JPH03279926A - Driving method for electrooptic device - Google Patents

Driving method for electrooptic device

Info

Publication number
JPH03279926A
JPH03279926A JP2080409A JP8040990A JPH03279926A JP H03279926 A JPH03279926 A JP H03279926A JP 2080409 A JP2080409 A JP 2080409A JP 8040990 A JP8040990 A JP 8040990A JP H03279926 A JPH03279926 A JP H03279926A
Authority
JP
Japan
Prior art keywords
nonlinear resistance
row
column
electrodes
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2080409A
Other languages
Japanese (ja)
Other versions
JP2626923B2 (en
Inventor
Takeshi Maeda
武 前田
Koji Iwasa
浩二 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP8040990A priority Critical patent/JP2626923B2/en
Publication of JPH03279926A publication Critical patent/JPH03279926A/en
Application granted granted Critical
Publication of JP2626923B2 publication Critical patent/JP2626923B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To adjust respective picture elements finely and stably by controlling the resistance of a nonlinear resistance element by using a couple of row electrodes, providing the nonlinear resistance element with a high switch function, and writing data by column electrodes. CONSTITUTION:In the electrooptic device wherein plural nonlinear resistance elements 44a and 44b are provided for each picture element electrode and connected to two different row electrodes 41a and 41b, the resistance values of the nonlinear resistance elements 44a and 44b are controlled while row electrodes are selected, couple by couple, in line sequence, thereby enabling the nonlinear resistance elements 44a and 44b to operate as complete switches. Then data is applied to the column electrodes 42 and then written and held. Consequently, a high-level display such as a gradational display can stably and securely be made even on a panel which uses the nonlinear resistance elements.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は駆動用電極に添って並んだ各画素毎に画素電
極と非線形抵抗素子を有する電気光学装置の駆動方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for driving an electro-optical device having a pixel electrode and a nonlinear resistance element for each pixel arranged along a driving electrode.

〔発明の概要〕[Summary of the invention]

この発明は各画素電極と各画素電極毎に複数個設けられ
た非線形抵抗素子とが、各画素電極を間に挟むようにし
て、隣接する2本の駆動用電極と接続されてなる電気光
学装置の駆動をするに当たリ、この一対の駆動用電極に
波形を加え、非線形抵抗素子の抵抗値の制御を行うこと
により、非線形抵抗素子の特性のばらつきや経時変化に
対して、データの書込みを安定に行うことを可能にする
とともに、一つの画素に入力したデータの保持が他の画
素へ人力するデータからの影響を受けないような動作を
可能にする電気光学装置の駆動方法を提供するものであ
る。
This invention drives an electro-optical device in which each pixel electrode and a plurality of nonlinear resistance elements provided for each pixel electrode are connected to two adjacent driving electrodes with each pixel electrode sandwiched between them. By applying a waveform to this pair of drive electrodes and controlling the resistance value of the nonlinear resistance element, data writing is stabilized against variations in the characteristics of the nonlinear resistance element and changes over time. The present invention provides a driving method for an electro-optical device that enables operation in such a way that the retention of data input to one pixel is not affected by data input manually to other pixels. be.

〔従来の技術〕[Conventional technology]

薄型、軽量、低消費電力のデイスプレィパネルとして、
液晶表示パネルは優れた特徴を有しており、現在ラップ
トツブやブック型のパソコン等をはしめ多く用いられて
いる。その中でアクティブマトリックス方式によるデイ
スプレィパネルは、表示情報量の増大化と高画質化が可
能な方法として注目を浴びている。アクティブ素子とし
ては、m膜トランジスタなどを用いた三端子素子、MI
Mなどの非線形抵抗素子やPN接合薄膜ダイオードなど
に代表される二端子素子がある。
As a thin, lightweight, low power consumption display panel,
Liquid crystal display panels have excellent characteristics and are currently widely used in laptops, book-type personal computers, and the like. Among these, active matrix display panels are attracting attention as a method that can increase the amount of displayed information and improve image quality. As an active element, a three-terminal element using an m-film transistor, etc.
There are two-terminal elements such as nonlinear resistance elements such as M, and PN junction thin film diodes.

