JPH03277733A - Manufacture of raw material for rare earth permanent magnet - Google Patents

Manufacture of raw material for rare earth permanent magnet

Info

Publication number
JPH03277733A
JPH03277733A JP2077756A JP7775690A JPH03277733A JP H03277733 A JPH03277733 A JP H03277733A JP 2077756 A JP2077756 A JP 2077756A JP 7775690 A JP7775690 A JP 7775690A JP H03277733 A JPH03277733 A JP H03277733A
Authority
JP
Japan
Prior art keywords
alloy
raw material
rare earth
permanent magnet
earth permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2077756A
Other languages
Japanese (ja)
Other versions
JP2994684B2 (en
Inventor
Kimio Uchida
内田 公穂
Makoto Ushijima
誠 牛嶋
Takeshi Mizuhara
水原 猛
Harutaka Shibusawa
渋沢 治孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2077756A priority Critical patent/JP2994684B2/en
Publication of JPH03277733A publication Critical patent/JPH03277733A/en
Application granted granted Critical
Publication of JP2994684B2 publication Critical patent/JP2994684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture the raw material for a rare earth permanent magnet contg. Dy and excellent in magnetic properties at low cost by manufacturing a Dy-Fe alloy by the use of Dy2O3, Fe and metallic Ca as a raw material, pulverizing this alloy, thereafter compacting and sintering it, successively adding the alloy to a molten metal contg. rare earth elements and other specified elements, melting it and executing solidification. CONSTITUTION:The powder of Dy2O3 and Fe is mixed with metallic Ca as a reducing agent, and this mixture is heated in an Ar atmosphere to reduce Dy2O3 by Ca and to manufacture a Dy-Fe series alloy. This alloy is finely pulverized and is thereafter compacted, and the obtd. green compact is sintered in the atmosphere of an inert gas or a reducing gas or in vacuum. On the other hand, the molten metal of an alloy in which one or more kinds among Sc, Y and lanthanoide series elements and other specified elements are melted by an other apparatus is mixed with the above sintered body, and the mixture is heated and melted. The raw material for a rare earth permanent magnet contg. no CaO as a reducing product and excellent in magnetic properties such as coercive force, residual magnetic flux density and maximum energy product can be manufactured at a low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は例えば希土類元素としてDyを含有する希土類
永久磁石用の原料を製造する方法に関するものであり、
特に磁気特性に優れた希土類永久磁石の製造か可能であ
ると共に、製造コストが安価である原料の製造方法に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a raw material for a rare earth permanent magnet containing, for example, Dy as a rare earth element.
In particular, the present invention relates to a raw material manufacturing method that allows production of rare earth permanent magnets with excellent magnetic properties and is inexpensive.

〔従来の技術〕[Conventional technology]

希土類永久磁石はSm−Co系のものが開発されて以来
、物性的研究の進展と相俟って磁気的特性が逐次向上し
、近年におけるNd−Fe−B系のものも含めてこれら
が適用される機器、装置の小型軽量化、高性能化に大き
く貢献すると共に、更に新分野の開拓にも寄与している
。上記希土類永久磁石を製造するには、粉末冶金手段に
よるものが通常であり、まず原料粉を製造する必要があ
る。このうち近年特に注目されているDyを含むNd−
Fe−B系の場合に例をとると、まず重量%でNd29
%、 Dy3.6%、81%、Nb11%、残部Feか
らなる合金をAr雰囲気中において高周波溶解、粗粉砕
し、更に保護雰囲気中においてボールミル等によって微
粉砕して平均粒径4μm程度の原料粉を作成する。上記
のようにして得た原料粉に適量の焼結助剤を添加し、磁
場中に配設した成形型によって圧縮成形し、この成形体
を1000″C以上で焼結する。焼結体に900℃で約
1時間の熱処理を施すことにより、高エネルギー積を有
する希土類永久磁石を得ることができる。
Since the Sm-Co-based rare earth permanent magnets were developed, their magnetic properties have gradually improved with the progress of physical property research, and these, including the Nd-Fe-B-based ones, have been applied in recent years. This has greatly contributed to the miniaturization, weight reduction, and high performance of equipment and devices used in this field, and has also contributed to the development of new fields. In order to manufacture the above-mentioned rare earth permanent magnet, powder metallurgy is usually used, and it is first necessary to manufacture raw material powder. Of these, Nd- contains Dy, which has attracted particular attention in recent years.
Taking the case of Fe-B system as an example, first of all Nd29 in weight%
%, Dy 3.6%, 81%, Nb 11%, balance Fe is radio-frequency melted in an Ar atmosphere, coarsely pulverized, and further finely pulverized with a ball mill etc. in a protected atmosphere to obtain a raw material powder with an average particle size of about 4 μm. Create. An appropriate amount of sintering aid is added to the raw material powder obtained as described above, compression molded using a mold placed in a magnetic field, and this molded body is sintered at 1000"C or higher. By performing heat treatment at 900° C. for about 1 hour, a rare earth permanent magnet having a high energy product can be obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような希土類永久磁石用の原料を溶解および鋳造
手段によって製造する場合には、出発原料としてDyメ
タル若しくはDy−Fe合金を使用する必要があるが、
このDyメタルおよびDy−Fe合金は極めて高価であ
るため、原料もまた高価にならざるを得ないという問題
点がある。
When producing raw materials for rare earth permanent magnets as described above by melting and casting means, it is necessary to use Dy metal or Dy-Fe alloy as the starting material.
Since Dy metal and Dy-Fe alloy are extremely expensive, there is a problem in that the raw materials must also be expensive.

方希土類永久磁石の適用分野からの要求は、小型軽量化
および高性能化に加えて低コスト化に対しても次第に厳
しさを増してきている。
Demands from the field of application of rare earth permanent magnets are becoming increasingly strict, including miniaturization, weight reduction, high performance, and cost reduction.

一方上記原料の製造方法として還元拡散法若しくはR/
D法と称される方法がある。この方法においては例えば
D V 20s+pe+ フェロボロンおよび金属Ca
を粉砕状態で混合した後、950〜1200℃で数時間
加熱してDy、O,を還元拡散するものである。すなわ
ち、 Dy、Os+14Fe+B+3Ca →Dy、Fe、4+B+3Ca○ の反応により生成した混合物からCaOを除去し、その
後乾燥してDy−Fe合金を得るのである。
On the other hand, as a method for producing the above raw materials, reduction diffusion method or R/
There is a method called D method. In this method, for example, D V 20s+pe+ ferroboron and metal Ca
After mixing in a pulverized state, the mixture is heated at 950 to 1200°C for several hours to reduce and diffuse Dy, O, and the like. That is, CaO is removed from the mixture produced by the reaction Dy, Os+14Fe+B+3Ca→Dy, Fe, 4+B+3Ca○, and then dried to obtain a Dy-Fe alloy.

この方法においては高価なりy−Fe合金に代えて、比
較的に安価なりyxOsを使用できるため、原料の製造
コストを低減できるという利点がある。
In this method, relatively inexpensive yxOs can be used in place of the expensive y-Fe alloy, so there is an advantage that the manufacturing cost of raw materials can be reduced.

しかしながら上記R/D法による原料を使用して製造し
た場合には、永久磁石の磁気特性が低下するという問題
点がある。すなわち、まず還元拡散反応が完全に進行せ
ずに、例えば合金を構成するFeの芯が残存し、組成が
付均−になるという欠点がある。また還元剤として添加
した非磁性のCaが合金中に不純物として混入する。ま
た更に合金組成中に02が混入する。上記のような諸要
因の存在により、永久磁石として要求される磁気特性を
低下させるという問題点がある。
However, when the permanent magnet is produced using raw materials produced by the R/D method, there is a problem in that the magnetic properties of the permanent magnet deteriorate. That is, first of all, there is a drawback that the reduction-diffusion reaction does not proceed completely and, for example, the Fe core constituting the alloy remains, resulting in a uniform composition. Furthermore, non-magnetic Ca added as a reducing agent mixes into the alloy as an impurity. Furthermore, 02 is mixed into the alloy composition. Due to the presence of the above-mentioned factors, there is a problem in that the magnetic properties required for a permanent magnet are degraded.

上記希土類永久磁石用原料を安価に製造する方法として
、希土類金属酸化物と、金属Mと、金属Caとを混合し
た後、加熱還元してRM5合金を製造し、この合金を溶
融状態の金属M中に添加した後粉化することを内容とす
る提案が開示されている(特開昭60−238403号
公報参照)。
As a method for manufacturing the raw material for rare earth permanent magnets at low cost, a rare earth metal oxide, metal M, and metal Ca are mixed, and then heated and reduced to produce an RM5 alloy. A proposal has been disclosed in which the powder is powdered after being added thereto (see Japanese Patent Application Laid-Open No. 60-238403).

上記合金の添加手段としては例えばRM5合金をペレッ
トとして溶湯中に添加する旨の記載がある。
As a method for adding the above-mentioned alloy, for example, there is a description that RM5 alloy is added to the molten metal in the form of pellets.

この手段をDy−Fe合金にも応用することが考えられ
るが、RM5合金若しくはDy−Fe合金を粉体の状態
から単に成形したペレットとして添加した場合には、こ
のペレットが多孔質体であることおよびo2を内封して
いるため、高温溶湯により容易に酸化されるのみならず
、02が混入する原因ともなる。従って溶解歩留が大幅
に低下すると共に、磁気特性を低下させる懸念もあり、
磁気特性を保持しつつ原料の製造コストを低減させると
いう要求を満足することが困難であるという問題点もあ
る。
It is conceivable to apply this method to Dy-Fe alloys, but if RM5 alloy or Dy-Fe alloy is added as a pellet simply formed from a powder state, this pellet is a porous body. Since it contains O2 and O2, it is not only easily oxidized by high-temperature molten metal, but also causes O2 to be mixed in. Therefore, there is a concern that the melting yield will decrease significantly and the magnetic properties will deteriorate.
Another problem is that it is difficult to satisfy the requirement of reducing the manufacturing cost of raw materials while maintaining magnetic properties.

本発明は上記従来技術に存在する問題点を解決し、希土
類永久磁石としての本来固有の磁気特性を十分に保持す
ると共に、製造コストの大幅な低減が可能である希土類
永久磁石原料の製造方法を提供することを目的とする。
The present invention solves the problems existing in the prior art described above, and provides a method for manufacturing rare earth permanent magnet raw materials that sufficiently retains the magnetic properties inherent to rare earth permanent magnets and can significantly reduce manufacturing costs. The purpose is to provide.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明においては、Dy2
0.と、Feと、金@iCaとを混入した後、加熱還元
してDy−Fe合金を生成し、この生成物を粉砕した後
、成形体に生成し、これを不活性ガス雰囲気、還元性ガ
ス雰囲気あるいは実質的な真空中にて焼結して焼結体と
し、この焼結体をこの焼結体中のDy、Feを含めて所
定成分のRM(但し、RはSc、YO,La、Ce、P
r、Nd、Pm、Sm、Eu、Gd、Tb、Dy、H。
In order to achieve the above object, in the present invention, Dy2
0. After mixing , Fe, and gold@iCa, a Dy-Fe alloy is produced by heating reduction, and this product is crushed to produce a molded body, which is heated in an inert gas atmosphere and a reducing gas. A sintered body is obtained by sintering in an atmosphere or in a substantial vacuum, and this sintered body is made of RM containing a predetermined component including Dy and Fe (where R is Sc, YO, La, Ce, P
r, Nd, Pm, Sm, Eu, Gd, Tb, Dy, H.

、Er、Pm、Tb、Luのうちの1種または2種以上
、MはGo、Fe、Ni、Mo、Cu、Zr、 Tl、
 Hf、 Nb、 Ta、 V、 W、 Al、 C、
Ge、  I r、 Mg、 M、Ge、 Se、 S
i、 Te。
, Er, Pm, Tb, one or more of Lu, M is Go, Fe, Ni, Mo, Cu, Zr, Tl,
Hf, Nb, Ta, V, W, Al, C,
Ge, Ir, Mg, M, Ge, Se, S
i, Te.

Z、Ge、Bのうちの1種または2種以上)系合金とな
るように配合したRおよび/またはMからなる溶湯中に
添加して溶解し、RMM合金を製造するという技術的手
段を採用した。
Adopts technical means of manufacturing RMM alloy by adding it to a molten metal consisting of R and/or M blended to form an alloy of one or more of Z, Ge, and B) and melting it. did.

本発明において、加熱還元処理によって得られたDy−
Fe合金をそのまま溶解した場合はRM金合金溶解歩留
りが著しく低下し、原料の製造コストを増大させること
となるため不都合である。
In the present invention, Dy- obtained by thermal reduction treatment
If the Fe alloy is melted as it is, the RM gold alloy melting yield will be significantly lowered and the manufacturing cost of the raw material will be increased, which is disadvantageous.

従ってこれを粉砕、成形しさらに焼結体としてから溶解
する必要がある。
Therefore, it is necessary to crush, mold, and further form a sintered body before melting it.

〔作 用〕[For production]

上記の構成により、Rおよび/またはMからたる溶湯に
Dy−Fe合金からなる焼結体が添加されて溶解し、所
定のRM系系合金溶湯得られる。
With the above configuration, a sintered body made of a Dy-Fe alloy is added to a molten metal made of R and/or M and melted, thereby obtaining a predetermined RM-based alloy molten metal.

この場合不純物として含まれるCaOはスラグとなって
浮上し、RM系台金溶湯中に(:a、O,が侵入するこ
とがない。また焼結体の外殻に存在する表面酸化層もま
た殻状を呈してスラグと共に浮上するから、非所望な0
2の侵入を防止することができる。
In this case, CaO contained as an impurity floats up as slag, preventing (:a, O, from penetrating into the molten RM base metal. Also, the surface oxidation layer present on the outer shell of the sintered body also Since it takes on a shell-like appearance and floats up with the slag, undesirable zero
2 can be prevented from entering.

〔実施例−1〕 Dy、0.     5738g Fe        5000g 金属Ca      185c1g 上記出発原料を混合した後、ステンレス鋼製のレトルト
内において、Arガス雰囲気中で1200℃×2時間の
加熱還元処理を行った。次に得られた反応生成物を水洗
し反応副生成物であるCaOを除去してDy−Fe合金
を得た。得られたDy−Fe合金の組成を分析したとこ
ろ重量%でDV49.8%、Ca0O,1%、0,0.
2%。
[Example-1] Dy, 0. 5738g Fe 5000g Metallic Ca 185c1g After mixing the above starting materials, a heating reduction treatment was performed at 1200° C. for 2 hours in an Ar gas atmosphere in a stainless steel retort. Next, the obtained reaction product was washed with water to remove CaO, a reaction by-product, to obtain a Dy-Fe alloy. Analysis of the composition of the obtained Dy-Fe alloy revealed that the weight percentage was DV49.8%, Ca0O,1%, 0.0.
2%.

残部Feであった。Dy−Fe合金をジェットミルで粉
砕し平均粒径10μmの粉末とした。次の二の粉末を冷
間静水圧プレスにより、2.5t/cm2の成形圧力で
成形した。更に成形体をアルゴンガス雰囲気中で105
0℃×2時間の条件で焼結し、焼結体とした。一方真空
誘導溶解炉内に原材料としてNdメタル294C)g、
Fe5699g、フェロボロン500 g (B 20
.0%)。
The remainder was Fe. The Dy-Fe alloy was pulverized with a jet mill to obtain a powder with an average particle size of 10 μm. The second powder was molded using a cold isostatic press at a molding pressure of 2.5 t/cm2. Furthermore, the molded body was heated to 105% in an argon gas atmosphere.
It was sintered at 0° C. for 2 hours to obtain a sintered body. Meanwhile, Nd metal 294C)g as raw material in the vacuum induction melting furnace,
Fe5699g, ferroboron 500g (B 20
.. 0%).

フェロニオブ138g (Nb80.0%)を装入し、
次いで溶解炉を密封して炉内を1O−ITorrの真空
状態に保持して通電し、これらの原材料を溶解して溶湯
を形成した。次に、Arガスを封入して溶解炉内を一3
0cmHgの状態に保持した後、あらかじめ溶解炉内に
用意しておいた前記Dy−Fe台金焼結体を合計で72
3g順次溶湯に添加した。焼結体を添加後更に通電する
ことによってこれを溶解し、その後通電を停止して合金
溶湯を金型に鋳造してインゴットを得た。得られたンシ
ョットの組成を分析したところ、重量%でNd29.4
%、 Dy3.6%、81%、Nb11%、Ca<0.
01%、O<0.01%、残部Feであった。この合金
を粗粉砕、微粉砕、成形、焼結、熱処理して永久磁石を
形成した。磁気特性を測定した結果を表示す。なお比較
例として従来のR/D法によって作製した原料によるも
のを併記した。
Charge 138g of ferroniobium (Nb80.0%),
Next, the melting furnace was sealed, the inside of the furnace was kept in a vacuum state of 1 O-ITorr, and electricity was applied to melt these raw materials to form a molten metal. Next, the inside of the melting furnace was filled with Ar gas.
After maintaining the state at 0 cmHg, the Dy-Fe base metal sintered body prepared in advance in the melting furnace was heated to a total of 72 mmHg.
3g was added sequentially to the molten metal. After adding the sintered body, the sintered body was further melted by applying electricity, and then the electricity was stopped and the molten alloy was cast into a mold to obtain an ingot. When the composition of the obtained shot was analyzed, it was found that Nd was 29.4% by weight.
%, Dy3.6%, 81%, Nb11%, Ca<0.
0.01%, O<0.01%, and the balance was Fe. This alloy was coarsely pulverized, finely pulverized, molded, sintered, and heat treated to form a permanent magnet. Displays the results of measuring magnetic properties. In addition, as a comparative example, one using a raw material produced by the conventional R/D method is also shown.

Br  BHc  IHc  (BH)max表から明
かなように、比較例においては、IHCにおいて若干大
なる値を示すものの、Br、BHcの値が低く、 (B
H)maxの値か低下している。これに対して実施例に
おいてはBr、BHcの値が大であると共に、(BH)
maxの値が大であり、これらの値はDyメタルを溶解
して作製した原料によるものと路間−である。なお、原
料の製造コストは上記溶製原料の場合と比較して2゜か
ら0%低減させ得ることを確認した。
As is clear from the Br BHc IHc (BH) max table, in the comparative example, the values of Br and BHc are low, although they show slightly larger values in IHC, and (B
H) The value of max is decreasing. On the other hand, in the example, the values of Br and BHc are large, and (BH)
The value of max is large, and these values are indistinguishable from those due to the raw material produced by melting Dy metal. It has been confirmed that the manufacturing cost of the raw material can be reduced by 2 to 0% compared to the case of the above-mentioned melted raw material.

〔実施例−2〕 Dyxo、      6886g Fe        4000g 金属Ca      2220g 上記出発原料を混合した後、実施例1と同じ要領で11
50℃×2時間の加熱還元処理を行い、得られた反応生
成物を水洗してDy−Fe合金を得た。得られたDy−
Fe合金の組成を分析したところ重量%でDy59.8
%、Cab、08%、0,0.25%、残部Feであっ
た。このDy−Fe合金を同じ〈実施例1と同じ要領で
平均粒径5μmの粉末とし、この粉末を3,0ton/
cm2の成形圧力で成形して成形体とした。更に成形体
を実質的な真空中で1100℃×1時間の条件で焼結し
て焼結体とした。
[Example-2] Dyxo, 6886g Fe 4000g Metal Ca 2220g After mixing the above starting materials, 11
A heating reduction treatment was performed at 50°C for 2 hours, and the resulting reaction product was washed with water to obtain a Dy-Fe alloy. The obtained Dy-
When the composition of the Fe alloy was analyzed, it was Dy59.8 in weight%.
%, Cab, 0.8%, 0.0.25%, balance Fe. This Dy-Fe alloy was made into powder with an average particle size of 5 μm in the same manner as in Example 1, and this powder was
A molded article was obtained by molding at a molding pressure of cm2. Further, the molded body was sintered in a substantial vacuum at 1100° C. for 1 hour to obtain a sintered body.

一方、真空誘導溶解炉内に原材料として、Ndメタル3
110g、Fe5556g、Go300g、A180g
、  フェロボロン525g(B20%)、フェロニオ
ブ94g (Nb80%)を装入し、実施例1と同じ要
領でこれらを溶解して溶湯を成形し、これに前記の焼結
体を合計で335g順次添加して溶解し、金型に鋳造し
てインゴットを得た。得られたインゴットの組成を分析
したところ重量%で、Nd31.1%、D5y2,0%
On the other hand, Nd metal 3 was placed as a raw material in the vacuum induction melting furnace.
110g, Fe5556g, Go300g, A180g
, 525 g of ferroboron (20% B) and 94 g of ferroniobium (80% Nb) were charged and melted in the same manner as in Example 1 to form a molten metal, to which a total of 335 g of the above sintered body was sequentially added. The mixture was melted and cast into a mold to obtain an ingot. When the composition of the obtained ingot was analyzed, the weight percentage was 31.1% Nd and 2.0% D5y.
.

Ga4.0%、AIo、8%、B1.05%、Nbo、
75%、Ca<0.01%、 02<0.01%、残部
Feであった。この合金を粗粉砕、微粉砕、成形、焼結
、熱処理して永久磁石を形成した。磁気特性を測定した
結果を表示す。なお比較例として従来のR/D法によっ
て作製した原料によるものを併記した。
Ga4.0%, AIo, 8%, B1.05%, Nbo,
75%, Ca<0.01%, 02<0.01%, balance Fe. This alloy was coarsely pulverized, finely pulverized, molded, sintered, and heat treated to form a permanent magnet. Displays the results of measuring magnetic properties. In addition, as a comparative example, one using a raw material produced by the conventional R/D method is also shown.

表から明かなように、比較例においては、Br、BHc
の値が低く、 (BH)maxの値が低下している。こ
れに対して実施例においてはBr、BHCの値が大であ
ると共に、 (BH)maxの値が大であり、これらの
値はDyメタルを溶解して作製した原料によるものと路
間−である。
As is clear from the table, in the comparative example, Br, BHc
The value of is low, and the value of (BH)max is decreasing. On the other hand, in the example, the values of Br and BHC are large, and the value of (BH)max is large, and these values are different from those from the raw material made by melting Dy metal and from the road. be.

〔実施例−3〕 D’lx0.     3443g Fe        7000g 金属Ca      l 199 g 上記出発原料を混合した後、実施例1と同じ要領で11
50℃×2時間の加熱還元処理を行い、得られた反応生
成物を水洗してDy Fe合金を得た。得られたDy−
Fe合金の組成を分析したところ重量%でDy29.7
%、Cab、06%、O,0,18%、残部Feであっ
た。このり、y−Fe合金を同じ〈実施例1と同じ要領
で平均粒径20μmの粉末とし、この粉末を3.0to
n/cm2の成形圧力で成形して成形体とした。更に成
形体をアルゴンガス雰囲気中で1100°C×1時間の
条件で焼結して焼結体とした。
[Example-3] D'lx0. 3443g Fe 7000g Metal Cal 199g After mixing the above starting materials, 11
A heating reduction treatment was performed at 50° C. for 2 hours, and the resulting reaction product was washed with water to obtain a Dy-Fe alloy. The obtained Dy-
When the composition of the Fe alloy was analyzed, it was Dy29.7 in weight%.
%, Cab, 0.6%, O, 0.18%, and the balance was Fe. In addition, the same y-Fe alloy was made into powder with an average particle size of 20 μm in the same manner as in Example 1, and this powder was
A molded article was obtained by molding at a molding pressure of n/cm2. Further, the molded body was sintered in an argon gas atmosphere at 1100°C for 1 hour to obtain a sintered body.

一方、真空誘導溶解炉内に原材料として、NdPr−F
eメタル(Nd71.4%、Pr238%、残部Fe)
、Fe5185g、  フェロホロン600g(B20
%)、フェロニオブ65g(N b 80%)を装入し
、実施例1と同じ要領でこれらを溶解して溶湯を成形し
、これに前記の焼結体を合計でlooog順次添加して
溶解し、金型に鋳造してインゴットを得た。得られたイ
ンゴットの組成を分析したところ重量%で、Nd22.
5%、 Dy3.0%、B1.2%、Nb0.52%、
Ca<0.01%、02<0.01%、残部Feであっ
た。この合金を粗粉砕、微粉砕、成形、焼結、熱処理し
て永久磁石を形成した。磁気特性を測定した結果を表示
す。なお比較例として従来のR/D法によって作製した
原料によるものを併記した。
On the other hand, NdPr-F was placed as a raw material in a vacuum induction melting furnace.
e metal (71.4% Nd, 238% Pr, balance Fe)
, Fe5185g, Ferrophoron 600g (B20
%) and 65 g of ferroniobium (Nb 80%) were charged and melted in the same manner as in Example 1 to form a molten metal.To this, a total of looog of the above-mentioned sintered bodies were sequentially added and melted. , and cast into a mold to obtain an ingot. Analysis of the composition of the obtained ingot revealed that it was Nd22.
5%, Dy3.0%, B1.2%, Nb0.52%,
Ca<0.01%, 02<0.01%, and the balance was Fe. This alloy was coarsely pulverized, finely pulverized, molded, sintered, and heat treated to form a permanent magnet. Displays the results of measuring magnetic properties. In addition, as a comparative example, one using a raw material produced by the conventional R/D method is also shown.

表から明かなように、比較例においては、Br、BHc
の値が低く、 (BH)Illaxの値が低下している
。これに対して実施例においてはBr、BHCの値が大
であると共に、 (BH)maxの値が大であり、これ
らの値はDyメタルを溶解して作製した原料によるもの
と路間−である。
As is clear from the table, in the comparative example, Br, BHc
The value of (BH)Illax is low, and the value of (BH)Illax is decreasing. On the other hand, in the example, the values of Br and BHC are large, and the value of (BH)max is large, and these values are different from those from the raw material made by melting Dy metal and from the road. be.

〔実施例−4〕 Dy、0.     2295g Fe        8000g 金属Ca      888g 上記出発原料を混合した後、実施例1と同じ要領で11
70℃X2時間の加熱還元処理を行い、得られた反応生
成物を水洗してDy−Fe合金を得た。得られたDy−
Fe合金の組成を分析したところ重量%でDy19.8
%、Cab、05%、O,0,15%、残部Feであっ
た。このDyFe合金を同じ〈実施例1と同じ要領で平
均粒径4μmの粉末とし、この粉末を1゜Ot o n
/cm2の成形圧力で成形して成形体とした。更に成形
体を水素雰囲気中で1000°C×1時間の条件で焼結
して焼結体とした。
[Example-4] Dy, 0. 2295g Fe 8000g Metal Ca 888g After mixing the above starting materials, 11
A heating reduction treatment was performed at 70°C for 2 hours, and the resulting reaction product was washed with water to obtain a Dy-Fe alloy. The obtained Dy-
When the composition of the Fe alloy was analyzed, it was Dy19.8 in weight%.
%, Cab, 0.5%, O, 0.15%, and the balance was Fe. This DyFe alloy was made into powder with an average particle size of 4 μm in the same manner as in Example 1, and this powder was
A molded article was obtained by molding at a molding pressure of /cm2. Further, the molded body was sintered in a hydrogen atmosphere at 1000°C for 1 hour to obtain a sintered body.

一方、真空誘導溶解炉内に原材料として、NdPr−C
e−Feメタル(Nd62.7%、Pr21.8%、C
e10.5%、残部Fe)3263g、Fe5212g
、フェロボロン525g(B20%)を装入し、実施例
1と同じ要領でこれらを溶解して溶湯を成形し、これに
前記の焼結体を合計でlooog順次添加して溶解し、
金型に鋳造してインゴットを得た。得られたインゴット
の組成を分析したところ重量%で、Nd2O。
On the other hand, NdPr-C was used as a raw material in a vacuum induction melting furnace.
e-Fe metal (Nd62.7%, Pr21.8%, C
e10.5%, balance Fe) 3263g, Fe5212g
, 525 g of ferroboron (B20%) was charged, and these were melted in the same manner as in Example 1 to form a molten metal, and a total of looog of the sintered bodies were sequentially added to this and melted,
An ingot was obtained by casting into a mold. The composition of the obtained ingot was analyzed and found to be Nd2O in weight percent.

5%、Pr7.1%、Ce3.4%、 Dy2.0%、
Bl、05%、残部Feであった。この合金を粗粉砕、
微粉砕、成形、焼結、熱処理して永久磁石を形成した。
5%, Pr7.1%, Ce3.4%, Dy2.0%,
Bl, 05%, balance Fe. Coarsely crush this alloy,
It was pulverized, molded, sintered, and heat treated to form a permanent magnet.

磁気特性を測定した結果を表示す。なお比較例として従
来のR/D法によって作製した原料によるものを併記し
た。
Displays the results of measuring magnetic properties. In addition, as a comparative example, one using a raw material produced by the conventional R/D method is also shown.

表から明かなように、比較例においては、Br、BHc
O値が低く、 (BH)maxの値が低下している。こ
れに対して実施例においてはBr、BHCの値が大であ
ると共に、 (BH)maxの値が大てあり、これらの
値はDyメタルを溶解して作製した原料によるものと路
間−である。
As is clear from the table, in the comparative example, Br, BHc
The O value is low and the (BH)max value is decreasing. On the other hand, in the example, the values of Br and BHC are large, and the value of (BH)max is also large, and these values are different from those from the raw material made by melting Dy metal. be.

本実施例においては希土類元素がDVである場合の例を
記述したが、Dy以外の他の希土類元素(前記R参照)
であっも作用は同一である。また同様にFeの一部を前
記他の金属Mで置換した場合であっても同様に適用でき
る。なお溶湯へ添加する焼結体の形状は特に限定されな
い。成形手段もまた冷間静水圧プレス以外のものを適用
できることは勿論である。更に粉体化手段としては溶融
状態からのアトマイズ手段を使用してもよい。
In this example, an example in which the rare earth element is DV has been described, but other rare earth elements other than Dy (see R above)
However, the effect is the same. Similarly, the present invention can be similarly applied even when part of Fe is replaced with the other metal M. Note that the shape of the sintered body added to the molten metal is not particularly limited. Of course, the forming means other than cold isostatic pressing can also be applied. Further, as the powdering means, atomizing means from a molten state may be used.

〔発明の効果〕〔Effect of the invention〕

本発明は以上記述のような構成および作用であるから、
下記の効果を奏し得る。
Since the present invention has the structure and operation as described above,
The following effects can be achieved.

(1)還元拡散処理によって得られた合金の還元拡散が
若干不充分であっても、その後の焼結、溶解手段により
組成の均一化が図れる。
(1) Even if the reduction and diffusion of the alloy obtained by the reduction and diffusion treatment is somewhat insufficient, the composition can be made uniform by the subsequent sintering and melting means.

(2)還元処理用の金属Caあるいは反応副生成物のC
aOスラグとして浮上するから、RM系系合金混入する
ことがない。
(2) Metallic Ca for reduction treatment or reaction by-product C
Since it floats as aO slag, there is no chance of contamination with RM-based alloys.

(3)出発原料中に存在する02も溶解工程においてス
ラグ中に吸収除去され、RM系系合金への侵入を防止で
きる。
(3) 02 present in the starting material is also absorbed and removed by the slag during the melting process, thereby preventing it from entering the RM alloy.

(4)以上のことからRM系合金を組成を均一に確保し
、非磁性材料からなる不純物の侵入を防止し得るため、
希土類永久磁石とした場合の磁気特性を溶解材を原料と
するものと同等のレベルまで向上させ得る。
(4) From the above, in order to ensure a uniform composition of the RM alloy and prevent the intrusion of impurities made of non-magnetic materials,
The magnetic properties of rare earth permanent magnets can be improved to the same level as those made from molten materials.

(5)還元拡散処理によって得られた合金を粉砕、成形
しさらにこれを焼結体とすることによって、溶解工程に
おける滅失が少なく、溶解歩留を大幅に向上させ得るた
め、原料の製造コストの大幅な低減が可能である。
(5) By pulverizing and molding the alloy obtained by reduction diffusion treatment and making it into a sintered body, there is less loss in the melting process and the melting yield can be greatly improved, reducing the manufacturing cost of raw materials. A significant reduction is possible.

Claims (1)

【特許請求の範囲】[Claims] Dy_2O_3とFeと金属Caとを混合した後、加熱
還元してDy−Fe合金を生成し、この生成物を粉砕し
た後、成形体に成形し、これを不活性ガス雰囲気、還元
性ガス雰囲気あるいは実質的な真空中にて焼結して焼結
体とし、この焼結体をこの焼結体中のDy、Feを含め
て所定成分のR−M(但し、RはSc、Y、La、Ce
、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、
Ho、Er、Pm、Tb、Luのうちの1種または2種
以上、MはCo、Fe、Ni、Mo、Cu、Zr、Tl
、Hf、Nb、Ta、V、W、Al、C、Ge、Ir、
Mg、Mn、Se、Si、Te、Z、Ge、Bのうちの
1種または2種以上)系合金となるように配合したRお
よび/またはMからなる溶湯中に添加して溶解し、RM
系合金を製造することを特徴とする希土類永久磁石原料
の製造方法。
After mixing Dy_2O_3, Fe, and metal Ca, a Dy-Fe alloy is produced by heating reduction, and this product is crushed and formed into a compact, which is placed in an inert gas atmosphere, a reducing gas atmosphere, or The sintered body is sintered in a substantial vacuum to form a sintered body, and the sintered body is made up of predetermined components of R-M including Dy and Fe (where R is Sc, Y, La, Ce
, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy,
One or more of Ho, Er, Pm, Tb, Lu, M is Co, Fe, Ni, Mo, Cu, Zr, Tl
, Hf, Nb, Ta, V, W, Al, C, Ge, Ir,
One or more of Mg, Mn, Se, Si, Te, Z, Ge, B) system alloy is added and melted into a molten metal consisting of R and/or M, and RM
A method for producing rare earth permanent magnet raw materials, the method comprising producing a rare earth permanent magnet raw material.
JP2077756A 1990-03-27 1990-03-27 Production method of raw material for rare earth permanent magnet Expired - Fee Related JP2994684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2077756A JP2994684B2 (en) 1990-03-27 1990-03-27 Production method of raw material for rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2077756A JP2994684B2 (en) 1990-03-27 1990-03-27 Production method of raw material for rare earth permanent magnet

Publications (2)

Publication Number Publication Date
JPH03277733A true JPH03277733A (en) 1991-12-09
JP2994684B2 JP2994684B2 (en) 1999-12-27

Family

ID=13642777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2077756A Expired - Fee Related JP2994684B2 (en) 1990-03-27 1990-03-27 Production method of raw material for rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP2994684B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8262808B2 (en) 2006-12-21 2012-09-11 Ulvac, Inc. Permanent magnet and method of manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703794B (en) * 2012-06-20 2014-04-30 江苏美特林科特殊合金有限公司 Method of vacuum induction argon bottom blowing for smelting high-performance magnetic material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8262808B2 (en) 2006-12-21 2012-09-11 Ulvac, Inc. Permanent magnet and method of manufacturing same

Also Published As

Publication number Publication date
JP2994684B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
JPWO2002103719A1 (en) Rare earth permanent magnet material
CN100394521C (en) Forming method in magnetic field, and method for producing rare-earth sintered magnet
JPH0424401B2 (en)
JP2011214113A (en) Method for manufacturing rare-earth-iron-nitrogen-base magnet powder and rare-earth-iron-nitrogen-base magnet obtained thereby
JP3148581B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance
CN113539664B (en) Preparation method of Sm-based anisotropic composite magnet
CN114223044B (en) Method for producing sintered magnet
JPH03277733A (en) Manufacture of raw material for rare earth permanent magnet
JPS62173704A (en) Manufacture of permanent magnet
JPS6181607A (en) Preparation of rare earth magnet
JPS62181403A (en) Permanent magnet
JPS6181604A (en) Preparation of rare earth magnet
JP2994685B2 (en) Production method of raw material for rare earth permanent magnet
JP3178848B2 (en) Manufacturing method of permanent magnet
JPH0524975B2 (en)
JPS62181402A (en) R-b-fe sintered magnet and manufacture thereof
JPS61261448A (en) Production of permanent magnet having high energy product
JPH0582319A (en) Permanent magnet
JPS62134907A (en) R-b-fe system sintered magnet and manufacture thereof
JPH03198305A (en) Manufacture of material for rare earth permanent magnet
JPH0362775B2 (en)
JPH03198304A (en) Manufacture of material powder for rare earth permanent magnet
JPS62170454A (en) Permanent magnet alloy and its manufacture
JP3184355B2 (en) Alloy powder for sintered magnet and method for producing the same
JPS62141704A (en) R-b-fe system sintered magnet and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees