the original sheet in the rolling direction. The measurement method is to use a 6012-microscope at 800x magnification and measure the thickness and length of all inclusions within the field of view.(Length/Thickness)≦3
are classified as spherical inclusions, (length/thickness)〉3 as linear inclusions, and the number of these inclusions by size (111
(hit).

用いたロールのダル目付けはショツトブラスト法で材質
SKH (Hs 90)の径120龍のロールに対し#
120のスチールグリソh ( II v400〜95
0)で加工し、加工後の表面粗度がRa:0.3〜0、
85、Rskニー0.2〜−1.1のr:】−ルを用い
、この実施例では最終調質圧延時に前記ダルロールによ
り1バス目は18,6%、2パス目は12.3%(合計
圧下率28.6%で行った。またこの圧延に当って採用
された圧延油の粘度は?.5cstであり、圧延速度は
100mpmであって、圧延時張力については前方20
kg/am’、後方15kg/謹鳳2で実施した。
The dull weight of the roll used was # for a roll of diameter 120 made of material SKH (Hs 90) by shot blasting.
120 Steel Griso H (II v400~95
0), and the surface roughness after processing is Ra: 0.3-0,
85, Rsk knee of 0.2 to -1.1. In this example, during the final skin pass rolling, the dull roll was used to roll the first pass to 18.6% and the second pass to 12.3%. (The total rolling reduction was 28.6%.The viscosity of the rolling oil used for this rolling was ?5 cst, the rolling speed was 100 mpm, and the tension at the time of rolling was 20 mpm.
kg/am', rear 15 kg/Kinho 2.

なお、この圧延において用いられた単位幅当りの圧下刃
は0.20)ン/■1、圧延油の吐出圧力は0.4kg
/cdであって、円滑に圧延処理することができ、得ら
れた合金板の平坦度その他は良好なレベルのものとして
得ることができた。
The rolling blade per unit width used in this rolling was 0.20 mm/■1, and the discharge pressure of rolling oil was 0.4 kg.
/cd, the rolling process could be carried out smoothly, and the flatness and other properties of the obtained alloy plate could be obtained at a good level.

上記のような各合金板の板面におけるSiの偏析率はE
PMAによるマフピングアナライザーにより調査した。
The segregation rate of Si on the plate surface of each alloy plate as described above is E
This was investigated using a PMA mufping analyzer.

又これらの合金薄板コイルにエツチング穿孔し、フラッ
トマスクを作製し、ムラ発生の状況を調査した。さらに
エツチング孔の界面を走査型電子顕微鏡により観察し、
ビットの有無を調べ、またエツチング液の汚れは、エツ
チング穿孔後の残滓の量を調べることにより行った。更
に焼鈍時の密着焼付については上記したようなフラット
マスクを30枚積層し、900℃の温度で焼鈍した後に
密着の状況を調査した。合金隘1〜4の各村は、次の第
2表に示すような介在物の組成を有し、この介在物は液
相線温度1600℃以上の融点を有するもので、エツチ
ング直前の合金薄板での介在物は形状からして球状、大
きさも幅でみて、3μm以下のものが主体となっており
、エツング孔性でみても、孔界面のピットは見られず、
エツチング液の汚れも極めて少なく、エツチング性に優
れている。即ち本発明で意図する合金素材としては、こ
のようにエツチング穿孔性に優れているものを基本とし
ている。
In addition, holes were etched into these thin alloy coils, flat masks were made, and the occurrence of unevenness was investigated. Furthermore, the interface of the etching hole was observed using a scanning electron microscope.
The presence or absence of bits was checked, and the presence of etching liquid was checked by checking the amount of residue after etching. Furthermore, regarding adhesion baking during annealing, 30 flat masks as described above were laminated and annealed at a temperature of 900° C., and then the adhesion was investigated. Each village of Alloy Nos. 1 to 4 has the composition of inclusions as shown in Table 2 below, and these inclusions have a melting point of 1600°C or more, which is the liquidus temperature, and the alloy thin plate immediately before etching. The inclusions were spherical in shape and were mainly 3 μm or less in width, and no pits were observed at the pore interface in terms of etching porosity.
There is very little staining of the etching solution, and the etching properties are excellent. That is, the alloy materials contemplated by the present invention are basically those having excellent etching perforation properties.