この中で三端子素子は形成膜数が多いため、工程は複雑
であり、歩留まりは悪く、コスト高になる欠点がある。
Among these, three-terminal devices have the drawbacks of complicated processes, low yields, and high costs because they require a large number of films to be formed.

また、ダイオードの場合は耐圧が低く、静電気に対して
弱いなどの問題がある。これに対し、非線形抵抗素子は
構造が単純で、耐圧も高くできるので、低コストで大面
積表示パネルへの応用に有利である。
Additionally, diodes have problems such as low breakdown voltage and vulnerability to static electricity. On the other hand, nonlinear resistance elements have a simple structure and can have high breakdown voltages, so they are advantageous for application to large-area display panels at low cost.

第3図(a)は非線形抵抗素子を用いた従来の電気光学
装置のX−Yマトリックスパネル回路図であり、第3図
(blは装置の構造を示す一部断面図である。行電極3
1と列電極32は基板B及び対向基板Aにそれぞれ通常
100〜1000本程形成される。XY交差部には画素
電極342と非線形抵抗層341とを有し、行電極31
と接続された非線形抵抗素子34が設けられている。そ
して、基板A、B間には電気光学材料(液晶)33が保
持されている。
FIG. 3(a) is an X-Y matrix panel circuit diagram of a conventional electro-optical device using a nonlinear resistance element, and FIG.
Generally, about 100 to 1000 column electrodes 1 and 32 are formed on each of the substrate B and the counter substrate A. The XY intersection has a pixel electrode 342 and a nonlinear resistance layer 341, and the row electrode 31
A nonlinear resistance element 34 connected to is provided. An electro-optic material (liquid crystal) 33 is held between the substrates A and B.

この種のデイスプレィパネルの駆動は次のように行う、
すなわち、第3図の多数の行電極31を一本ずつ上の方
から線順次に選択し、その選択期間内に列電極32によ
ってデータを書き込む、第2図は従来の電圧平均化法の
駆動波形を示したものである。すなわち行tli31の
一つに第2図fatの波形、列電極32の一つに第2図
(blの波形を印加すると、その交差部の液晶33と非
線形抵抗素子34の両端(第3図(alに示す(イ)、
@間)には第2図[C1の実線で示した波形がかかる。
Driving this type of display panel is as follows.
That is, a large number of row electrodes 31 in FIG. 3 are selected line-by-line from the top one by one, and data is written by the column electrodes 32 within the selected period. FIG. 2 shows the conventional voltage averaging method. This shows the waveform. That is, when the waveform shown in FIG. 2 fat is applied to one of the rows tli31 and the waveform shown in FIG. (a) shown in al.
The waveform shown by the solid line in FIG. 2 [C1] is applied to the waveform shown in FIG.

このとき非線形抵抗素子34の両端には破線で示したよ
うな電圧がかかり、従って、液晶にかかる実効電圧は斜
線で囲まれた部分の面積を平均化したものとなる。
At this time, a voltage as shown by the broken line is applied to both ends of the nonlinear resistance element 34, and therefore, the effective voltage applied to the liquid crystal is the average of the areas surrounded by diagonal lines.

このとき、充分なコントラストで表示が行えるためには
、選択点での液晶にかかる実効電圧が液晶の飽和電圧よ
りも高いこと、非選択点での液晶にかかる実効電圧が液
晶のしきい値電圧よりも低いことが必要である。非線形
抵抗素子においては書込み期間、保持期間のそれぞれに
素子の抵抗値を変えることによって液晶にかかる実効電
圧を制御できる。すなわち、選択点では選択期間内によ
り高い電圧が非線形抵抗素子34にかかるようにして素
子の抵抗を低くし、画素電極342に電荷が充電されや
すくなる。また、非選択点では選択期間内に非線形抵抗
素子34にかかる電圧を低めに抑え、素子の抵抗が低く
なるのを防ぎ、画素電極342に電荷が充電されにくく
する。そして、保持期間において、選択点、非選択点と
もに非線形抵抗素子34には低い電圧がかかるようにし
て、素子の抵抗を高くし、充電された電荷の保持能力を
大きくする。
At this time, in order to display with sufficient contrast, the effective voltage applied to the liquid crystal at the selected point must be higher than the saturation voltage of the liquid crystal, and the effective voltage applied to the liquid crystal at non-selected points must be the threshold voltage of the liquid crystal. It is necessary that it be lower than . In a nonlinear resistance element, the effective voltage applied to the liquid crystal can be controlled by changing the resistance value of the element during each of the writing period and the holding period. That is, at the selection point, a higher voltage is applied to the nonlinear resistance element 34 during the selection period, thereby lowering the resistance of the element and making it easier for the pixel electrode 342 to be charged. Furthermore, at the non-selected point, the voltage applied to the nonlinear resistance element 34 is kept low during the selection period, preventing the resistance of the element from becoming low and making it difficult for the pixel electrode 342 to be charged. Then, during the holding period, a low voltage is applied to the nonlinear resistance element 34 at both the selected point and the non-selected point, thereby increasing the resistance of the element and increasing the ability to hold the charged charge.

こうして、ドツト数を多くしていった場合でも高いコン
トラストを得ることができる。また、この種のデイスプ
レィパネルで表示を行うにあたって、充分な駆動マージ
ンを得るためには、各々の画素における液晶部の容量C
+cと、非線形抵抗素子部の容量CNLとの比を大きく
とることも重要である。
In this way, high contrast can be obtained even when the number of dots is increased. In addition, in order to obtain sufficient drive margin when displaying on this type of display panel, the capacitance C of the liquid crystal section in each pixel must be
It is also important to set a large ratio between +c and the capacitance CNL of the nonlinear resistance element section.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように非線形抵抗素子を用いたデイスプレィパネル
では表示の大容量化が可能となるが、単純な選択、非選
択以外に階調表示を行おうとする場合などには、三端子
素子と比較して困難な事が起こる。それは、三端子素子
の場合は一個一個の素子が完全なスイッチとして働くた
め、一つの画素に充電された電荷は保持期間に他の画素
に書き込まれるデータの影響をほとんど受けないのに対
し、非線形抵抗素子では保持期間においても微弱な電流
が流れ得るので、他の画素に対するデータの影響が列電
極を通して少しずつ加わってくることである。従って、
表示パターンにより液晶に加わる実効電圧値が所定値か
らずれてくる。また、素子の抵抗値は電荷の充電能力、
保持能力に多大な影響を与えるので、素子特性がパネル
面内でばらついていたり、経時変化などでシフトしてし
まうと、それが液晶に加わる実効電圧値に直接動いてく
る。そのため、階調表示のように液晶に加わる実効電圧
値を精密にコントロールしなければならない場合にはコ
ントラストに差が出てしまい、この差はパネルサイズが
大きくなる程、ドツト数が多くなる程大きくなるという
問題があった。
In this way, display panels using non-linear resistance elements can have a large display capacity, but when trying to display gradation in addition to simple selection and non-selection, it is necessary to use a display panel that uses non-linear resistance elements compared to a three-terminal element. Difficult things happen. This is due to the nonlinear Since a weak current can flow in the resistive element even during the holding period, the influence of data on other pixels is added little by little through the column electrodes. Therefore,
Depending on the display pattern, the effective voltage value applied to the liquid crystal deviates from a predetermined value. In addition, the resistance value of the element is the charging capacity of the electric charge,
This has a significant impact on the retention ability, so if the element characteristics vary within the panel plane or shift due to changes over time, this will directly affect the effective voltage value applied to the liquid crystal. Therefore, when the effective voltage value applied to the liquid crystal must be precisely controlled, such as in gradation display, a difference in contrast appears, and this difference becomes larger as the panel size becomes larger and the number of dots increases. There was a problem.

