JPH03276769A - Semiconductor photodetection device - Google Patents

Semiconductor photodetection device

Info

Publication number
JPH03276769A
JPH03276769A JP2077582A JP7758290A JPH03276769A JP H03276769 A JPH03276769 A JP H03276769A JP 2077582 A JP2077582 A JP 2077582A JP 7758290 A JP7758290 A JP 7758290A JP H03276769 A JPH03276769 A JP H03276769A
Authority
JP
Japan
Prior art keywords
light
conductivity type
layer
wire bonding
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2077582A
Other languages
Japanese (ja)
Inventor
Akira Hattori
亮 服部
Misao Hironaka
美佐夫 廣中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2077582A priority Critical patent/JPH03276769A/en
Publication of JPH03276769A publication Critical patent/JPH03276769A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a photodiode whose response speed with reference to an incident optical signal has been made high and whose dark current characteristic has been improved by a method wherein a metal back for stray-light blocking use is formed on the whole surface of a light-transmitting insulating film excluding a photodetection region so as to be electrically insulated from an ohmic electrode. CONSTITUTION:For example, an SiN insulating film 16 is formed, by a CVD method or the like, on the whole surface of a contact layer 33, a wire bonding part 34 and an exposed light-transmitting cap layer 30 composed of an InP crystal. After that, a hole used to expose only the wire bonding part 34 is made. Then, e.g. Ti/Au is formed on the whole surface by a vapor deposition operation, a sputtering operation or like; it is patterned by an etching operation; a photodetection region 11 for directing light onto a conductivity-type reversing region 5 is formed; a wire bonding pad part 17 coming into electrical contact with the wire bonding part 34 and a metal mask 18 for stray-light blocking use which has been insulated electrically from the wire bonding pad part 17 are formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体受光装置に関するものてあり、特に
入射光信号に対する高速応答か可能て、しかも暗電流の
小さいフォトダイオード( Photo−Diode:
以下てはPDと略称する)に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor photodetector, and in particular to a photodiode that is capable of high-speed response to an incident optical signal and has a small dark current.
(hereinafter abbreviated as PD).

〔従来の技術〕[Conventional technology]

第3図は従来のInGaAsプレーナ型PDの代表的な
構造例を示す断面図で、n+型(以下n+−と称す) 
InP基板(1)の一方の面上には、n型(以下、n−
と称す) InPnツバ9フフ(以下n−一と称す) 
InGaAs光吸収層(3) 、 n−InP窓層(4
)かこの順序て層状に形成されている。n−−1nP窓
層(4)の表面の一部から例えばZnなどのp型不純物
を拡散して導電型が反転された領域、すなわちp″″″
領域)か形成されており、その最下部はn − − 1
nGaAs光吸収層(3)に達している。(3a)はP
n接合に伴って形成された空乏層て、点線の(12)は
上記空乏層(3a)の空乏層フロントを示し、この場合
は、この空乏層フロント(12)かP′″領域(5)と
n−−1nP窓層(4)およびn− − 1nGaAs
光吸収層(3)との間の実質的なPn接合部となる。
Figure 3 is a cross-sectional view showing a typical structural example of a conventional InGaAs planar PD, which is of n+ type (hereinafter referred to as n+-).
On one side of the InP substrate (1), an n-type (hereinafter, n-
) InPn Tsuba 9 Fufu (hereinafter referred to as n-1)
InGaAs light absorption layer (3), n-InP window layer (4)
) are formed in layers in this order. A region where the conductivity type is inverted by diffusing a p-type impurity such as Zn from a part of the surface of the n--1nP window layer (4), that is, p''''''
) is formed, the bottom of which is n − − 1
It has reached the nGaAs light absorption layer (3). (3a) is P
In the depletion layer formed along with the n-junction, the dotted line (12) indicates the depletion layer front of the depletion layer (3a), and in this case, this depletion layer front (12) or the P'' region (5) and n--1nP window layer (4) and n--1nGaAs
This becomes a substantial Pn junction with the light absorption layer (3).

n−−1nP窓層(4)上には、少なくとも受光領域(
11)か形成される部分を除いて例えばプラズマCVD
なとの方法てシリコン窒化膜(SiN)などの表面保護
用絶縁膜(6)か形成されている。絶縁…り(6)の上
記受光領域(11)が形成される開口部分にはp÷債域
(5)にオーミック接触するp側電極(7)か形成され
ている。絶縁膜(6)上にはまた上記p側電極(7)と
電気的に絶縁されるように間隙(9)をおいて金属遮光
膜(8)が形成されている。
On the n--1nP window layer (4), there is at least a light receiving area (
11) For example, plasma CVD except for the part where the
A surface protection insulating film (6) such as a silicon nitride film (SiN) is formed using a similar method. A p-side electrode (7) is formed in the opening portion of the insulating hole (6) where the light-receiving region (11) is formed, and is in ohmic contact with the p divided region (5). A metal light shielding film (8) is also formed on the insulating film (6) with a gap (9) therebetween so as to be electrically insulated from the p-side electrode (7).

n◆−1nP基板(1)の他方の面にはn側電極(10
)か該基板(1)にオーミック接触して形成されている
An n-side electrode (10
) is formed in ohmic contact with the substrate (1).

上記のようなプレーナ型PDにおいて、受光領域(11
)から入射した光は窓層(4)を通過して、光吸収層(
3)の特に空乏層(3a)てその大部分が吸収される。
In the planar PD as described above, the light receiving area (11
) The light incident from the window layer (4) passes through the light absorption layer (
3), most of it is absorbed, especially in the depletion layer (3a).

空乏層(3a)における光吸収により発生した黒点て示
すキャリア(31)は、空乏層(3a)中の空間電界に
より加速され、入射光信号に対して極めて速く応答する
ドリフト電流成分として、電極(7)と(lO)との間
の受光検出電気信号として検出される。
Carriers (31), shown as black dots, generated by light absorption in the depletion layer (3a) are accelerated by the spatial electric field in the depletion layer (3a), and are transferred to the electrode (3a) as a drift current component that responds extremely quickly to the incident optical signal. 7) and (lO) is detected as a light reception detection electric signal.

一方、受光領域(11)以外の例えば間隙(9)から入
射した光は空乏層(3a)以外の光吸収層(3)て吸収
され、それによって白点て示すようなキャリア(32)
か発生する。このキャリア(32)は拡散によってpn
接合部である空乏層フロント(12)に辿りつき、拡散
電流成分として検出される。ところて、拡散電流成分は
光励起されたキャリア(32)の空間的密度勾配により
生じるため、一般にドリフト電流成分に比してその移動
がはるかに遅く、入射光信号に対する応答速度を低下さ
せる原因となる。
On the other hand, light incident from a gap (9) other than the light-receiving region (11) is absorbed by the light absorption layer (3) other than the depletion layer (3a), and as a result, carriers (32) as shown by white dots are absorbed.
or occur. This carrier (32) becomes pn due to diffusion.
It reaches the depletion layer front (12), which is the junction, and is detected as a diffusion current component. However, since the diffusion current component is generated by the spatial density gradient of photoexcited carriers (32), it generally moves much more slowly than the drift current component, causing a decrease in the response speed to the incident optical signal. .

第3図に示す従来のプレーナ型PDの上記のような欠点
、すなわち入射光信号に対する応答速度か遅いという欠
点を解消したPDとして、例えば特開昭55− 140
275号公報に記載されたものがある。第4図は上記公
報に記載されたPDの主要部の構造を示す断m1図であ
る。同図て、第3図と同等部分には同じ参照番号を付し
て説明を省略する。第3図のPDと同様に絶縁膜(6)
の受光領域(11)か形成される開口部分にはp十領域
(5)にオーミック接触するp側電極(71)か形成さ
れている。絶縁膜(6)およびp側電極(71)上には
リン酸ガラス(PSG)等の絶縁膜(21)が形成され
、該絶縁膜(21)上には金属遮光膜(22)か形成さ
れている。絶縁膜(21)および金属遮光膜(22)に
は上記ワイヤボンディング領域の開口(23)か形成さ
れている。p側電極(71)の一部は上記ワイヤボンデ
ィング領域の開口(23)を越えて伸びて延長部(72
)を構成しており、上記開口(23)においてp側電極
(71)の上記延長部’(72)に接続される接続用ワ
イヤがボンディングされる。
As a PD that eliminates the above-mentioned drawbacks of the conventional planar PD shown in FIG. 3, that is, the response speed to an incident optical signal is slow, for example, Japanese Patent Application Laid-Open No. 55-140
There is one described in Publication No. 275. FIG. 4 is a cross-sectional view showing the structure of the main part of the PD described in the above publication. In the same figure, parts equivalent to those in FIG. 3 are given the same reference numerals, and explanations thereof will be omitted. Insulating film (6) similar to the PD in Figure 3
A p-side electrode (71) which makes ohmic contact with the p-type region (5) is formed in the opening portion where the light-receiving region (11) is formed. An insulating film (21) made of phosphoric acid glass (PSG) or the like is formed on the insulating film (6) and the p-side electrode (71), and a metal light shielding film (22) is formed on the insulating film (21). ing. An opening (23) for the wire bonding region is formed in the insulating film (21) and the metal light shielding film (22). A portion of the p-side electrode (71) extends beyond the opening (23) in the wire bonding region to form an extension (72).
), and a connection wire connected to the extension part' (72) of the p-side electrode (71) is bonded in the opening (23).

第4図に示す構造のプレーナ型PDては、ボンデインク
領域の開口(23)はp側電極(71)の延長部(72
)で覆われているのて、完全に遮光され、受光領域(1
1)のみから入射した光が窓層(4)を通過して光吸収
層(3)の空乏層(3a)に達して、実質的にドリフト
電流成分に寄与するキャリア(31)か発生する。従っ
て、空乏層(3a)以外の光吸収層(3)てキャリアが
発生するのが防止され、拡散電流成分は実質的に存在し
ないので、拡散電流成分に起因する応答速度の低下を防
ぐことかできる。
In the planar PD having the structure shown in FIG.
), the light is completely blocked and the light receiving area (1
Light incident only from 1) passes through the window layer (4) and reaches the depletion layer (3a) of the light absorption layer (3), generating carriers (31) that substantially contribute to the drift current component. Therefore, carriers are prevented from being generated in the light absorption layer (3) other than the depletion layer (3a), and there is substantially no diffusion current component, so it is possible to prevent the response speed from decreasing due to the diffusion current component. can.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第4図に示すプレーナ型PDは拡散電流成分による応答
速度の低下を防止することは出来るか、電極(71)に
よる寄生容量が゛応答特性に大きな影響を与えるように
なる。電極(71)による寄生容量を小さくするために
絶縁膜(6)をあまり厚くすると、層間ストレス等によ
る膜割れか生ずる可能性かあり、また、下地のInP結
晶との接触部における段差か大きくなって、電極(71
)の前記段差の部分て電極メタルか局部的に薄くなって
、この部分て断線か発生し易くなる。このため、寄生容
量を小さくすることによる応答特性の改善には限界かあ
った。
In the planar PD shown in FIG. 4, is it possible to prevent the response speed from decreasing due to the diffusion current component? The parasitic capacitance due to the electrode (71) has a large effect on the response characteristics. If the insulating film (6) is made too thick in order to reduce the parasitic capacitance caused by the electrode (71), there is a possibility that film cracking may occur due to interlayer stress, etc., and the step difference at the contact with the underlying InP crystal may become large. and the electrode (71
) The electrode metal becomes locally thinner at the step portion, and wire breakage is more likely to occur in this portion. For this reason, there is a limit to the improvement of response characteristics by reducing the parasitic capacitance.

また、拡散等によって形成される拡散フロントおよびp
n接合のうち、窓層(4)の表面に現われる部分ては、
絶縁膜(6)との接合面の界面状態により、界面準位に
よる電流リーク成分か大きく左右され、これがPDの特
性に重要な影響を与える暗電流の大部分を決定するため
、絶縁膜(6)の形成条件により、PD全全体特性か大
きく左右されるという問題かあった。
In addition, the diffusion front formed by diffusion etc. and p
The part of the n-junction that appears on the surface of the window layer (4) is
The state of the interface with the insulating film (6) greatly affects the current leakage component due to the interface state, and this determines most of the dark current, which has an important effect on the characteristics of the PD. ) There was a problem in that the overall characteristics of the PD were greatly influenced by the formation conditions.

この発明は、従来のPDに見られた上記のような問題を
解消することを目的としだものて、受光領域以外の領域
からの所謂迷光を完全に遮光し、且つ寄生容量を低減す
ることにより入射光信号に対する応答速度を高速化する
と共に、暗電流特性か改善されたPDを得ることを目的
としたものである。
This invention aims to solve the above-mentioned problems found in conventional PDs, and by completely blocking so-called stray light from areas other than the light-receiving area and reducing parasitic capacitance. The purpose is to increase the response speed to an incident optical signal and to obtain a PD with improved dark current characteristics.

(課題を解決するための手段) この発明による半導体受光装置は、一方の面上に電極か
形成された第1の導電型のInP基板の他方の面上に直
接あるいは第1の導電型のInPnシバ9フフ のInGaAsあるいはInGaAsPからなる光吸収
層と、該光吸収層上に積層して形成された第1の導電型
のInP窓層と、該窓層の少なくとも一部の領域にその
表面から上記光吸収層に達するInP窓層と、該窓層の
導電型の導電型反転領域と、該導電型反転領域の表面お
よび上記窓層の表面を覆って形成された絶縁性もしくは
第1の導電型の半絶縁性InP光透過性キャップ層とを
具備している。また上記光透過性キャップ層には上記導
電型反転領域の電流取出し領域に達する貫通孔が形成さ
れており、該貫通孔を埋めるように上記導電型反転領域
の電流取出し領域に接触する導電性埋込み部を形成し、
上記光透過性キャップ層の表面てあって、上記導電型反
転領域に対する受光領域を除く表面に一端が上記導電性
埋込み部に接触し、他端にワイヤボンデインク部を形成
するコンタクト層を形成し、上記ワイヤボンデインク部
を除く全表導電性埋込み部に接触し、上記ワイヤボンデ
ィング部にワイヤボンデインク・パット用のオーミック
電極を形成し、さらに上記受光領域を除く上記光透過性
絶縁膜の全面に上記オーミック電極と電気的絶縁を保っ
て迷光遮光用メタル・バックを形成して構成されている
(Means for Solving the Problems) A semiconductor light receiving device according to the present invention has an InP substrate of a first conductivity type formed with an electrode on one surface, and an InP substrate of a first conductivity type formed on the other surface of the substrate. A light absorption layer made of InGaAs or InGaAsP with a 90% strength, an InP window layer of a first conductivity type laminated on the light absorption layer, and at least a part of the window layer from the surface thereof. An InP window layer reaching the light absorption layer, a conductivity type inversion region of the window layer, and an insulating or first conductive layer formed covering the surface of the conductivity type inversion region and the surface of the window layer. and a semi-insulating InP optically transparent cap layer. Further, a through-hole is formed in the light-transmissive cap layer to reach a current extraction region of the conductivity type inversion region, and a conductive buried layer is formed in contact with the current extraction region of the conductivity type inversion region so as to fill the through hole. forming a section;
A contact layer is formed on the surface of the light-transmissive cap layer, excluding the light-receiving region for the conductivity type inversion region, one end of which contacts the conductive embedded portion, and the other end of which forms a wire bond ink portion. , contacting the entire surface conductive embedded part except the wire bonding ink part, forming an ohmic electrode for the wire bonding ink/pad in the wire bonding part, and further contacting the entire surface of the light transmitting insulating film excluding the light receiving area. A metal back for shielding stray light is formed to maintain electrical insulation from the ohmic electrode.

〔作 用〕[For production]

この発明の半導体受光装置は上記のように構成されてい
るのて、導電型反転領域と対向する受光領域以外の望城
の領域から上記導電型反転領域に入射する所謂迷光を完
全に遮断することかてきる。また、導電型反転領域の電
流取出し部を除く該導電型反転領域の表面および窓層の
表面は絶縁性もしくは半絶縁性のTnP光透過性キャッ
プて被覆されているので、導電型反転領域と窓層との間
のpn接合は界面準位か低い上記1nP光透過性キヤツ
プ内に閉じ込められ、電流リークを小さくすることがて
きる。さらに、光透過性キャップを厚くしても、コンタ
クト層か段差を跨いて形成されることはないから、コン
タクト層の層厚変化や段切れ等に帰因する断線が生ずる
心配かなく、従って、寄生容量を小さくするために上記
光透過性キャップ層の層厚を自由に設定することかてき
る。
Since the semiconductor light-receiving device of the present invention is configured as described above, it is possible to completely block so-called stray light that enters the conductivity type inversion region from the viewing area other than the light reception area facing the conductivity type inversion region. I'll come. In addition, since the surface of the conductivity type inversion region except for the current extraction portion of the conductivity type inversion region and the surface of the window layer are covered with an insulating or semi-insulating TnP light-transmitting cap, the conductivity type inversion region and the window layer are covered with an insulating or semi-insulating TnP light-transmitting cap. The pn junction between the two layers is confined within the 1nP optically transparent cap having a low interface level, and current leakage can be reduced. Furthermore, even if the light-transmitting cap is made thicker, it will not be formed across the contact layer or step, so there is no fear of disconnection due to changes in the contact layer thickness or breakage of the step. In order to reduce the parasitic capacitance, the thickness of the light-transmissive cap layer can be freely set.

(実施例) 以下、第1図および第2図を参照して、この発明の半導
体受光装置、特にPDについて説明する。この発明のP
Dは、第3図に示す従来のPDと同様に、n”−1nP
基板(1)の一方の面にはn−1nPバッファ層(2)
 、 n − −1nGaAsまたはn−InGaAs
Pからなる光吸収層(3) 、 n− −1nP窓層(
4)かこの順序で積層して形成されている。
(Example) Hereinafter, a semiconductor light receiving device of the present invention, particularly a PD, will be described with reference to FIGS. 1 and 2. P of this invention
D is n”-1nP, similar to the conventional PD shown in FIG.
On one side of the substrate (1) is an n-1nP buffer layer (2).
, n--1nGaAs or n-InGaAs
Light absorption layer (3) consisting of P, n--1nP window layer (
4) They are formed by laminating them in this order.

また、基板(1)の他方の面には例えばAuGe共晶半
田を用いてAuからなるn側電極(10)か形成されて
いる。n−−rnP窓層(4)の表面の一部から例えば
Znなとのp型不純物を拡散して、上記窓層(4)を貫
通して光吸収層(3)に達する導電型が反転したp″″
″領域)か形成されている。点線(12)は導電型反転
p′″領域(5)とn−−InP窓層(4)およびn 
−−1nGaAsまたはn −−1nGaAsP光吸収
層(3)との間の実質的なpn接合部となる空乏層フロ
ントを示す。(3a)は空乏層である。
Further, on the other surface of the substrate (1), an n-side electrode (10) made of Au is formed using, for example, AuGe eutectic solder. By diffusing a p-type impurity such as Zn from a part of the surface of the n--rnP window layer (4), the conductivity type is reversed by penetrating the window layer (4) and reaching the light absorption layer (3). p″″
The dotted line (12) indicates the inverted conductivity type p'' region (5), the n--InP window layer (4), and the n--InP window layer (4).
--1nGaAs or n --1nGaAsP Depletion layer front which becomes a substantial pn junction with the light absorption layer (3) is shown. (3a) is a depletion layer.

窓層(4)中にZnを拡散して導電型反転領域(5)を
形成した後、ウェハ上に例えばFeかトープされた絶縁
性もしくは半絶縁性(n−型)のInP結晶からなる光
透過性キャップ層(30)をエピタキシャル形成する。
After diffusing Zn into the window layer (4) to form a conductivity type inversion region (5), a light layer made of an insulating or semi-insulating (n-type) InP crystal doped with Fe or the like is placed on the wafer. A transparent cap layer (30) is epitaxially formed.

光透過性キャップ層(30)には導電型反転領域(5)
の電流取出し領域に達する貫通孔(31)が形成されて
いる。貫通孔(31)は第2図の平面図に示すように、
上記導電型反転領域(5)の周辺部に達するリンク溝状
に形成されている。この溝状貫通孔(31)内には例え
ばp″″−1nGaAsからなる導電性埋込み部(32
)がエピタキシャル形成され、上記電流取出し領域に電
気的に接触している。光透過性キャップ層(30)の表
面には上記導電1 性埋込み部(32)のエピタキシャル形成と同時にp″
″−1nGaAs層がエピタキシャル形成され、該p“
−rnGaAs層をエツチングによりパターニングして
、一端か上記導電性埋込み部(32)に接触し、他端に
ワイヤボンディング部(34)を形成するコンタクト層
(33)が形成されている。導電性埋込み部(32)、
コンタクト層(33)およびワイヤボンディング部(3
4)は、上記のP ’ −rnGaAsの他にp”In
P、 P ” −[nGaAsPて形成されてもよい。
The light-transmissive cap layer (30) has a conductivity type inversion region (5).
A through hole (31) is formed that reaches the current extraction area. As shown in the plan view of FIG. 2, the through hole (31) is
It is formed in the shape of a link groove reaching the periphery of the conductivity type inversion region (5). In this groove-like through hole (31), a conductive buried portion (32) made of, for example, p″″-1nGaAs is provided.
) is epitaxially formed and is in electrical contact with the current extraction region. At the same time as the epitaxial formation of the electrically conductive buried portion (32), the surface of the light-transmissive cap layer (30) is
A ``-1nGaAs layer is epitaxially formed and the p''
-rnGaAs layer is patterned by etching to form a contact layer (33) which contacts the conductive buried portion (32) at one end and forms a wire bonding portion (34) at the other end. conductive embedded part (32),
Contact layer (33) and wire bonding part (3
4), in addition to the above P′-rnGaAs, p”In
P, P''-[nGaAsP may be formed.

次に、コンタクト層(33)、ワイヤボンデインク部(
34)、および露出したInP結晶からなる光透過性キ
ャップ層(30)の全面に例えばSiN絶縁膜(16)
をCVD等の方法により形成し、しかる後、上記ワイヤ
ボンディング部(34)のみを露出させる穴を開ける。
Next, the contact layer (33), the wire bond ink part (
34), and a SiN insulating film (16), for example, on the entire surface of the exposed light-transmissive cap layer (30) made of InP crystal.
is formed by a method such as CVD, and then a hole is made to expose only the wire bonding part (34).

次に、全面に例えばTr/ΔUを蒸着やスパッタ等によ
り形成し、エツチング等てパターニングして、導電型反
転領域(5)に光が入射する受光領域(11)を形成し
、且つワイヤボンディング部(34)に電気的に接触す
るワイヤボンディング・バット部 2 (17)と、該ワイヤボンデインク・バット部(17)
と電気的に絶縁された迷光、遮光用のメタル・マスク(
18)を形成する。
Next, for example, Tr/ΔU is formed on the entire surface by vapor deposition, sputtering, etc., and patterned by etching, etc., to form a light receiving region (11) where light enters the conductivity type inversion region (5). wire bonding butt part 2 (17) in electrical contact with (34); and the wire bonding butt part (17)
Stray light and light shielding metal mask (
18).

なお、上記の実施例では、導電性埋込み部(32)およ
びコンタクト層(33)の双方をエピタキシャル形成し
たか、導電性埋込み部(32)のみをエピタキシャル形
成し、コンタクト層(33)を上記導電性埋込み部(3
2)にオーミック接触する金属パターンて形成してもよ
い。
In the above embodiments, either the conductive buried portion (32) and the contact layer (33) were both formed epitaxially, or only the conductive buried portion (32) was formed epitaxially and the contact layer (33) was formed epitaxially. Sexual implants (3
2) may be formed with a metal pattern that makes ohmic contact.

〔発明の効果〕〔Effect of the invention〕

この発明による半導体受光装置は次の(イ)乃至(功に
示すような効果かある。
The semiconductor light receiving device according to the present invention has the following effects (a) to (a).

(イ)ワイヤボンデインタ部(34)とn−−rnP窓
層(4)との間に生ずる容量Cは、 C=ε1・      ・・・・・・(1)て表わされ
る。こ\て、Sはワイヤボンデインク部(34)の面積
、dはInP結晶からなる光透過性キャップ層(30)
の層厚である。InP結晶の比誘電率ε” =11.5
6、d=2ga+とすると、C,= 5.78ε。S・
・・・・・・・・・・・・(2)となる。
(a) The capacitance C generated between the wire bonder portion (34) and the n--rnP window layer (4) is expressed as: C=ε1 (1). Here, S is the area of the wire bond ink portion (34), and d is the light-transmitting cap layer (30) made of InP crystal.
The layer thickness is . Relative dielectric constant ε” of InP crystal = 11.5
6. If d=2ga+, then C,=5.78ε. S.
・・・・・・・・・・・・(2)

一方、第3図の従来の半導体受光装置て、SiN絶縁膜
(6)の比誘電率ε” =3.61.d=o、2 p、
mとすると、 C2= 18.05 ε。S・・・・・・・◆・・・・
・(3)となる。
On the other hand, in the conventional semiconductor light-receiving device shown in FIG.
If m, then C2=18.05 ε. S・・・・・・◆・・・・
・(3) becomes.

(2) 、 (3)式から明らかなように、本発明の半
導体受光装置では、同じ面積のワイヤボンデインがてき
、入射光信号に対する応答特性を大幅に改善することが
てきる。
As is clear from equations (2) and (3), in the semiconductor light receiving device of the present invention, the wire bonding has the same area, and the response characteristics to the incident optical signal can be significantly improved.

(ロ)導電型反転領域(5)と窓層(4)との間のpn
接合面はすべて光透過性キャップ層(30)を構成する
InP結晶内に閉じ込められている。そして、従来のよ
うにSiN絶縁膜(6)を形成する場合と同レベルの前
処理てInP結晶光透過性キャップ層(30)を形成し
た場合、n−−1nP結晶からなる窓層(4)とSiN
絶縁膜(6)との界面に比べ、上記窓層(4)とInP
結晶光透過性キャップ層(30)との界面の方が界面準
位が低く、リーク電流か少ない安定した特性の半導体受
光装置か得られる。
(b) pn between the conductivity type inversion region (5) and the window layer (4)
All of the bonding surfaces are confined within the InP crystal that constitutes the optically transparent cap layer (30). If the InP crystal light-transmitting cap layer (30) is formed with the same level of pretreatment as in the conventional case of forming the SiN insulating film (6), the window layer (4) made of n--1nP crystal and SiN
Compared to the interface with the insulating film (6), the window layer (4) and InP
The interface with the crystal light-transmitting cap layer (30) has a lower interface state, and a semiconductor light receiving device with stable characteristics with less leakage current can be obtained.

(ハ)この発明の半導体受光装置ては、コンタクト層(
33)は実質的に平坦て、従来の装置のように段差のあ
る部分を跨いて形成されることはないから、段差のある
部分て膜が薄くなって、その部分て電流密度か滑部的に
増大して発熱したり、断線するという心配は全くない。
(c) The semiconductor photodetector of the present invention has a contact layer (
33) is substantially flat and is not formed across a stepped part as in conventional devices, so the film becomes thinner in the stepped part, and the current density or slip area in that part becomes thinner. There is no need to worry about overheating or disconnection.

(ニ)遮光用のメタル・マスク(18)およびワイヤボ
ンデインク・バット部(17)による遮光作用により、
受光領域(11)以外の領域から入射する迷光は実質的
に遮光され、従って応答速度低下の原因となる拡散電流
成分は実質的に存在しないから、(イ)の効果と相俟っ
て応答特性を大幅に改善することかてきる。
(d) Due to the light-shielding effect of the light-shielding metal mask (18) and wire bond ink butt part (17),
Stray light that enters from areas other than the light receiving area (11) is substantially blocked, and therefore there is virtually no diffused current component that causes a decrease in response speed, so this, together with the effect of (a), improves the response characteristics. can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の半導体受光装置の一実施例の構造を
示す断面図であって、第2図A−A線に沿う断面図、第
2図は第1図の半導体受光装置をその受光面側から見た
平面図、第3図は従来の半導体受光装置の第1の例の構
造を示す断面図、第 5 4図は従来の半導体受光装置の第2の例の構造を示す断
面図である。 (1)・・・・InP基板、(2)・・・・InPnツ
バ9フフ(3a)・・・・空乏層、(4)・・・・In
P窓層、(5)・・・・導電型反転領域、(10)・・
・・電極、(11)・・・・受光領域、(12)・・・
・空乏層フロント、(16)・・・・絶縁膜、(17)
・・・・ワイヤボンデインク・バット用オーミック電極
、(18)・・・・遮光用のメタル・バック、(30)
・・・・InP光透過性キャップ層、(31)・・・・
貫通孔、(32)・・・・導電性埋込み部、(33)・
・・・コンタクト層、(34)・・・・ワイヤボンデイ
ンク部。
FIG. 1 is a sectional view showing the structure of an embodiment of the semiconductor light receiving device of the present invention, and FIG. 2 is a sectional view taken along line A-A. 3 is a sectional view showing the structure of a first example of a conventional semiconductor light receiving device, and FIG. 54 is a sectional view showing the structure of a second example of a conventional semiconductor light receiving device. It is. (1)...InP substrate, (2)...InPn brim 9fufu (3a)...depletion layer, (4)...In
P window layer, (5)...conductivity type inversion region, (10)...
...electrode, (11)...light receiving area, (12)...
・Depletion layer front, (16)...Insulating film, (17)
...Ohmic electrode for wire bond ink bat, (18) ...Metal back for light shielding, (30)
...InP light-transmissive cap layer, (31)...
Through hole, (32)... Conductive embedded part, (33)...
. . . Contact layer, (34) . . . Wire bond ink portion.

Claims (1)

【特許請求の範囲】[Claims] (1)一方の面に電極か形成された第1の導電型のIn
P基板の他方の面上に直接あるいは第1の導電型のIn
Pバッファ層を介して積層して形成された第1の導電型
のInGaAsあるいはInGaAsPからなる光吸収
層と、該光吸収層上に積層して形成された第1の導電型
のInP窓層と、該窓層の少なくとも一部の領域にその
表面から上記光吸収層に達する深さに形成された第2の
導電型の導電型反転領域と、該導電型反転領域の表面お
よび上記窓層の表面を覆って形成された絶縁性もしくは
第1の導電型の半絶縁性InP光透過性キャップ層とを
具備し、 上記光透過性キャップ層には上記導電型反転領域の電流
取出し領域に達する貫通孔が形成されており、該貫通孔
を埋めるように上記導電型反転領域の電流取出し領域に
接触する導電性埋込み部を形成し、上記光透過性キャッ
プ層の表面であって、上記導電型反転領域に対する受光
領域を除く表面に一端が上記導電性埋込み部に接触し、
他端にワイヤボンディング部を形成するコンタクト層を
形成し、上記ワイヤボンディング部を除く全表面に光透
過性絶縁膜を形成し、上記ワイヤボンディング部にワイ
ヤボンディング・パッド用のオーミック電極を形成し、
さらに上記受光領域を除く上記光透過性絶縁膜の全面に
上記オーミック電極と電気的絶縁を保って迷光遮光用メ
タル・バックを形成して構成された半導体受光装置。
(1) First conductivity type In with an electrode formed on one surface
Directly or first conductivity type In on the other surface of the P substrate
A light absorption layer made of InGaAs or InGaAsP of a first conductivity type formed by stacking with a P buffer layer interposed therebetween; and an InP window layer of a first conductivity type formed by stacking on the light absorption layer. , a conductivity type inversion region of a second conductivity type formed in at least a part of the window layer at a depth reaching the light absorption layer from the surface thereof; an insulating or semi-insulating InP light-transmissive cap layer of a first conductivity type formed to cover the surface, and the light-transmissive cap layer has a through hole that reaches a current extraction region of the conductivity type inversion region. A conductive buried portion is formed in contact with the current extraction region of the conductivity type inversion region so as to fill the through hole, and the conductivity type inversion region is formed on the surface of the light-transmissive cap layer. one end of the surface of the area other than the light receiving area contacts the conductive embedded part;
forming a contact layer forming a wire bonding part at the other end, forming a light-transmissive insulating film on the entire surface except for the wire bonding part, and forming an ohmic electrode for a wire bonding pad in the wire bonding part;
A semiconductor light receiving device further comprising a stray light shielding metal back formed on the entire surface of the light transmitting insulating film except for the light receiving region while maintaining electrical insulation from the ohmic electrode.
JP2077582A 1990-03-27 1990-03-27 Semiconductor photodetection device Pending JPH03276769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2077582A JPH03276769A (en) 1990-03-27 1990-03-27 Semiconductor photodetection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2077582A JPH03276769A (en) 1990-03-27 1990-03-27 Semiconductor photodetection device

Publications (1)

Publication Number Publication Date
JPH03276769A true JPH03276769A (en) 1991-12-06

Family

ID=13637980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2077582A Pending JPH03276769A (en) 1990-03-27 1990-03-27 Semiconductor photodetection device

Country Status (1)

Country Link
JP (1) JPH03276769A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156520A (en) * 1998-11-19 2000-06-06 Matsushita Electric Ind Co Ltd Light receiving element and manufacture thereof
US8558339B1 (en) 2013-03-01 2013-10-15 Mitsubishi Electric Corporation Photo diode array

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140275A (en) * 1979-04-18 1980-11-01 Fujitsu Ltd Semiconductor photodetector
JPS60182778A (en) * 1984-02-29 1985-09-18 Fujitsu Ltd Semiconductor light receiving device
JPS6423580A (en) * 1987-07-20 1989-01-26 Fujitsu Ltd Semiconductor photodetector device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140275A (en) * 1979-04-18 1980-11-01 Fujitsu Ltd Semiconductor photodetector
JPS60182778A (en) * 1984-02-29 1985-09-18 Fujitsu Ltd Semiconductor light receiving device
JPS6423580A (en) * 1987-07-20 1989-01-26 Fujitsu Ltd Semiconductor photodetector device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156520A (en) * 1998-11-19 2000-06-06 Matsushita Electric Ind Co Ltd Light receiving element and manufacture thereof
US6384459B1 (en) 1998-11-19 2002-05-07 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for producing the same
US6458620B1 (en) 1998-11-19 2002-10-01 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for producing the same
US8558339B1 (en) 2013-03-01 2013-10-15 Mitsubishi Electric Corporation Photo diode array

Similar Documents

Publication Publication Date Title
US5040039A (en) Semiconductor photodetector device
JP4220688B2 (en) Avalanche photodiode
US6340831B1 (en) Photodiode and photodiode module
JP3016858B2 (en) Semiconductor device with silicon layer
JP5983076B2 (en) Photodiode array
US6690079B2 (en) Light-receiving device
US6525347B2 (en) Photodetector and unit mounted with photodetector
US6828541B2 (en) Light receiving element array having isolated pin photodiodes
JP2005251890A (en) Upper surface incident light receiving element array
US20080001245A1 (en) Semiconductor photo detecting element, manufacturing method of the same, and manufacturing method of optoelectronic integrated circuit
US6232141B1 (en) Semiconductor light-receiving device and method of fabricating the same
JPH04111478A (en) Light-receiving element
US5600173A (en) Semiconductor device capable of detecting a light position
JPH03276769A (en) Semiconductor photodetection device
JPH0513798A (en) Semiconductor photodetection device
JP2000223685A (en) Photoelectric integrated circuit and heterojunction phototransistor
JP2002344002A (en) Light-receiving element and mounting body thereof
JPS6222473B2 (en)
JPH04263475A (en) Semiconductor photodetector and manufacture thereof
JP2767877B2 (en) Manufacturing method of semiconductor light receiving element
JPH05226686A (en) Photodetector
JP2995359B2 (en) Semiconductor photodetector and method of manufacturing the same
JPH0494579A (en) Semiconductor photodetector
JPS61220480A (en) Semiconductor light receiving device
JPH05226687A (en) Photodetector and manufacture thereof