上記したような各調査の結果は何れも次の第3表に示す
如くであり、又各合金11hl〜4については前述第3
図のA/203−CaO−MgO系三元状態図に■〜■
として示した。
The results of each of the above-mentioned investigations are shown in Table 3 below, and for each alloy 11hl to 4, the results are as shown in Table 3 above.
In the figure A/203-CaO-MgO system ternary phase diagram ■~■
It was shown as

即ら供試材aおよびgの材料は、Si量、Si偏析率、
Ra (L)、Ra (C)、Rsk (L)、Rsk
 (C)、(Ra) +1/3 (Rsk)の値が何れ
も本発明範囲内にあり、エツチング穿孔時のムラ発生お
よび焼鈍時の密着焼付はともに認められない。
That is, the materials of test materials a and g have the following characteristics: Si amount, Si segregation rate,
Ra (L), Ra (C), Rsk (L), Rsk
The values of (C) and (Ra) +1/3 (Rsk) are both within the range of the present invention, and neither unevenness during etching nor adhesion seizure during annealing is observed.

これに対し、供試材り、i、bのものは、何れも表面粗
度のパラメータが本発明範囲内にあるものの、Si量に
ついては本発明規定範囲下限を下まわるもの、その上限
値を越えるもの、あるいは偏析率が上限を越えるもので
あり、エツチング穿孔時のムラ発生、焼鈍時の密着焼付
のうち、1つまたは2つに問題が認められる。
On the other hand, although the surface roughness parameters of sample materials i and b are within the range of the present invention, the amount of Si is below the lower limit of the range specified by the present invention, and the upper limit thereof is within the range of the present invention. or the segregation rate exceeds the upper limit, and problems are recognized in one or two of unevenness during etching and perforation and adhesion burning during annealing.

なお供試材c、d、e、fの各村は何れもSi量および
Siの偏析率が本発明の規定範囲内にあるが、それぞれ
本発明におけるRaの上限、(Ra) +1/3(Rs
k) −0,5の値、Rskの下限、Rskの上限から
外れるものであって、エツチング穿孔時のムラ発生、焼
鈍時の密着焼付性のうち1つ以上の性能が好ましくない
Although the Si content and the Si segregation rate of sample materials c, d, e, and f are all within the specified range of the present invention, the upper limit of Ra in the present invention, (Ra) + 1/3 ( Rs.
k) The value is outside the value of -0.5, the lower limit of Rsk, and the upper limit of Rsk, and the performance is unfavorable in one or more of unevenness during etching and perforation and adhesion and seizure during annealing.

即ち本発明で目的とする効果は、Si量、Siの偏析率
という成分的配慮に加え、表面粗度の適正化が図られて
始めて達成されることが理解される。
That is, it is understood that the effects aimed at by the present invention can only be achieved by optimizing the surface roughness in addition to taking into account the composition of the amount of Si and the segregation rate of Si.

実施例2 前記した実施例1の供試材aの作製のために用いた熱延
コイルおよび供試材gの作製に用いた熱延コイルを脱ス
ケール後、冷延と焼鈍を繰返し最終冷延または調質圧延
時にダルロールを用いて圧延し、次の第4表に示ずよう
な表面粗度を有する板厚0.25 mmの合金板(供試
材j、に、(!、m口および0)を得た。
Example 2 After descaling the hot-rolled coil used to produce sample material a of Example 1 and the hot-rolled coil used to produce sample material g, cold rolling and annealing were repeated to final cold rolling. Or an alloy plate of 0.25 mm thickness (sample material j, (!, m opening and 0) was obtained.

これらの供試材における板面でのSi偏析率は実施例1
と同じ方法で調べたが何れも4〜7%の範囲であった。
The Si segregation rate on the plate surface of these test materials is as shown in Example 1.
The results were investigated using the same method as above, and all results were in the range of 4 to 7%.

又これらの合金薄板コイルをエツチング穿孔してフラッ
トマスクを作製し、ムラ発生状況を調査した。更に焼鈍
時の密着焼付は上記したフラットマスクを50枚積層し
第4表に示す温度で焼鈍してその後の密着状況を調べた
。これらの結果は何れも次の第4表に示す如くである。
In addition, flat masks were made by etching holes in these alloy thin plate coils, and the occurrence of unevenness was investigated. Furthermore, for adhesion baking during annealing, 50 sheets of the above-mentioned flat masks were stacked and annealed at the temperatures shown in Table 4, and the adhesion conditions thereafter were investigated. All of these results are shown in Table 4 below.