そこで、本発明は階調表示などのより高度な表示が非線
形抵抗素子を用いたパネルにおいても、より安定して確
実に行えるような電気光学装置について、その駆動方法
を提供することを目的としている。
Therefore, an object of the present invention is to provide a driving method for an electro-optical device that allows more advanced display such as gradation display to be performed more stably and reliably even on a panel using non-linear resistance elements. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記問題点を解決するために、第4図tag、
 (blに示すような各画素電極442毎に複数個の非
線形抵抗素子44a、44bを設け、それぞれ異なる2
本の行電極41a、41bに接続した電気光学装置にお
いて、行電極41a、41bを一対ずつ線順次に選択し
ながら、非線形抵抗素子44a、44bの抵抗を制御し
、非線形抵抗素子44a、44bが完全なスイッチとし
て働くようにした上で、列電極42にデータを加えるこ
とによって、データの書込みと保持を行うようにしたも
のである。非線形抵抗素子を介して画素電極と接続され
ている電極が列電極の場合は、列方向に並ぶ画素電極に
対し、行電極からの書込みと保持を行えば本発明による
効果は変わらない。
In order to solve the above-mentioned problems, the present invention has the following features:
(A plurality of nonlinear resistance elements 44a and 44b are provided for each pixel electrode 442 as shown in bl, and each
In the electro-optical device connected to the row electrodes 41a and 41b of the book, the resistances of the nonlinear resistance elements 44a and 44b are controlled while selecting the row electrodes 41a and 41b line-sequentially one pair at a time, so that the nonlinear resistance elements 44a and 44b are completely In addition, by adding data to the column electrode 42, data is written and held. If the electrode connected to the pixel electrode via a nonlinear resistance element is a column electrode, the effects of the present invention will not change if writing and holding are performed from the row electrode to the pixel electrodes arranged in the column direction.

〔実施例〕〔Example〕

以下に本発明の実施例を図面に基づいて説明する。第1
図は本発明の詳細な説明する駆動波形図であり、第1図
ta+は第1の行電極41aへの印加波形、第1図(b
lは第2の行電極41bへの印加波形、第1図(cl、
 (dl、 tel、 (flは列電8i42への印加
波形を示している。第1図falにおいて、行電極41
aの電位は保持期間にはVaに保たれ選択期間において
Va+Vopに立ち上がる。第1図Cb)では、行電極
41bは保持期間にvbの電位、選択期間にvbV’ 
opの電位となる。従って、一対の非線形抵抗素子44
aと44bの両端(第4図(alに示す(ハ)。
Embodiments of the present invention will be described below based on the drawings. 1st
The figures are driving waveform diagrams for explaining the present invention in detail.
l is the waveform applied to the second row electrode 41b, FIG.
(dl, tel, (fl indicates the waveform applied to the column electrode 8i42. In FIG. 1 fal, the row electrode 41
The potential of a is kept at Va during the holding period and rises to Va+Vop during the selection period. In FIG. 1Cb), the row electrode 41b has a potential of vb during the retention period and vbV' during the selection period.
It becomes the potential of OP. Therefore, the pair of nonlinear resistance elements 44
Both ends of a and 44b (shown in FIG. 4(a)).

に)間)にかかる電圧は保持期間がVa−Vb、選択期
間がVop+V’ op+Va−Vbとなる。
The voltage applied between ) is Va-Vb during the holding period and Vop+V'op+Va-Vb during the selection period.

このとき、非線形抵抗素子がスイッチとして有効に働く
ためには、1Va−Vblが小さく、I■op+V’ 
op+Va−Vb 1が大きいことが重要で、通常のパ
ネルで階調表示を行う場合には、非線形抵抗素子の抵抗
が保持期間にはlXl0”Ω以上、選択期間にはlXl
0”Ω以下となるよう設定することが望ましい、また、
一対の非線形抵抗素子44aと44bは極めて近傍に配
置されているため、その特性はほぼ同一であると考えて
よく、画素電極442の電位は保持期間には(Va+V
b)/2、選択期間には(Va+Vb+Vop−V’o
p)/2をそれぞれ中心として動くことになる。
At this time, in order for the nonlinear resistance element to work effectively as a switch, 1Va-Vbl must be small and I■op+V'
It is important that op+Va-Vb 1 is large, and when performing gradation display on a normal panel, the resistance of the nonlinear resistance element is lXl0''Ω or more during the holding period and lXl0''Ω or more during the selection period.
It is desirable to set it to 0”Ω or less, and
Since the pair of nonlinear resistance elements 44a and 44b are arranged very close to each other, their characteristics can be considered to be almost the same, and the potential of the pixel electrode 442 is (Va+V
b)/2, during the selection period (Va+Vb+Vop-V'o
p)/2 respectively.

表示する情報は画素電極442と列電極42との電位差
によって決まり、その調整は列電極42を用いて行う。
The information to be displayed is determined by the potential difference between the pixel electrode 442 and the column electrode 42, and the adjustment is performed using the column electrode 42.

従って、選択期間と保持期間で画素電極442の基準電
位は安定していることが望ましいのでVop−V’ap
lが小さいことが重要である。
Therefore, it is desirable that the reference potential of the pixel electrode 442 be stable during the selection period and the holding period, so Vop-V'ap
It is important that l is small.

以上のことから、行電極印加波形として、理想的にはV
a=Vb、Vop=V’opとすることが望ましい。(
以下はVa=Vb、Vop=V’。
From the above, the row electrode applied waveform should ideally be V
It is desirable that a=Vb and Vop=V'op. (
Below, Va=Vb, Vop=V'.

pとして考える。) 第3図fcl、 (di、 tel、 (flは一本の
列電極に添って並ぶすべての画素に書き込むべきデータ
のパターンごとに列電極への印加波形を示したもので、
第3図(C)はすべての画素が選択の場合、第3図+d
+はすべての画素が非選択の場合、第3図telは一つ
の画素が選択で残りのすべての画素が非選択の場合、第
3図fflは一つの画素が非選択で残りのすべての画素
が選択の場合を示している。
Consider it as p. ) Figure 3 fcl, (di, tel, (fl) shows the waveform applied to the column electrode for each pattern of data to be written to all pixels lined up along one column electrode,
Figure 3 (C) shows that when all pixels are selected, Figure 3 +d
+ indicates that all pixels are unselected; tel in Figure 3 indicates that one pixel is selected and all remaining pixels are unselected; ffl in Figure 3 indicates that one pixel is unselected and all remaining pixels shows the case of selection.

ここで、Vc= (Va+Vb+Vop−v’ op)
/ 2 = V aと設定すれば、選択期間に非線形抵
抗素子が低抵抗となったときに電気光学材料43にかか
る電圧は画素が選択の場合はV。H,非選択の場合はV
、1.となる、また、−周期ごとにデータの反転を行っ
ているのは電気光学材料43が液晶などの場合に、DC
バイアスがかかって、特性の劣化が起こらないようにす
るためである。こうして、選択期間に画素電極442に
充電された電荷が保持期間に充分保持されるためには、
その間に非線形抵抗素子44a、44bが高抵抗(IX
IO”Ω以上)に保たれなければならない8列電極42
の電位は±(Volt  VOFF )の範囲で変わり
得るので、片側の非線形抵抗素子44aにはVa−(V
a+Vb)/2−0を中心として、±(VON  VO
FF )の電圧が加わる。
Here, Vc= (Va+Vb+Vop-v'op)
/ 2 = V a, the voltage applied to the electro-optic material 43 when the nonlinear resistance element becomes low resistance during the selection period is V when the pixel is selected. H, V if not selected
, 1. Also, data is inverted every - period when the electro-optic material 43 is a liquid crystal, etc.
This is to prevent deterioration of characteristics due to bias. In this way, in order for the charge charged in the pixel electrode 442 during the selection period to be sufficiently retained during the retention period,
In the meantime, the nonlinear resistance elements 44a and 44b have high resistance (IX
8 rows of electrodes 42 that must be kept at IO”Ω or higher
Since the potential of can change within the range of ±(Volt VOFF), the nonlinear resistance element 44a on one side has a potential of Va−(V
±(VON VO
FF ) voltage is applied.

液晶表示パネルではV。N  VOFFは液晶の飽和電
圧と、しきい値電圧の差と同程度(IV位)にすぎない
ので、非線形抵抗素子は充分高抵抗素子として動作する
ことができる。従って、選択期間に蓄えられた電荷は保
持期間において、列電極42の電位がどう変化しても容
易に放電されることはなく、電気光学材料43にかかる
実効電圧は選択期間の列電極42のデータによってほぼ
決定される。
V on the liquid crystal display panel. Since N VOFF is only about the same level (about IV) as the difference between the saturation voltage of the liquid crystal and the threshold voltage, the nonlinear resistance element can operate as a sufficiently high resistance element. Therefore, the charge stored in the selection period is not easily discharged during the retention period, no matter how the potential of the column electrode 42 changes, and the effective voltage applied to the electro-optic material 43 is Mostly determined by data.

そして、このことはこのパネルの動作が非線形抵抗素子
の特性にそれほど従属しないことになる。
And this means that the operation of this panel is less dependent on the characteristics of the nonlinear resistive element.

なぜなら、非線形抵抗素子は電荷の注入と保持が行えれ
ばよいので、Vopを充分大きく設定すれば、素子の特
性にばらつきや経時変化があっても、スイッチとして充
分な動作が可能となるからである。
This is because a nonlinear resistance element only needs to be able to inject and hold charge, so if Vop is set sufficiently large, it will be able to function satisfactorily as a switch even if the characteristics of the element vary or change over time. be.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の駆動方法は、対の行電極
を用いて非線形抵抗素子の抵抗を制御し、非線形抵抗素
子に高いスイッチ機能を持たせた上で、列電極によって
データを書き込むという駆動方法であるため、各画素に
つき細かい調整を安定して行うことが可能となり、階調
表示に適している。実際に、非線形抵抗素子の特性に±
20%程度のばらつきがあっても、液晶層にかかる実効
電圧をあらゆる表示パターンに対して、所望する値の±
0.1v以内に設定できることが確認されている。
As explained above, the driving method of the present invention uses a pair of row electrodes to control the resistance of a nonlinear resistance element, gives the nonlinear resistance element a high switching function, and then writes data using a column electrode. Since this is a driving method, it is possible to stably perform fine adjustments for each pixel, making it suitable for gradation display. In fact, ±
Even if there is a variation of about 20%, the effective voltage applied to the liquid crystal layer can be adjusted to ± the desired value for any display pattern.
It has been confirmed that it can be set within 0.1v.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電気光学装置の駆動方法の実施例を説
明する波形図、第1図(alは第1の行あるいは列電極
への印加波形を示す図、第1図(blは第2の行あるい
は列電極への印加波形を示す図、第1図(C1はすべて
の画素が選択である時の列あるいは行電極への印加波形
を示す図、第1図tdlはすべての画素が非選択である
時の列あるいは行電極への印加波形を示す図、第1図t
elは特定の一画素が選択で残りのすべての画素が非選
択である時の列あるいは行電極への印加波形を示す図、
第1図fflは特定の一画素が非選択で、残りのすべて
の画素が選択である時の列あるいは行電極への印加波形
を示す図、第2図は従来の電圧平均化法の駆動波形を示
す図、第2図(alは行あるいは列電極への印加波形を
示す図、第2図(blは列あるいは行電極)の印加波形
を示す図、第2図fclは交差部の波形を示す図、第3
図(alは従来の電気光学装置のX−Yマトリックスパ
ネル回路図、第3図(blは従来の電気光学装置の構造
を示す断面図、第4図ia+は本発明の電気光学装置の
X−Yマトリックスパネル回路図、第4図中)は本発明
の電気光学装置の構造を示す断面図である。 A、A’・・・対向基板 B、B’・・・基板 31.41,41a、 41b −・−行電極32、4
2・・・・列電極 33、43・・・・電気光学材料(液晶)34、44a
、 44b・・・非線形抵抗素子342、442 ・・
・画素電極 341.441a 、 441 b ・・−非線形抵抗
素子 上
FIG. 1 is a waveform diagram illustrating an embodiment of the method for driving an electro-optical device of the present invention. Figure 1 shows the waveforms applied to the row or column electrodes when all pixels are selected; Figure 1 tdl shows the waveforms applied to the column or row electrodes when all pixels A diagram showing the waveform applied to the column or row electrode when non-selected, Figure 1 t
el is a diagram showing the waveform applied to the column or row electrode when one specific pixel is selected and all remaining pixels are non-selected,
Figure 1ffl is a diagram showing the waveform applied to the column or row electrode when one particular pixel is not selected and all remaining pixels are selected, and Figure 2 is the drive waveform of the conventional voltage averaging method. Figure 2 (al is a diagram showing the applied waveform to the row or column electrode, Figure 2 (bl is the column or row electrode) is a diagram showing the applied waveform, Figure 2 fcl is the waveform at the intersection Figure shown, 3rd
(al is an X-Y matrix panel circuit diagram of a conventional electro-optical device, FIG. 3 (bl is a sectional view showing the structure of a conventional electro-optical device, and FIG. 4 ia+ is an X-Y matrix panel circuit diagram of the electro-optical device of the present invention. Y matrix panel circuit diagram (in Fig. 4) is a sectional view showing the structure of the electro-optical device of the present invention. 41b --- Row electrodes 32, 4
2... Column electrodes 33, 43... Electro-optic material (liquid crystal) 34, 44a
, 44b...nonlinear resistance elements 342, 442...
- Pixel electrodes 341.441a, 441b... - on nonlinear resistance element

Claims (3)

【特許請求の範囲】[Claims] (1)2枚の対向する基板と該基板間に挾持された電気
光学効果を有する材料、一方の基板に形成した多数の行
電極群と他方の基板に形成した多数の列電極群、少なく
とも一方の基板にマトリックス状に配置された画素電極
群と前記画素電極群の各電極毎に複数個ずつ設けられた
非線形抵抗素子からなり、前記各画素電極はそれぞれ第
1の非線形抵抗素子を介して第1の行あるいは列電極に
、第2の非線形抵抗素子を介して第2の行あるいは列電
極に接続されている電気光学装置を前記第1と第2の行
あるいは列電極を用いて前記第1と第2の非線形抵抗素
子の抵抗値を制御することにより、行あるいは列方向に
並ぶ画素電極に対し、列あるいは行電極からのデータの
書込みと保持を行うようにしたことを特徴とする電気光
学装置の駆動方法。
(1) Two opposing substrates and a material having an electro-optic effect sandwiched between the substrates, a large number of row electrode groups formed on one substrate and a large number of column electrode groups formed on the other substrate, at least one of them. It consists of a pixel electrode group arranged in a matrix on a substrate, and a plurality of nonlinear resistance elements provided for each electrode of the pixel electrode group, and each pixel electrode is An electro-optical device connected to a second row or column electrode via a second nonlinear resistance element is connected to the first row or column electrode using the first and second row or column electrodes. and a second nonlinear resistance element to write and hold data from column or row electrodes to pixel electrodes arranged in the row or column direction. How to drive the device.
(2)前記第1と第2の行あるいは列電極間の電位差は
、データの書込み期間において大きく、データの保持期
間において小さいことを特徴とする請求項1記載の電気
光学装置の駆動方法。
(2) The method of driving an electro-optical device according to claim 1, wherein the potential difference between the first and second row or column electrodes is large during a data write period and small during a data retention period.
(3)前記第1と第2の行あるいは列電極間の平均の電
位は、常に一定か、一定に近い値に保たれることを特徴
とする請求項1又は2記載の電気光学装置の駆動方法。
(3) Driving the electro-optical device according to claim 1 or 2, wherein the average potential between the first and second row or column electrodes is always kept constant or close to a constant value. Method.
JP8040990A 1990-03-28 1990-03-28 Driving method of electro-optical device Expired - Fee Related JP2626923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8040990A JP2626923B2 (en) 1990-03-28 1990-03-28 Driving method of electro-optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8040990A JP2626923B2 (en) 1990-03-28 1990-03-28 Driving method of electro-optical device

Publications (2)

Publication Number Publication Date
JPH03279926A true JPH03279926A (en) 1991-12-11
JP2626923B2 JP2626923B2 (en) 1997-07-02

Family

ID=13717496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8040990A Expired - Fee Related JP2626923B2 (en) 1990-03-28 1990-03-28 Driving method of electro-optical device

Country Status (1)

Country Link
JP (1) JP2626923B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5153415A (en) * 1974-11-06 1976-05-11 Hitachi Ltd EKISHOHYOJISOCHI
JPS57210385A (en) * 1981-06-22 1982-12-23 Suwa Seikosha Kk Liquid crystal display
JPS6290624A (en) * 1985-10-17 1987-04-25 Asahi Glass Co Ltd Image display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5153415A (en) * 1974-11-06 1976-05-11 Hitachi Ltd EKISHOHYOJISOCHI
JPS57210385A (en) * 1981-06-22 1982-12-23 Suwa Seikosha Kk Liquid crystal display
JPS6290624A (en) * 1985-10-17 1987-04-25 Asahi Glass Co Ltd Image display device

Also Published As

Publication number Publication date
JP2626923B2 (en) 1997-07-02

Similar Documents

Publication Publication Date Title
US6822631B1 (en) Systems and methods for driving a display device
US5790092A (en) Liquid crystal display with reduced power dissipation and/or reduced vertical striped shades in frame control and control method for same
US4776676A (en) Ferroelectric liquid crystal optical modulation device providing gradation by voltage gradient on resistive electrode
JP5019177B2 (en) Electrophoretic display device, electronic apparatus, and driving method of electrophoretic display device
JP2006516749A (en) Driving bistable matrix display devices
US6791740B2 (en) Electro-optical device, method of driving electro-optical device, and electronic apparatus
EP1250697A1 (en) System for driving a liquid crystal display with power saving and other improved features
US5204764A (en) Electro-optical device having a first and a second nonlinear resistance element formed on each pixel electrode
JPS6327894A (en) Method and apparatus for driving display unit
US5576728A (en) Driving method for an electrooptical device
JP3054520B2 (en) Driving method of active matrix cell
JPH03279926A (en) Driving method for electrooptic device
JPH04353823A (en) Driving method for liquid crystal display element
JP2547118B2 (en) Electro-optical device
JPS6315227A (en) Driving method for liquid crystal display device
JPH049919A (en) Method for driving opto-electrical device
JPH0414014A (en) Display method for electrooptic device
JPH049920A (en) Method for driving opto-electrical device
JPH04299388A (en) Driving method for liquid crystal display element
JPH0416894A (en) Driving circuit of electrooptic device
JPH0566735A (en) Driven method for liquid crystal display element
JPS6360428A (en) Driving method for optical modulating element
JP3485986B2 (en) Liquid crystal display device and driving method thereof
US9024981B2 (en) Control device, display device, electronic apparatus and controlling method
JPS60220394A (en) Driving of liquid crystal display unit

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees