JPH049920A - Method for driving opto-electrical device - Google Patents

Method for driving opto-electrical device

Info

Publication number
JPH049920A
JPH049920A JP2112973A JP11297390A JPH049920A JP H049920 A JPH049920 A JP H049920A JP 2112973 A JP2112973 A JP 2112973A JP 11297390 A JP11297390 A JP 11297390A JP H049920 A JPH049920 A JP H049920A
Authority
JP
Japan
Prior art keywords
driving
electrode
waveform
scanning signal
electro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2112973A
Other languages
Japanese (ja)
Inventor
Takeshi Maeda
武 前田
Koji Iwasa
浩二 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2112973A priority Critical patent/JPH049920A/en
Publication of JPH049920A publication Critical patent/JPH049920A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To average the current direction of a non-linear resistor element, to extend the using life of respective elements and to make it possible to control storing characteristics by inverting and driving the selected potential of a scanning signal in each frame. CONSTITUTION:Many driving electrodes 31a, 31b are successively selected as a pair from the highest position, and during the selection period, data are charged by counter electrodes 32. In this case, the selecting potential of a scanning signal is inverted and driven in each frame. Since the current direction of a current flowing into non-linear resistor elements 34a, 34b are averaged so as not to be deflected to one direction, the using life of the non-linear resistor elements can be extended and the generation of a picture element defects can be suppressed. In addition, the charge/discharge of data can easily be controlled by inverting the non-selected potential.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は駆動用電極にそって並んだ各画素毎に画素電
極と非線形抵抗素子を有する電気光学装置の駆動方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for driving an electro-optical device having a pixel electrode and a nonlinear resistance element for each pixel arranged along a driving electrode.

[発明の概要] この発明は各画素電極と各画素電極毎に複数個設けられ
た非線形抵抗素子とが各画素電極を間にはさむようにし
て、隣接する2本の駆動用電極と接続されている電気光
学装置を駆動するに当たリ、駆動用電極を1対ずつ線順
次に選択をしながら駆動を行う方法において、走査信号
の選択電位を1フレームごとに反転させて駆動を行うこ
とにより、非線形抵抗素子を流れる電流方向が一方向に
偏らないようにして、素子の長寿命化を計るとともに、
非選択電位の反転を行うことによって、データの充放電
の制御がしやすくなるような電気光学装置の駆動方法を
提供するものである。
[Summary of the Invention] In the present invention, each pixel electrode and a plurality of nonlinear resistance elements provided for each pixel electrode are connected to two adjacent driving electrodes with each pixel electrode sandwiched therebetween. When driving an electro-optical device, in a method of driving while selecting drive electrodes line-sequentially one pair at a time, driving is performed by inverting the selection potential of a scanning signal every frame. In addition to ensuring that the direction of current flowing through the nonlinear resistance element is not biased in one direction, the life of the element is extended.
An object of the present invention is to provide a method for driving an electro-optical device in which charging and discharging of data can be easily controlled by inverting a non-selective potential.

[従来の技術1 薄型、軽量、低消費電力のデイスプレィパネルとして、
液晶表示パネルは優れた特徴を有しており、現在ラップ
トツブやブック型のパソコン等をはしめ多く用いられて
いる。その中でアクティブマトリックス方式によるデイ
スプレィパネルは、表示情報量の増大化と高画質化が可
能な方法として注目を浴びている。アクティブ素子とし
ては、薄膜トランジスタ等を用いた三端子素子、MIM
等の非線形抵抗素子やPN接合薄膜ダイオード等に代表
される二端子素子がある。
[Conventional technology 1] As a thin, lightweight, and low power consumption display panel,
Liquid crystal display panels have excellent characteristics and are currently widely used in laptops, book-type personal computers, and the like. Among these, active matrix display panels are attracting attention as a method that can increase the amount of displayed information and improve image quality. As active elements, three-terminal elements using thin film transistors, MIM, etc.
There are two-terminal elements represented by nonlinear resistance elements such as , and PN junction thin film diodes.

この中で、三端子素子は形成膜数が多いため工程は複雑
であり、歩留まりは悪く、コスト高になる欠点がある。
Among these, the three-terminal element has the disadvantage that the process is complicated due to the large number of formed films, the yield is low, and the cost is high.

また、ダイオードの場合は耐圧が低く、静電気に対して
弱い等の問題がある。これに対し、非線形抵抗素子は構
造が単純で、耐圧も高くできるので、低コストで、大面
積表示パネルへの応用に有利である。
Further, in the case of diodes, there are problems such as low breakdown voltage and vulnerability to static electricity. On the other hand, nonlinear resistance elements have a simple structure and can have a high breakdown voltage, so they are low cost and advantageous for application to large-area display panels.

第3図(a)は非線形抵抗素子を用いた電気光学装置の
X−Yマトリックスパネル回路図であり、第3図(b)
は装置の構造を示す一部断面図である。行電極(駆動用
電極)31と列電極(対向電極)32は基板B及び対向
基板Aにそれぞれ通常100から1000本程形成され
る。X−Y交差部には画素電極36と各画素電極36毎
に複数個の非線形抵抗素子34a、34bを有し、それ
ぞれ異なる2本の駆動用電極31a、31bに接続され
ている。基板A、B間には電気光学材料33が保持され
ている。
FIG. 3(a) is an X-Y matrix panel circuit diagram of an electro-optical device using a nonlinear resistance element, and FIG. 3(b)
FIG. 2 is a partial cross-sectional view showing the structure of the device. Usually about 100 to 1000 row electrodes (driving electrodes) 31 and column electrodes (counter electrodes) 32 are formed on the substrate B and the counter substrate A, respectively. The X-Y intersection has a pixel electrode 36 and a plurality of nonlinear resistance elements 34a, 34b for each pixel electrode 36, which are connected to two different drive electrodes 31a, 31b, respectively. An electro-optic material 33 is held between substrates A and B.

この種のデイプレイパネルの駆動は次のように行う。即
ち、第3図の多数の駆動用電極31a、31bを1対ず
つ上の方から線順次に選択し、その選択期間内に対向電
極によってデータを充電する。第2図は、従来の電気光
学装置の駆動波形を示したものであり、第2図(a)は
第1の駆動用電極31aへ加わる走査信号、第2図(b
)は第2の駆動用電極31bへ加わる走査信号、第2図
(c)、(d)は対向電極へ加わるデータ信号の波形を
示している。第2図(a)において、第1の駆動用電極
31aの電位は非選択期間においては■。+V、に保た
れ、選択期間に、Vo+Vo。
This type of display panel is driven as follows. That is, a large number of drive electrodes 31a and 31b shown in FIG. 3 are selected one pair at a time from the top, and data is charged by the opposing electrodes within the selection period. FIG. 2 shows driving waveforms of a conventional electro-optical device, and FIG. 2(a) shows a scanning signal applied to the first driving electrode 31a, and FIG.
) shows the scanning signal applied to the second driving electrode 31b, and FIGS. 2(c) and 2(d) show the waveform of the data signal applied to the counter electrode. In FIG. 2(a), the potential of the first driving electrode 31a is ■ during the non-selection period. +V, and during the selection period, Vo+Vo.

に立ち上がる6第2図(b)では、第2の駆動用電極3
1bは非選択期間に■。−Vl、の電位、選択期間にV
。−V 6.′の電位となる。従って、1対の非線形抵
抗素子34a、34bの両端(第3図(a)に示す(イ
)、(ロ)間)に加わる電圧は非選択期間にはV、+V
。、選択期間にはV 60十V0.  となり、v、+
y、を充分小さく、V On+v、、′を充分大きくと
ってやれば、非線形抵抗素子34a、34bがスイッチ
として働くようになる。また、voは選択期間における
画素電極36の電位を示していて、■。、/V、、′、
V、/Vゎの比率が等しければ、非選択期間においても
画素電極36の電位はV。を中心に動くことになる。表
示するデータは、画素電極36と対向電極32の電位差
で決まるので、対向電極32の電位を、voを基準にし
て、データに対応する分だけ変えてやれば、任意の表示
が可能となり、グレースケール等も比較的容易に出せる
。第2図(c)は、−列の画素の全てがONとなるとき
に対向電極32へ加わるデータ信号の波形を示したもの
で、第2図(d)は、−列の画素のうち一個だけがON
で、残りの全てがOFFとなるときに対向電極32へ加
わるデータ信号の波形を示したものである。このような
駆動方法においては、データ信号は非線形抵抗素子34
a、34bの特性と独立しているため、素子特性にパネ
ル面内で多少のばらつきがあったとしても、V op+
 V op′ を充分大きくとっておけば1問題なく駆
動できる。
6 In FIG. 2(b), the second drive electrode 3
1b is ■ in the non-selection period. -Vl, potential, V during the selection period
. -V6. ′ potential. Therefore, the voltage applied across the pair of nonlinear resistance elements 34a and 34b (between (a) and (b) shown in FIG. 3(a)) is V, +V during the non-selection period.
. , during the selection period V 60 + V0. So, v, +
If y is made sufficiently small and V On+v, , ,' is made sufficiently large, the nonlinear resistance elements 34a and 34b will work as switches. Further, vo indicates the potential of the pixel electrode 36 during the selection period, and ■. ,/V,,′,
If the ratios of V and /Vゎ are equal, the potential of the pixel electrode 36 is V even during the non-selection period. will be centered around. The data to be displayed is determined by the potential difference between the pixel electrode 36 and the counter electrode 32, so by changing the potential of the counter electrode 32 by an amount corresponding to the data with vo as a reference, arbitrary display is possible, and gray Scales etc. can also be taken out relatively easily. FIG. 2(c) shows the waveform of the data signal applied to the counter electrode 32 when all the pixels in the − column are turned on, and FIG. 2(d) shows the waveform of the data signal applied to the counter electrode 32 when all the pixels in the − column Only ON
This shows the waveform of the data signal applied to the counter electrode 32 when all the remaining signals are turned off. In such a driving method, the data signal is transmitted through the nonlinear resistance element 34.
Since it is independent of the characteristics of a and 34b, even if there is some variation in the element characteristics within the panel surface, V op+
If V op' is set sufficiently large, it can be driven without any problem.

[発明が解決しようとする課題] このように各画素毎に非線形抵抗素子を複数個用いたデ
イスプレィパネルでは、表示の大容量化と高画質化が可
能となるが、従来の駆動方法では、選択期間に非線形抵
抗素子を流れる電流が常に一方向であり、非選択期間に
もその傾向があるため、素子特性の経時変化が起こりゃ
すく、破壊までの寿命が短くなりがちであった。従って
、画素欠陥が発生しやすく、信頼性に問題があった。
[Problems to be Solved by the Invention] In this way, a display panel using a plurality of non-linear resistance elements for each pixel allows for larger display capacity and higher image quality, but with conventional driving methods, Since the current flowing through the nonlinear resistance element during the selection period is always unidirectional, and this tendency also exists during the non-selection period, the characteristics of the element tend to change over time, and the lifespan until breakdown tends to be shortened. Therefore, pixel defects are likely to occur, resulting in reliability problems.

そこで本発明は、非線形抵抗素子の寿命を長くし、画素
欠陥の発生を抑えることが可能な電気光学装置の駆動方
法を提供することを目的としている。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for driving an electro-optical device that can extend the life of a nonlinear resistance element and suppress the occurrence of pixel defects.

[課題を解決するための手段] 本発明は上記問題点を解決するために、走査信号の選択
電位を1フレーム毎に反転させることにより、非線形抵
抗素子を双方向に電流が流れるようにし、素子の経時特
性が向上するようにしたものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention inverts the selection potential of the scanning signal every frame so that current flows in both directions through the nonlinear resistance element. The aging characteristics of the material are improved.

〔実施例〕〔Example〕

以下に本発明の実施例を図面に基づいて説明する。第1
図は本発明の詳細な説明する駆動波形図であり、第1図
(a)は第1の駆動用電極31aへ加わる走査信号の波
形、第1図(b)は第2の駆動用電極31bへ加わる走
査信号の波形、第1図(c)、(d)は対向電極32へ
加わるブタ信号の波形を示している。第1図(a)にお
いて、第1の駆動用電極31aの電位は非選択期間にお
いてはV。十v4に保たれ、選択期間には1フレーム毎
i:Vo+V。、、Vo−Vo、を繰す返す。第1図(
b)では、第2の駆動用電極31bは非選択期間にはV
o−Vbの電位、選択期間には17レー4毎にVo −
V6p′、 Vo + V。p′ノ電位となる。従って
、1対の非線形抵抗素子34a、34bの両端(第3図
(a)に示す(イ)(ロ)間)に加わる電圧は非選択期
間に■。
Embodiments of the present invention will be described below based on the drawings. 1st
The drawings are drive waveform diagrams explaining the present invention in detail. FIG. 1(a) shows the waveform of the scanning signal applied to the first driving electrode 31a, and FIG. 1(b) shows the waveform of the scanning signal applied to the second driving electrode 31b. FIGS. 1(c) and 1(d) show the waveforms of the scanning signals applied to the counter electrode 32. FIGS. In FIG. 1(a), the potential of the first driving electrode 31a is V during the non-selection period. It is maintained at 10v4, and i:Vo+V every frame during the selection period. , , Vo-Vo are repeated. Figure 1 (
In b), the second drive electrode 31b is set to V during the non-selection period.
o-Vb potential, during the selection period Vo - every 17 rays 4
V6p', Vo + V. The potential becomes p'. Therefore, the voltage applied to both ends of the pair of nonlinear resistance elements 34a and 34b (between (a) and (b) shown in FIG. 3(a)) is 2 during the non-selection period.

十■ゎ、選択期間には1フレーム毎にv02+V op
’ 、  V6p  VI+、′ となり、非線形抵抗
素子を流れる電流の方向は1フレーム毎に切り換わるこ
とになる。また、画素電極36の電位がV。を中心とし
て動くことは変わらないので、データ信号の波形(第1
図(c)、(d))は従来の波形(第2図(c)、(d
))と同様である。
10■ゎ, v02+V op every frame during the selection period
', V6pVI+,', and the direction of the current flowing through the nonlinear resistance element is switched every frame. Further, the potential of the pixel electrode 36 is V. The waveform of the data signal (the first
Figures (c) and (d)) show the conventional waveforms (Figure 2 (c) and (d)).
)) is similar.

第4図、第5図、第6図、第7図はそれぞれ本発明の第
2、第3、第4、第5の実施例を説明する駆動波形図で
あり、各図の(a)はそれぞれ第1の駆動用電極31a
へ加わる走査信号の波形、各図の(b)はそれぞれ第2
の駆動用電極31bへ加わる走査信号の波形、各図の(
C)、(d)はそれぞれ対向電極32へ加わるデータ信
号の波形を示している。これらの例では非選択電位の反
転も行っている。即ち第4図と第5図は選択の前後での
反転、第6図は1フレーム毎の反転、第7図は1選択パ
ルス幅毎の反転である。このようにすることにより、非
線形抵抗素子を流れる電流の方向はより平均化される。
FIG. 4, FIG. 5, FIG. 6, and FIG. 7 are drive waveform diagrams for explaining the second, third, fourth, and fifth embodiments of the present invention, respectively, and (a) in each figure is First drive electrode 31a
(b) of each figure shows the waveform of the scanning signal applied to the second
The waveform of the scanning signal applied to the drive electrode 31b in each figure (
C) and (d) each show the waveform of the data signal applied to the counter electrode 32. In these examples, the non-selection potential is also inverted. That is, FIGS. 4 and 5 show inversion before and after selection, FIG. 6 shows inversion for each frame, and FIG. 7 shows inversion for each selection pulse width. By doing so, the direction of the current flowing through the nonlinear resistance element is more averaged.

また、非選択期間はデータの保持が行われる期間である
がら、非選択電位の反転を行うタイミングによって保持
特性の調整をすることもできる。従って、非選択電位の
反転の仕方はここに示した以外にも様々な方法があるこ
とは言うまでもない6 [発明の効果] 以上説明したように、本発明によれば走査信号の選択電
位や非選択電位の反転を行うことにより非線形抵抗素子
を流れる電流の方向を平均化し素子の長寿命化と保持特
性の制御を可能にすることができる。第8図と第9図は
それぞれ、従来の駆動方法と本発明の駆動方法による非
線形抵抗素子の経時劣化特性を示したもので、実際の駆
動波形を非線形抵抗素子に直接印加し、電流−電圧特性
の経時変化を測定した結果である。従来の駆動方法では
、l O’ cycle位から特性が変化し始め、I 
O”cycleでは20Vの電圧で約半桁電流がシフト
するのに対して、本発明の駆動方法の場合ではl O”
cycle印加後もほとんど特性の変化はなく、信頼性
は大幅に向上している。
Furthermore, although the non-selection period is a period during which data is held, the holding characteristics can also be adjusted by the timing at which the non-selection potential is inverted. Therefore, it goes without saying that there are various methods of inverting the non-select potential in addition to those shown here.6 [Effects of the Invention] As explained above, according to the present invention, the selection potential of the scanning signal and the non-select potential can be inverted. By inverting the selection potential, the direction of current flowing through the nonlinear resistance element can be averaged, making it possible to extend the life of the element and control the retention characteristics. Figures 8 and 9 show the aging characteristics of the nonlinear resistance element by the conventional driving method and the driving method of the present invention, respectively. These are the results of measuring changes in characteristics over time. In the conventional driving method, the characteristics start to change from the l O' cycle position, and the I
In the O"cycle, the current shifts by about half an order of magnitude at a voltage of 20V, whereas in the case of the driving method of the present invention, the current shifts by about half an order of magnitude with a voltage of 20V.
There is almost no change in the characteristics even after the cycle is applied, and the reliability is significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明する駆動波形図であり、 第1図(a)は第1の駆動用電極へ加わる走査信号の波
形を示す図、 第1図(b)は第2の駆動用電極へ加わる走査信号の波
形を示す図、 第1図(C)は、−列の画素の全てがONとなるときに
対向電極へ加わるデータ信号の波形を示す図 第1図(d)は、−列の画素のうち一個だけがONで、
残りの全てがOFFとなるときに対向電極へ加わるデー
タ信号の波形を示す図、第2図は、従来の電気光学装置
の駆動波形図であり、 第2図(a)は第1の駆動用電極へ加わる走査信号の波
形を示す図、 第2図(b)は第2の駆動用電極へ加わる走査信号の波
形を示す図、 第2図(C)は、−列の画素の全てがONとなるときに
対向電極へ加わるデータ信号の波形を示す図、 第2図(d3は、−列の画素のうち一個だけがONで、
残りの全てがOFFとなるときに対向電極へ加わるデー
タ信号の波形を示す図、第3図(a)は非線形抵抗素子
を用いた電気光学装置のX−Yマトリックスパネル回路
図、第3図(b)は非線形抵抗素子を用いた電気光学装
置の構造を示す断面図、 第4図は本発明の第2の実施例を説明する駆動波形図で
あり、 第4図(a)は第1の駆動用電極へ加わる走査信号の波
形を示す図、 第4図(b)は第2の駆動用電極へ加わる走査信号の波
形を示す図、 第4図(C)は、−列の画素の全てがONとなるときに
対向電極へ加わるデータ信号の波形を示す図、 第4図(d)は、−列の画素のうち一個だけがONで、
残りの全てがOFFとなるときに対向電極へ加わるデー
タ信号の波形を示す図、第5図は本発明の第3の実施例
を説明する駆動波形ずであり、 第5図(a)は第1の駆動用電極へ加わる走査信号の波
形を示す図、 第5図(b)は第2の駆動用電極へ加わる走査信号の波
形を示す図 第5図(C)は、−列の画素の全てがONとなるときに
対向電極へ加わるデータ信号の波形を示す図、 第5図(d)は、−列の画素のうち一個だけがONで、
残りの全てがOFFとなるときに対向電極へ加わるデー
タ信号の波形を示す図、第6図は本発明の第4の実施例
を説明する駆動波形図であり、 第6図(a)は第1の駆動用電極へ加わる走査信号の波
形を示す図、 第6図(b)は第2の駆動用電極へ加わる走査信号の波
形を示す図、 第6図(C)は、−列の画素の全てがONとなるときに
対向電極へ加わるデータ信号の波形を示す図、 第6図(d)は、−列の画素のうち一個だけがONで、
残りの全てがOFFとなるときに対向電極へ加わるデー
タ信号の波形を示す図、第7図は本発明の第5の実施例
を説明する駆動波形図であり、 第7図(a)は第1の駆動用電極へ加わる走査信号の波
形を示す図 第7図(b)は第2の駆動用電極へ加わる走査信号の波
形を示す図、 第7図(C)は、−列の画素の全てがONとなるときに
対向m極へ加わるデータ信号の波形を示す図、 第7図(d)は、−列の画素のうち一個だけがONで、
残りの全てがOFFとなるときに対向電極へ加わるデー
タ信号の波形を示す図、第8図は、従来の電気光学装置
の駆動方法による非線形抵抗素子の経時劣化特性を示す
図、第9区は、本発明の電気光学装置の駆動方法による
非線形抵抗素子の経時劣化特性を示す図である。 A ・・・・・・・・対向基板 B・  ・・・ ・・基板 31.31a、31b・行を極(駆動用電極)32 ・
 ・ 33 ・ ・ ・   ・ ・ ・ 34a、 34b  − 35a、  35b  ・ 36 ・ ・ ・ ・ ・列電極(対向電極) ・電気光学材料(液晶) ・非線形抵抗素子 ・非線形抵抗層 画素電極 以上 出願人 セイコー電子工業株式会社 代理人 弁理士  林   敬 之 助第 図 Alxノ 第 図 (b) $発明の第3ω東虎骨It提明てがr動破犯図第5図 本更口目の第2の喫垢押・j贅言0目Tう(動波形図第
 4 図 本発明の第4ω牢矩砕侍故明する堅動破紙図第6図 竿 図 Cycle Clog N] 第 図 Cycle  [log Nコ 第 図
FIG. 1 is a drive waveform diagram explaining the present invention in detail. FIG. 1(a) is a diagram showing the waveform of a scanning signal applied to the first driving electrode, and FIG. FIG. 1(C) is a diagram showing the waveform of the scanning signal applied to the driving electrode. FIG. , only one of the pixels in the - column is ON,
Figure 2, which shows the waveform of the data signal applied to the counter electrode when all the remaining ones are OFF, is a drive waveform diagram of a conventional electro-optical device, and Figure 2(a) is the first drive waveform. FIG. 2(b) is a diagram showing the waveform of the scanning signal applied to the electrode. FIG. 2(C) is a diagram showing the waveform of the scanning signal applied to the second driving electrode. FIG. 2(C) is a diagram showing the waveform of the scanning signal applied to the second driving electrode. Figure 2 shows the waveform of the data signal applied to the counter electrode when
Figure 3(a) is a diagram showing the waveform of the data signal applied to the counter electrode when all the remaining ones are turned off. b) is a sectional view showing the structure of an electro-optical device using a nonlinear resistance element, FIG. 4 is a drive waveform diagram explaining the second embodiment of the present invention, and FIG. FIG. 4(b) is a diagram showing the waveform of the scanning signal applied to the driving electrode. FIG. 4(C) is a diagram showing the waveform of the scanning signal applied to the second driving electrode. FIG. Figure 4(d) is a diagram showing the waveform of the data signal applied to the counter electrode when the pixel is turned on, and only one of the pixels in the - column is turned on.
FIG. 5 is a diagram showing the waveform of the data signal applied to the counter electrode when all the remaining ones are OFF, and FIG. 5 is a drive waveform explaining the third embodiment of the present invention. Figure 5(b) shows the waveform of the scanning signal applied to the first driving electrode. Figure 5(C) shows the waveform of the scanning signal applied to the second driving electrode. Figure 5(d) is a diagram showing the waveform of the data signal applied to the counter electrode when all the pixels are turned on, and only one of the pixels in the - column is turned on.
FIG. 6 is a diagram showing the waveform of the data signal applied to the counter electrode when all the remaining signals are OFF, and FIG. 6 is a drive waveform diagram for explaining the fourth embodiment of the present invention. FIG. FIG. 6(B) is a diagram showing the waveform of the scanning signal applied to the first driving electrode. FIG. 6(C) is a diagram showing the waveform of the scanning signal applied to the second driving electrode. FIG. Figure 6(d) is a diagram showing the waveform of the data signal applied to the counter electrode when all of the pixels in the - column are ON, and only one of the pixels in the - column is ON.
FIG. 7 is a diagram showing the waveform of a data signal applied to the counter electrode when all the remaining signals are OFF, and FIG. 7 is a drive waveform diagram for explaining the fifth embodiment of the present invention. FIG. 7(b) is a diagram showing the waveform of the scanning signal applied to the first driving electrode. FIG. 7(C) is a diagram showing the waveform of the scanning signal applied to the second driving electrode. FIG. 7(d) is a diagram showing the waveform of the data signal applied to the opposing m poles when all of the pixels are turned on, and only one of the pixels in the - column is turned on.
Figure 8 is a diagram showing the waveform of the data signal applied to the counter electrode when all the remaining ones are turned off. Figure 8 is a diagram showing the aging characteristics of a nonlinear resistance element according to the conventional driving method of an electro-optical device. FIG. 2 is a diagram showing the temporal deterioration characteristics of a nonlinear resistance element according to the method for driving an electro-optical device of the present invention. A...Counter substrate B......Substrates 31, 31a, 31b, rows as poles (driving electrodes) 32...
・ 33 ・ ・ ・ ・ ・ 34a, 34b - 35a, 35b ・ 36 ・ ・ ・ ・ ・Column electrode (counter electrode) ・Electro-optical material (liquid crystal) ・Nonlinear resistance element ・Nonlinear resistance layer Pixel electrode Applicant: Seiko Electronics Kogyo Co., Ltd. Agent Patent Attorney Takayuki Hayashi Diagram Alx Diagram (b) $ Invention 3rd ω Higashi Torakotsu It is proposed that r moving criminal diagram Figure 5 Second draft of Honsaraguchi (Dynamic waveform chart Fig. 4 The 4th ω of the present invention A solid dynamic breaking paper diagram that reveals the history of the prison cell) Fig. 6 Rod diagram Cycle Clog N] Fig. Cycle [log N Ko No. figure

Claims (4)

【特許請求の範囲】[Claims] (1)2枚の対向する基板と該基板間に挟持された電気
光学効果を有する材料、一方の基板に形成した多数の行
電極群と他方の基板に形成した多数の列電極群、少なく
とも一方の基板にマトリックス状に配置された画素電極
群と前記画素電極群の各電極毎に複数個ずつ設けられた
非線形抵抗素子からなり、前記各画素電極はそれぞれ第
1の非線形抵抗素子を介して第1の行(列)電極に、第
2の非線形抵抗素子を介して第2の行(列)電極に接続
されている電気光学装置の駆動方法として、前記第1と
第2の行(列)電極を1対ずつ線順次に選択をしながら
駆動を行う駆動方法において、走査信号の選択電位を1
フレーム毎に反転させて駆動を行うことを特徴とする電
気光学装置の駆動方法。
(1) Two opposing substrates and a material having an electro-optic effect sandwiched between the substrates, a large number of row electrode groups formed on one substrate and a large number of column electrode groups formed on the other substrate, at least one of them. It consists of a pixel electrode group arranged in a matrix on a substrate, and a plurality of nonlinear resistance elements provided for each electrode of the pixel electrode group, and each pixel electrode is As a method for driving an electro-optical device in which a first row (column) electrode is connected to a second row (column) electrode via a second nonlinear resistance element, the first and second row (column) In a driving method in which electrodes are selected line-sequentially one pair at a time, the selection potential of the scanning signal is set to 1.
A method for driving an electro-optical device, characterized in that driving is performed by inverting each frame.
(2)走査信号の非選択電位を選択の前後で反転させて
駆動を行うことを特徴とする第一項記載の電気光学装置
の駆動方法。
(2) The method for driving an electro-optical device according to item 1, characterized in that driving is performed by inverting the non-selection potential of the scanning signal before and after selection.
(3)走査信号の非選択電位を1フレーム毎に反転させ
て駆動を行うことを特徴とする第一項記載の電気光学装
置の駆動方法。
(3) The method for driving an electro-optical device according to item 1, characterized in that driving is performed by inverting the non-selection potential of the scanning signal every frame.
(4)走査信号の非選択電位を一定選択パルス幅毎に反
転させて駆動を行うことを特徴とする第一項記載の電気
光学装置の駆動方法。
(4) The method for driving an electro-optical device according to item 1, characterized in that driving is performed by inverting the non-selection potential of the scanning signal at every fixed selection pulse width.
JP2112973A 1990-04-27 1990-04-27 Method for driving opto-electrical device Pending JPH049920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2112973A JPH049920A (en) 1990-04-27 1990-04-27 Method for driving opto-electrical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2112973A JPH049920A (en) 1990-04-27 1990-04-27 Method for driving opto-electrical device

Publications (1)

Publication Number Publication Date
JPH049920A true JPH049920A (en) 1992-01-14

Family

ID=14600198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2112973A Pending JPH049920A (en) 1990-04-27 1990-04-27 Method for driving opto-electrical device

Country Status (1)

Country Link
JP (1) JPH049920A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343748A (en) * 2005-06-07 2006-12-21 Renei Kagi Kofun Yugenkoshi Dual select diode (dsd) liquid crystal display (lcd) driving method and driving device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343748A (en) * 2005-06-07 2006-12-21 Renei Kagi Kofun Yugenkoshi Dual select diode (dsd) liquid crystal display (lcd) driving method and driving device

Similar Documents

Publication Publication Date Title
KR0147917B1 (en) Lcd with reduced power dissipation and/or reduced vertical striped shades in frame control and control method for the same
USRE37906E1 (en) Display device and method of driving such a device
JP2010061135A (en) Lcd panel and method for driving liquid crystal display
US8077128B2 (en) Liquid crystal display device
JPH04269792A (en) Driving method for matrix display apparatus and matrix display apparatus which can be operated by this method
KR100337865B1 (en) Method for driving liquid crystal display device
US5576728A (en) Driving method for an electrooptical device
CN112150979A (en) Liquid crystal display device and driving method thereof
JP2608403B2 (en) Driving method of active matrix type liquid crystal panel
JPH049920A (en) Method for driving opto-electrical device
JPH06301011A (en) Matrix display device and its driving method
US20050083321A1 (en) Shared select line display
JPH04353823A (en) Driving method for liquid crystal display element
JP3211270B2 (en) Driving method of liquid crystal display element
JPH04116628A (en) Electrooptical device
JPH0449712B2 (en)
JPH0414014A (en) Display method for electrooptic device
JP3677969B2 (en) Liquid crystal display panel driving device, liquid crystal display device, and electronic apparatus
JP2626923B2 (en) Driving method of electro-optical device
JPH0416894A (en) Driving circuit of electrooptic device
JPH08122744A (en) Driving method for liquid crystal device and liquid crystal device
JPH04299388A (en) Driving method for liquid crystal display element
JP3485986B2 (en) Liquid crystal display device and driving method thereof
JPH049919A (en) Method for driving opto-electrical device
JP3515201B2 (en) Liquid crystal display device and driving method thereof