なお、この実施例において用いられたダルロール、圧延
条件などについては前記した実施例1に述べたところと
同様であるが、ロールの表面粗度は加工後においてRa
:0.45〜0.70 μm、  RskニーO,4〜
−一0.9のものであった。
Note that the dull roll used in this example, rolling conditions, etc. are the same as those described in Example 1 above, but the surface roughness of the roll is Ra after processing.
:0.45~0.70 μm, Rsk knee O, 4~
-10.9.

即ち供試材jは、Si量、Si偏析率および表面粗度が
何れも本発明規定範囲内で、Siは0.0005%のも
のであり、エツチング穿孔時のムラ発生はなく、しかも
この実施例の焼鈍条件においても密着焼付は発生してい
ない。
In other words, the amount of Si, the segregation rate of Si, and the surface roughness of the sample j are all within the range specified by the present invention, and the Si content is 0.0005%, and there is no unevenness during etching and drilling. Even under the example annealing conditions, no contact seizure occurred.

これに対し供試材0は、Si量、Siの偏析率および表
面粗度が本発明の規定範囲内のもので、Siが0.00
25%のものであり、エツチング穿孔時のムラ発生はな
いが、焼鈍時の密着焼付が一部で発生している。このよ
うに本発明の構成要件を満たす場合であっても焼鈍温度
が実施例1より高温となるような場合にはSiを低くす
ることにより密着焼付の発生を防止し得ることが理解さ
れる。
On the other hand, sample material 0 has a Si amount, Si segregation rate, and surface roughness within the specified range of the present invention, and has a Si content of 0.00.
25%, and no unevenness occurs during etching and perforation, but adhesion seizure occurs in some areas during annealing. As described above, it is understood that even if the constituent requirements of the present invention are satisfied, if the annealing temperature is higher than that of Example 1, the occurrence of adhesion seizure can be prevented by lowering the Si content.

また供試材nはRaO面内異方性およびRskの面内異
方性以外は本発明の規定範囲内のものであって、この材
料はエツチング穿孔時のムラ発生はなく 、850℃の
焼鈍では密着焼付が発生していない。これに対し供試材
mは供試材nのフラッドマスクを950℃で焼鈍した場
合であって、この場合は焼鈍時の密着焼付が全面にわた
って発生している。
In addition, the sample material n is within the specified range of the present invention except for the in-plane anisotropy of RaO and the in-plane anisotropy of Rsk. In this case, contact seizure did not occur. On the other hand, sample material m is obtained by annealing the flood mask of sample material n at 950° C., and in this case, contact seizure occurred over the entire surface during annealing.

なお供試材に、lの各村も夫々Raの面内異方性、Rs
kO面内異方性以外は本発明の規定範囲内のものである
が、これらの材料でも950℃の焼鈍で密着焼付きが一
部に発生している。これらの供試材に、l、mに対し、
供試材jのものではRaO面内異方性およびRskの面
内異方性も含め、すべてが本発明規定範囲内であって、
この場合には焼鈍温度が950℃でも密着焼付は発生し
ていない。
In addition, in the sample material, each village of l also has an in-plane anisotropy of Ra, Rs
Although the properties other than kO in-plane anisotropy are within the specified range of the present invention, even in these materials, adhesion seizure occurs in some parts when annealed at 950°C. For these test materials, for l and m,
In sample material j, all of the in-plane anisotropy of RaO and the in-plane anisotropy of Rsk are within the range specified by the present invention,
In this case, no contact seizure occurred even at an annealing temperature of 950°C.

このように850℃で焼鈍密着が発生しない材料であっ
ても、焼鈍温度をより高温とする際にはRaおよびRs
kの面内異方性について適正化が必要である。
Even in materials where annealing adhesion does not occur at 850°C, when the annealing temperature is increased to a higher temperature, Ra and Rs
It is necessary to optimize the in-plane anisotropy of k.

「発明の効果」 以上説明したような本発明によるときは、エツチング穿
孔性に優れ、又穿孔時のムラ発生を的確に防止し、且つ
穿孔後のフラットマスクを焼鈍するに当っての密着焼付
をも適切に防止したFe−Ni系インバー合金のシャド
ウマスク用薄板を提供し、又その好ましい製造法を得し
めて高品位のフラットマスクを歩留り高く製造せしめ、
それによってコス]へ低減を可能ならしめるなどの効果
を有し、工業的にその効果の大きい発明である。
``Effects of the Invention'' The present invention as explained above has excellent etching perforation properties, accurately prevents unevenness during perforation, and prevents contact baking when annealing the flat mask after perforation. To provide a thin plate for a shadow mask made of an Fe-Ni-based invar alloy that is appropriately prevented from causing damage, and to obtain a preferable manufacturing method for manufacturing a high-quality flat mask at a high yield.
This invention has the effect of making it possible to reduce costs.This invention has great industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の技術的内容を示すものであって、第1図
はフラットマスクにおけるエツチング穿孔時のムラ発生
および焼鈍時の密着焼付性とRa、Rskの関係を示し
た図表、第2図はフラットマスクの焼鈍密着性とSiの
関係を焼鈍時フラットマスク積層数30枚の場合につい
て示した図表、第3図はCaOJVz03  MgO系
非金属介在物の三元状態図の一部であって本発明の実施
例において用いた各合金階1〜4として示したものであ
り、第4図はその全般的関係を示した三元状態図である
The drawings show the technical content of the present invention, and FIG. 1 is a chart showing the relationship between Ra and Rsk and the occurrence of unevenness during etching and perforation in a flat mask, adhesion seizure during annealing, and Ra and Rsk. Figure 3 is a diagram showing the relationship between the annealing adhesion of flat masks and Si for the case where 30 flat masks are stacked during annealing. The alloys used in the examples are shown as 1 to 4, and FIG. 4 is a ternary phase diagram showing their general relationship.

Claims (1)

【特許請求の範囲】 1、Si:0.01〜0.15wt%、Ni:34〜3
8wt%を含有し、残部がFeおよび不可避的不純物か
ら成り、かつその合金鋼帯の板厚はフラットマスクの多
数枚を積み重ねて焼鈍処理する工程を含むシャドウマス
クの製造に供する該フラットマスクと実質上同等であり
、その表面粗度(Ra)が0.3〜0.7μmで、しか
も粗さ曲線の高さ方向における片寄り指標であるスキュ
ーネス(Rsk)が0.3〜1.0で、且つ、 (Ra)≧−1/3(Rsk)+0.5 の条件を満足し、またエッチング直前での合金板の表面
におけるSiの成分偏析率 |(偏析域の成分濃度−平均成分濃度)/平均成分濃度
|×100が10%以下であることを特徴とするシャド
ウマスク用Fe−Ni合金薄板。 2、請求項1の成分および表面粗度を有し、しかも該表
面粗度の異方性が、下記式、 |Ra(L)−Ra(c)|≦0.1μm |Rsk(L)−Rsk(c)|≦0.2 但しRa(L)、Rsk(L)は圧延方向における測定
値で、Ra(c)、Rsk(c)は圧延方向と垂直な方
向における測定値である。 の関係を満足することを特徴とするシャドウマスク用F
e−Ni合金薄板。 3、請求項1の成分を有する薄板を製造するに当り、そ
の最終冷延または調質圧延時にダルロールを用い、請求
項1の表面粗度を該薄板の表面に付与することを特徴と
するシャドウマスク用Fe−Ni合金薄板の製造方法。 4、請求項1の成分を有する薄板を製造するに当り、そ
の最終冷延または調質圧延時にダルロールを用い、請求
項2の表面粗度を該薄板の表面に付与することを特徴と
するシャドウマスク用Fe−Ni合金薄板の製造方法。
[Claims] 1. Si: 0.01 to 0.15 wt%, Ni: 34 to 3
8 wt%, the balance being Fe and unavoidable impurities, and the plate thickness of the alloy steel strip is substantially the same as that of the flat mask used in the production of a shadow mask, which includes a process of stacking and annealing a large number of flat masks. The surface roughness (Ra) is 0.3 to 0.7 μm, and the skewness (Rsk), which is an index of deviation in the height direction of the roughness curve, is 0.3 to 1.0. In addition, the condition of (Ra)≧-1/3(Rsk)+0.5 is satisfied, and the Si component segregation rate on the surface of the alloy plate immediately before etching | (component concentration in segregation area - average component concentration)/ An Fe-Ni alloy thin plate for a shadow mask, characterized in that the average component concentration |×100 is 10% or less. 2. It has the component and surface roughness of claim 1, and the anisotropy of the surface roughness is expressed by the following formula: |Ra(L)-Ra(c)|≦0.1μm |Rsk(L)- Rsk(c)|≦0.2 However, Ra(L) and Rsk(L) are measured values in the rolling direction, and Ra(c) and Rsk(c) are measured values in a direction perpendicular to the rolling direction. F for a shadow mask characterized by satisfying the relationship
e-Ni alloy thin plate. 3. A shadow characterized in that in producing a thin plate having the components of claim 1, a dull roll is used during final cold rolling or temper rolling to impart the surface roughness of claim 1 to the surface of the thin plate. A method for producing a Fe-Ni alloy thin plate for masks. 4. A shadow characterized in that in producing a thin plate having the components of claim 1, a dull roll is used during final cold rolling or temper rolling to impart the surface roughness of claim 2 to the surface of the thin plate. A method for producing a Fe-Ni alloy thin plate for masks.
JP2210242A 1990-02-15 1990-08-10 Fe-Ni alloy thin plate for shadow mask and method for manufacturing the same Expired - Fee Related JPH07116558B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP1991/000182 WO1991012345A1 (en) 1990-02-15 1991-02-15 Thin sheet of iron-nickel alloy for shadow mask and production thereof
DE69126252T DE69126252T2 (en) 1990-02-15 1991-02-15 THIN SHEET FROM AN IRON-NICKEL ALLOY FOR A SHADOW MASK AND METHOD FOR THEIR PRODUCTION
EP91903834A EP0468059B1 (en) 1990-02-15 1991-02-15 Thin sheet of iron-nickel alloy for shadow mask and production thereof
KR1019910701357A KR940008930B1 (en) 1990-02-15 1991-02-15 Thin film sheet of iron-nickel alloy for shadow mask and manufacturing method thereof
US07/768,918 US5252151A (en) 1990-02-15 1991-02-15 Fe-Ni alloy sheet for shadow mask having a low silicon segregation and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2-32414 1990-02-15
JP3241490 1990-02-15

Publications (2)

Publication Number Publication Date
JPH03281756A true JPH03281756A (en) 1991-12-12
JPH07116558B2 JPH07116558B2 (en) 1995-12-13

Family

ID=12358295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2210242A Expired - Fee Related JPH07116558B2 (en) 1990-02-15 1990-08-10 Fe-Ni alloy thin plate for shadow mask and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JPH07116558B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649598A (en) * 1992-01-31 1994-02-22 Nkk Corp Fe-ni alloy sheet and fe-ni-co alloy sheet for shadow mask excellent in blackening treatability
JP2001262231A (en) * 2000-03-17 2001-09-26 Nippon Mining & Metals Co Ltd METHOD FOR PRODUCING STOCK FOR Fe-Ni SERIES ALLOY SHADOW MASK EXCELLENT IN ETCHING PIERCEABILITY
JP2016135505A (en) * 2015-01-20 2016-07-28 日立金属株式会社 METHOD FOR PRODUCTION OF Fe-Ni-BASED THIN ALLOY SHEET
JP2017064763A (en) * 2015-09-30 2017-04-06 日立金属株式会社 PRODUCTION METHOD OF Fe-Ni-BASED ALLOY THIN SHEET
JPWO2018061530A1 (en) * 2016-09-29 2019-06-24 日立金属株式会社 Method of manufacturing Fe-Ni based alloy sheet and Fe-Ni based alloy sheet
JPWO2018052135A1 (en) * 2016-09-15 2019-06-27 日立金属株式会社 Material for metal mask and method of manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139344A (en) * 1984-07-31 1986-02-25 Toshiba Corp Shadow mask
JPS62238003A (en) * 1986-04-07 1987-10-19 Nisshin Steel Co Ltd Stock for shadow mask and its production
JPS62243782A (en) * 1986-04-15 1987-10-24 Nippon Mining Co Ltd Production of thin metallic plate for shadow mask
JPS6452022A (en) * 1987-08-19 1989-02-28 Nippon Mining Co Production of shadow mask material
JPH01252725A (en) * 1988-03-31 1989-10-09 Nippon Steel Corp Manufacture of fe-ni alloy sheet for shadow mask
JPH03193846A (en) * 1989-12-22 1991-08-23 Nippon Mining Co Ltd Shadow mask
JPH03193847A (en) * 1989-12-22 1991-08-23 Nippon Mining Co Ltd Shadow mask

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139344A (en) * 1984-07-31 1986-02-25 Toshiba Corp Shadow mask
JPS62238003A (en) * 1986-04-07 1987-10-19 Nisshin Steel Co Ltd Stock for shadow mask and its production
JPS62243782A (en) * 1986-04-15 1987-10-24 Nippon Mining Co Ltd Production of thin metallic plate for shadow mask
JPS6452022A (en) * 1987-08-19 1989-02-28 Nippon Mining Co Production of shadow mask material
JPH01252725A (en) * 1988-03-31 1989-10-09 Nippon Steel Corp Manufacture of fe-ni alloy sheet for shadow mask
JPH03193846A (en) * 1989-12-22 1991-08-23 Nippon Mining Co Ltd Shadow mask
JPH03193847A (en) * 1989-12-22 1991-08-23 Nippon Mining Co Ltd Shadow mask

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649598A (en) * 1992-01-31 1994-02-22 Nkk Corp Fe-ni alloy sheet and fe-ni-co alloy sheet for shadow mask excellent in blackening treatability
JP2001262231A (en) * 2000-03-17 2001-09-26 Nippon Mining & Metals Co Ltd METHOD FOR PRODUCING STOCK FOR Fe-Ni SERIES ALLOY SHADOW MASK EXCELLENT IN ETCHING PIERCEABILITY
JP2016135505A (en) * 2015-01-20 2016-07-28 日立金属株式会社 METHOD FOR PRODUCTION OF Fe-Ni-BASED THIN ALLOY SHEET
JP2017064763A (en) * 2015-09-30 2017-04-06 日立金属株式会社 PRODUCTION METHOD OF Fe-Ni-BASED ALLOY THIN SHEET
JPWO2018052135A1 (en) * 2016-09-15 2019-06-27 日立金属株式会社 Material for metal mask and method of manufacturing the same
JPWO2018061530A1 (en) * 2016-09-29 2019-06-24 日立金属株式会社 Method of manufacturing Fe-Ni based alloy sheet and Fe-Ni based alloy sheet
EP3521459B1 (en) * 2016-09-29 2024-02-14 Proterial, Ltd. METHOD FOR PRODUCING Fe-Ni-BASED ALLOY THIN PLATE AND Fe-Ni-BASED ALLOY THIN PLATE

Also Published As

Publication number Publication date
JPH07116558B2 (en) 1995-12-13

Similar Documents

Publication Publication Date Title
KR950004936B1 (en) Fe-ni alloy sheet for shadow mask excellent in etching pierce ability preventing sticking during annealing and inhibiting production of gases
US5252151A (en) Fe-Ni alloy sheet for shadow mask having a low silicon segregation and method for manufacturing same
KR930009412B1 (en) Fe-ni alloy sheet for shadow mask and method of manufacturing same
JP2590657B2 (en) Fe-Ni alloy excellent in adhesion seizure prevention and gas emission during annealing, and method for producing the same
RU2109839C1 (en) Cold-rolled steel sheet for shadow mask and method for its production
JPH03281756A (en) Fe-ni alloy sheet for shadow mask and its manufacture
JPH04103743A (en) Fe-ni alloy thin sheet for shadow mask and its manufacture
JPH0474850A (en) Fe-ni alloy thin sheet for shadow mask and its manufacture
JP2871414B2 (en) Alloy thin plate for shadow mask excellent in press formability and method for producing the same
JPH04103744A (en) Fe-ni alloy thin sheet for shadow mask and its manufacture
KR100603446B1 (en) Fe-Ni Alloy material for shadow mask and method for manufacturing thereof
JP3327903B2 (en) Fe-Ni shadow mask material
JP3545684B2 (en) Fe-Ni alloy shadow mask material with excellent etching piercing properties
JP3584209B2 (en) Slab for shadow mask material, method for manufacturing the slab, and method for manufacturing shadow mask material excellent in streak quality and surface quality
JP2003268507A (en) Inner frame for cathode-ray tube, ferritic stainless steel sheet therefor and production method thereof
WO2023132342A1 (en) Hot-rolled steel sheet and method for producing same
JPH10251754A (en) Manufacture of nonoriented silicon steel sheet
JP3360033B2 (en) Fe-Ni alloy for shadow mask and method for producing the same
JP3353321B2 (en) Method for producing Fe-Ni alloy sheet for shadow mask excellent in press formability and Fe-Ni alloy sheet for shadow mask excellent in press formability
KR940008930B1 (en) Thin film sheet of iron-nickel alloy for shadow mask and manufacturing method thereof
JP3430123B2 (en) Fe-Ni alloy shadow mask material with excellent etching piercing properties
JP3327902B2 (en) Fe-Ni shadow mask material
JPH09241743A (en) Production of iron-nickel alloy sheet for shadow mask
JPS62287017A (en) Production of cold rolled steel sheet having excellent deep drawability
JP2005118886A (en) Thin hot-rolled steel sheet manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees