JPH03276578A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH03276578A
JPH03276578A JP2078360A JP7836090A JPH03276578A JP H03276578 A JPH03276578 A JP H03276578A JP 2078360 A JP2078360 A JP 2078360A JP 7836090 A JP7836090 A JP 7836090A JP H03276578 A JPH03276578 A JP H03276578A
Authority
JP
Japan
Prior art keywords
diameter
positive electrode
battery
base metal
alloyed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2078360A
Other languages
Japanese (ja)
Other versions
JP2989212B2 (en
Inventor
Yasuhiro Fujita
泰浩 藤田
Ikurou Nakane
育朗 中根
Sanehiro Furukawa
古川 修弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2078360A priority Critical patent/JP2989212B2/en
Publication of JPH03276578A publication Critical patent/JPH03276578A/en
Application granted granted Critical
Publication of JP2989212B2 publication Critical patent/JP2989212B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the cycle characteristic without reducing the battery capacity by specifying the ratio between the diameter of an alloy section and the diameter of a base metal section and the ratio between the diameter of a positive electrode and the diameter of the alloy section. CONSTITUTION:A negative electrode 2 constituted of an alloy section 2a made of a lithium-aluminum alloy and a base metal section 2b made of aluminum is pressed to the inner face of a negative electrode current collector 7, the negative current collector 7 is fixed to the inner bottom face of a negative electrode can 5 with a nearly U-shaped cross section made of stainless, a positive electrode current collector 6 is fixed to the inner bottom face of a positive electrode can 4, and a positive electrode 1 is fixed to the inner face of the positive electrode current collector 6. The diameter of the alloy section 2a is set to 80-98% of that of the base metal section 2b, and the diameter of the positive electrode 1 is set to 83-100% of that of the alloy section 2a. The current concentration to peripheral sections of electrodes at the time of alloying, charging and discharging is suppressed, and the cycle characteristic can be improved.

Description

【発明の詳細な説明】 産1ユa劃走1 本発明は、三酸化モリブデン、五酸化バナジウム、二酸
化マンガン、或いは硫化チタンなどのような再充電可能
な活物質よりなる正極と、リチウムを活物質とする負極
と、これら正負極間に介装され非水電解液を含有するセ
パレータとを有する非水電解液二次電池に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes a positive electrode made of a rechargeable active material such as molybdenum trioxide, vanadium pentoxide, manganese dioxide, or titanium sulfide, and a lithium activated material. The present invention relates to a non-aqueous electrolyte secondary battery having a negative electrode made of a substance, and a separator interposed between the positive and negative electrodes and containing a non-aqueous electrolyte.

従米立伎土 この種電池の問題点は負極活物質であるリチウムが、充
電の際に負極表面に樹枝状に成長し正極と接して内部短
絡を引き起こしたり、モッシー状に析出して脱落が生じ
るため、充放電サイクルが極めて短いことにある。
The problem with this type of battery is that the lithium, which is the negative electrode active material, grows in a dendritic form on the surface of the negative electrode during charging and comes into contact with the positive electrode, causing an internal short circuit, or it precipitates in a mossy pattern and falls off. Therefore, the charge/discharge cycle is extremely short.

そこで、特開昭52−5423号公報に示すように、負
極にリチウム−アルミニウム合金を用いたものが提案さ
れている。これはリチウム単独の場合、放電によってリ
チウムがイオンとなって溶出すると負極表面が凹凸状と
なり、その後の充電の際にリチウムが凸部に集中的に電
析して樹枝状の成長するのに対して、リチウム−アルミ
ニウム合金であれば、充電時にリチウムが負極の基体と
なるアルミニウムと合金を形成するように復元するため
、リチウムの樹枝状成長が抑制できるという利点を奏す
るためである。
Therefore, as shown in Japanese Unexamined Patent Publication No. 52-5423, a negative electrode using a lithium-aluminum alloy has been proposed. This is because in the case of lithium alone, when lithium is ionized and eluted during discharge, the negative electrode surface becomes uneven, and during subsequent charging, lithium is deposited intensively on the convex parts and grows like a tree. This is because, in the case of a lithium-aluminum alloy, lithium restores itself to form an alloy with aluminum, which serves as the base of the negative electrode, during charging, so that the dendritic growth of lithium can be suppressed.

そして、その合金化方法としては1、特公昭61−46
947号公報に示すように、電気化学的に合金化したも
のの特性が良好である。
The alloying method is 1, Special Publication No. 61-46
As shown in Japanese Patent No. 947, the properties of electrochemical alloys are good.

<”しよ゛と る量 ところで、上記の如く電気化学的に合金化する場合、電
流は電極周辺部に集中する傾向があるため、電極周辺部
の方が電極中心部より合金化が早く進行することになる
。加えて、上記電池を充放電する際には、エツジ効果に
より電極反応が周辺部に集中する。このため、電極周辺
部が中心部より早く劣化し、この結果電池寿命も短くな
るという課題を有していた。
By the way, when electrochemically alloying as described above, the current tends to concentrate around the electrode, so alloying progresses faster at the electrode periphery than at the electrode center. In addition, when charging and discharging the above-mentioned battery, the electrode reaction concentrates on the periphery due to the edge effect.As a result, the periphery of the electrode deteriorates faster than the center, and as a result, the battery life is shortened. We had the challenge of becoming.

本発明はかかる現状に鑑みてなされたものであり、合金
化時及び充放電時に電極周辺部に電流集中が生じるのを
抑制してサイクル特性の向上を図りうる非水電解液二次
電池を提供することを目的とする。
The present invention has been made in view of the current situation, and provides a non-aqueous electrolyte secondary battery that can improve cycle characteristics by suppressing current concentration around electrodes during alloying and charging/discharging. The purpose is to

i   ゛ るための 本発明は上記目的を達成するために、基体金属部及び基
体金属とリチウムとの合金から成る合金化部から成る負
極と、正極と、これら正負極間に介装されたセパレータ
とを有する非水電解液二次電池において、前記合金化部
の直径は前記基体金属部の直径の80%以上98%以下
となり、前記正極の直径は合金化部の直径の83%以上
100%以下となるように構成されていることを特徴と
する。
In order to achieve the above object, the present invention includes a negative electrode comprising a base metal part and an alloyed part made of an alloy of the base metal and lithium, a positive electrode, and a separator interposed between these positive and negative electrodes. In the nonaqueous electrolyte secondary battery, the diameter of the alloyed portion is 80% or more and 98% or less of the diameter of the base metal portion, and the diameter of the positive electrode is 83% or more and 100% of the diameter of the alloyed portion. It is characterized by being configured as follows.

昨二−−−肛 電極の周辺部が中心部より早く劣化するのを防止するた
めには、合金化部の直径を基体金属部の直径より小さく
し、且つ正極の直径を合金化部の直径より小さくするこ
とが必要である。しかし、合金化部や正極を余り小さく
しすぎると、電池容量が低下するという課題がある。
In order to prevent the peripheral part of the anal electrode from deteriorating faster than the central part, the diameter of the alloyed part should be made smaller than the diameter of the base metal part, and the diameter of the positive electrode should be made smaller than the diameter of the alloyed part. It is necessary to make it smaller. However, if the alloyed portion or the positive electrode is made too small, there is a problem in that the battery capacity decreases.

ところが、上記構成の如(合金化部の直径と正極の直径
とを規定すれば、合金化部や正極の直径が余り小さくな
いので電池容量が低下することがなく、且つ合金化時及
び充放電時に電極周辺部に電流集中が生じるのを抑制す
ることができるので、サイクル特性を向上させることが
できる。
However, with the above structure (if the diameter of the alloyed part and the diameter of the positive electrode are specified), the diameter of the alloyed part and the positive electrode is not too small, so the battery capacity does not decrease, and the charging and discharging time during alloying and charging/discharging are Since it is possible to suppress current concentration from occurring around the electrode at times, cycle characteristics can be improved.

]工1iJL桝 本発明の一実施例を、第1図乃至第3図に基づいて、以
下に説明する。
] One embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

〔実施例■〕[Example ■]

第1図に示すように、リチウム−アルミニウム合金から
成る合金化部2aとアルミニウムから成る基体金属部2
bとから構成される負極2は負極集電体7の内面に圧着
されており、この負極集電体7はステンレスから成る断
面略コ字状の負極缶5の内底面に固着されている。上記
負極缶5の周端はポリプロピレン製の絶縁バッキング8
の内部に固定されており、絶縁バッキング8の外周には
ステンレスから成り上記負極缶5とは反対方向に断面略
コ字状を成す正極缶4が固定されている。
As shown in FIG. 1, an alloyed part 2a made of lithium-aluminum alloy and a base metal part 2 made of aluminum
The negative electrode 2 composed of the components b is crimped to the inner surface of a negative electrode current collector 7, and this negative electrode current collector 7 is fixed to the inner bottom surface of a negative electrode can 5 made of stainless steel and having a substantially U-shaped cross section. The peripheral edge of the negative electrode can 5 is covered with an insulating backing 8 made of polypropylene.
A positive electrode can 4 made of stainless steel and having a substantially U-shaped cross section in the opposite direction to the negative electrode can 5 is fixed to the outer periphery of the insulating backing 8.

この正極缶4の内底面には正極集電体6が固定されてお
り、この正極集電体6の内面には正極1が固定されてい
る。この正極lと前記負極2との間には、非水電解液が
含浸されポリプロピレン製多孔性膜から成るセパレータ
3が介装されている。
A positive electrode current collector 6 is fixed to the inner bottom surface of the positive electrode can 4, and a positive electrode 1 is fixed to the inner surface of this positive electrode current collector 6. A separator 3 made of a porous polypropylene membrane impregnated with a non-aqueous electrolyte is interposed between the positive electrode 1 and the negative electrode 2.

尚、上記非水電解液としては、スルホランと1゜3−ジ
オキソランとの混合溶媒に過塩素酸リチウムを1モル/
lの割合で溶解したものを用いている。また、電池寸法
は直径24.Omm、厚み3゜0鵬である。
The non-aqueous electrolyte is a mixed solvent of sulfolane and 1°3-dioxolane containing 1 mol/mol of lithium perchlorate.
A solution dissolved at a ratio of 1 liter is used. Also, the battery dimensions are 24mm in diameter. 0mm, thickness 3゜0㎬.

ところで、上記合金化部2aの直径12は基体金属部2
bの直径l、の98%、また正極1の直径13は基体金
属部2bの直径!!、Iの98%(即ち、上記12と同
じ)となるように構成されている。
By the way, the diameter 12 of the alloyed part 2a is the same as that of the base metal part 2.
98% of the diameter l of b, and the diameter 13 of the positive electrode 1 is the diameter of the base metal portion 2b! ! , I (ie, the same as 12 above).

次に、上記構造の非水電解液二次電池は、以下のように
して作製した。
Next, a non-aqueous electrolyte secondary battery having the above structure was produced as follows.

先ず、正極1を以下のようにして作製する。First, the positive electrode 1 is produced as follows.

活物質である二酸化マンガン80重量部に、導電剤とし
てのアセチレンブラック10重量部と、結着剤としての
フッ素樹脂粉末10重量部とを加えて充分に混合した後
、この正極合剤を加圧成型することにより作製する。
After adding 10 parts by weight of acetylene black as a conductive agent and 10 parts by weight of fluororesin powder as a binder to 80 parts by weight of manganese dioxide as an active material and thoroughly mixing the mixture, this positive electrode mixture was pressurized. Manufactured by molding.

これと並行して、シート状のリチウムとアルミニウムと
を所定寸法に打ち抜くことにより金属リチウム板とアル
ミニウム板とを作製する。この際、第2図に示す金属リ
チウムの直径14は前記合金化部2aの直径!□より小
さく形成した。これは、金属リチウムが合金化される際
に膨張するということを考慮したものである。
In parallel with this, a metal lithium plate and an aluminum plate are produced by punching sheet-like lithium and aluminum into predetermined dimensions. At this time, the diameter 14 of the metal lithium shown in FIG. 2 is the diameter of the alloyed portion 2a! □Made smaller. This is done in consideration of the fact that metallic lithium expands when alloyed.

しかる後、第2図に示すように、正極缶4と負極缶5と
から構成される空間内に、負極缶5側から順に、アルミ
ニウム板9と、リチウム板10とセパレータ3と、正極
1とを装着する。この後、このようにして作製した予備
電池を1週間放置する。これにより、リチウムとアルミ
ニウムとが合金化されて、非水電解液二次電池が作製さ
れる。
Thereafter, as shown in FIG. 2, an aluminum plate 9, a lithium plate 10, a separator 3, a cathode 1, and a cathode 1 are placed in order from the anode can 5 side in the space constituted by the cathode can 4 and the anode can 5. Attach. Thereafter, the spare battery thus produced was left for one week. Thereby, lithium and aluminum are alloyed, and a non-aqueous electrolyte secondary battery is produced.

このようにして作製した電池を、以下(A1)電池と称
する。
The battery thus produced is hereinafter referred to as (A1) battery.

〔実施例■〜■〕[Examples ■~■]

下記第1表に示すように、合金化部2aの直径12と正
極1の直径23とを変化させる他は、上記実施例■と同
様にして電池を作製した。但し、本実施例においても、
正pjilの直径!、は合金化部2aの直径12と同じ
に構成されている。
As shown in Table 1 below, a battery was produced in the same manner as in Example 2 above, except that the diameter 12 of the alloyed portion 2a and the diameter 23 of the positive electrode 1 were changed. However, also in this example,
Diameter of positive pjil! , are configured to be the same as the diameter 12 of the alloyed portion 2a.

このようにして作製した電池を、以下それぞれ(At)
1i池〜(A、)!池と称する。
The batteries produced in this way are shown below (At).
1iike~(A,)! It is called a pond.

〔以下、余白〕[Margin below]

第1表 〔比較例■〜■〕 上記第1表に示すように、合金化部2aの直径Xt  
(リチウム直径ffi、)と正極1の直径13とを変化
させる他は、上記実施例Iと同様にして電池を作製した
。但し、本比較例においても、正極1の直径!、は合金
化部2aの直径j22と同じに構成されている。
Table 1 [Comparative Examples ■ to ■] As shown in Table 1 above, the diameter Xt of the alloyed part 2a
A battery was produced in the same manner as in Example I above, except that (lithium diameter ffi) and the diameter 13 of the positive electrode 1 were changed. However, even in this comparative example, the diameter of positive electrode 1! , is configured to be the same as the diameter j22 of the alloyed portion 2a.

このようにして作製した電池を、以下それぞれ(X、)
電池〜(X3)電池と称する。
The batteries produced in this way are shown below (X,).
Battery ~(X3) Referred to as battery.

〔実験〕〔experiment〕

上記本発明の(A、)電池〜(A、)’:a池及び比較
例の(X、)電池〜(Xi)ii池のサイクル特性を調
べたので、その結果を第3図に示す。尚、実験条件は、
充を電流12mAで6時間充電した後、放電電流12m
Aで終止電圧2.0■まで放電するという条件である。
The cycle characteristics of the battery (A,) of the present invention to (A,)':a cell and the battery (X,) to (Xi)ii of the comparative example were investigated, and the results are shown in FIG. The experimental conditions are as follows:
After charging for 6 hours at a current of 12mA, the discharge current is 12mA.
The condition is to discharge at A to a final voltage of 2.0 .

第3図に示すように、(A、)を池〜(A、)電池は全
てサイクル寿命が400サイクル以上であるのに対して
、(XI )電池〜<xz)N池では全てサイクル寿命
が400サイクル以下であることが認められる。したが
って、合金化部2aの直径!2は前記基体金属部2bの
直径2.の80%以上98%以下であることが好ましい
ことが窺える。
As shown in Figure 3, all of the (A,) and (A,) batteries have a cycle life of 400 cycles or more, whereas all of the (XI) and (XI) batteries have a cycle life of 400 cycles or more. It is recognized that the cycle time is 400 cycles or less. Therefore, the diameter of the alloyed part 2a! 2 is the diameter 2 of the base metal portion 2b. It can be seen that it is preferable that the ratio is 80% or more and 98% or less.

特に、合金化部2aの直径l!が基体金属部2bの直径
!、の90%となるように設定した(A4)!池が優れ
ていることが認められる。
In particular, the diameter l of the alloyed portion 2a! is the diameter of the base metal part 2b! , was set to be 90% of (A4)! It is recognized that the pond is excellent.

芽−m桝 本発明の一実施例を、第4図に基づいて、以下に説明す
る。
One embodiment of the present invention will be described below with reference to FIG.

〔実施例■〜m〕[Example ■~m]

下記第2表に示すように、正極1の直径!、を変化させ
る他は、前記第1実施例の実施例■(合金化部2aの直
径12が基体金属部2bの直径11の90%となるよう
に設定したもの)と同様にして電池を作製した。
As shown in Table 2 below, the diameter of positive electrode 1! A battery was produced in the same manner as in Example 2 of the first example (the diameter 12 of the alloyed part 2a was set to be 90% of the diameter 11 of the base metal part 2b), except that . did.

このようにして作製した電池を、以下それぞれ(B、)
電池〜(B3)電池と称する。
The batteries produced in this way are shown below (B,).
Battery ~ (B3) Referred to as battery.

〔以下、余白〕[Margin below]

第2表 〔比較例I〜m〕 上記第2表に示すように、正極1の直径!、とを変化さ
せる他は、上記第1実施例の実施例■と同様にして電池
を作製した。
Table 2 [Comparative Examples I to m] As shown in Table 2 above, the diameter of positive electrode 1! A battery was produced in the same manner as in Example 2 of the first example above, except that , and were changed.

このようにして作製した電池を、以下それぞれ(Y、)
電池、(yz)電池と称する。
The batteries produced in this way are shown below (Y,).
The battery is called a (yz) battery.

〔実験〕〔experiment〕

上記本発明の(B、’)電池〜(B3)電池、前記(A
4)電池及び比較例の(Y、)電池、  (y8)電池
のサイクル特性を調べたので、その結果を第4図に示す
。尚、実験条件は、前記第1実施例の実験と同様の条件
である。
(B,') battery to (B3) battery of the present invention, the (A
4) The cycle characteristics of the battery, the comparative example (Y,) battery, and the (y8) battery were investigated, and the results are shown in FIG. The experimental conditions were the same as those of the first embodiment.

第4図に示すように、(B1)電池〜(B3)電池、前
記(A4)電池は全てサイクル寿命が400サイクル以
上であるのに対して、(Y、)電池、(Yり電池では全
てサイクル寿命が400サイクル以下であることが認め
られる。したがって、正極1の直径(3は合金化部2a
の直径2□の83%以上IOθ%以下であることが好ま
しいことが窺える。
As shown in Figure 4, the (B1) battery to (B3) battery and the (A4) battery all have a cycle life of 400 cycles or more, while the (Y,) battery and (Y battery) all have a cycle life of 400 cycles or more. It is recognized that the cycle life is 400 cycles or less. Therefore, the diameter of the positive electrode 1 (3 is the alloyed part 2a
It can be seen that it is preferable that the diameter is 83% or more and IOθ% or less of the diameter 2□.

尚、上記2つの実施例では、電池内でアルミニウムとリ
チウムとを合金化しているが、電池外で合金化した後電
池内に合金を装填するようにしても上記と同様の効果を
奏することは勿論である。
Note that in the above two examples, aluminum and lithium are alloyed inside the battery, but the same effect as described above cannot be achieved even if the alloy is alloyed outside the battery and then loaded into the battery. Of course.

また、基体金属としてはアルミニウムに限定されるもの
ではなく、鉛、錫、カドミウム、ビスマス、ケイ素、イ
ンジウム、亜鉛、或いはマグネシウムから成る群から選
択される1種以上の金属或いは合金を用いてもよい。
Further, the base metal is not limited to aluminum, and one or more metals or alloys selected from the group consisting of lead, tin, cadmium, bismuth, silicon, indium, zinc, or magnesium may be used. .

更に、基体金属中に、マンガン、クロム、鉄。Furthermore, the base metal contains manganese, chromium, and iron.

4゜ ケイ素、タングステン、モリブデン、コバルト。4゜ Silicon, tungsten, molybdenum, cobalt.

ニッケル、ジルコニウム、マグネシウム、チタン。Nickel, zirconium, magnesium, titanium.

或いはバナジウムより選択される1種以上の金属が添加
されたものを用いてもよい。
Alternatively, one to which one or more metals selected from vanadium is added may be used.

光」LΩ」L果 以上説明したように本発明によれば、電池容量を低下さ
せることなくサイクル特性を向上させることができる。
As explained above, according to the present invention, cycle characteristics can be improved without reducing battery capacity.

この結果、非水電解液二次電池の性能を飛躍的に向上さ
せることができるという効果を奏する。
As a result, the performance of the non-aqueous electrolyte secondary battery can be dramatically improved.

【図面の簡単な説明】 第1図は本発明の非水電解液二次電池を示す断面図、第
2図は第1図の電池の製造方法を示す断面図、第3図は
本発明の(A、)電池〜(A、)電池及び比較例の(X
l)電池〜(X、)電池のサイクル寿命を示すグラフ、
第4図は本発明の(Bl )電池〜(B、)電池、(A
4)電池及び比較例の(Y+)電池、(yz)電池のサ
イクル寿命を示すグラフである。 ■・・・正極、 2・・・負極、 2a・・・合金化部、 2 b・・・ 基体金属部、 3・・・セパレータ。
[Brief Description of the Drawings] Fig. 1 is a sectional view showing a non-aqueous electrolyte secondary battery of the present invention, Fig. 2 is a sectional view showing a method for manufacturing the battery of Fig. 1, and Fig. 3 is a sectional view showing a method for manufacturing the battery of the present invention. (A,) Battery ~ (A,) Battery and Comparative Example (X
l) Battery ~ (X,) Graph showing the cycle life of the battery,
Figure 4 shows (Bl) battery to (B,) battery, (A
4) It is a graph showing the cycle life of a battery, a (Y+) battery, and a (yz) battery as comparative examples. ■... Positive electrode, 2... Negative electrode, 2a... Alloyed part, 2 b... Base metal part, 3... Separator.

Claims (1)

【特許請求の範囲】[Claims] (1)基体金属部及び基体金属とリチウムとの合金から
成る合金化部から成る負極と、正極と、これら正負極間
に介装されたセパレータとを有する非水電解液二次電池
において、 前記合金化部の直径は前記基体金属部の直径の80%以
上98%以下となり、前記正極の直径は合金化部の直径
の83%以上100%以下となるように構成されている
ことを特徴とする非水電解液二次電池。
(1) A non-aqueous electrolyte secondary battery having a negative electrode comprising a base metal part and an alloyed part made of an alloy of the base metal and lithium, a positive electrode, and a separator interposed between these positive and negative electrodes, The diameter of the alloyed portion is 80% or more and 98% or less of the diameter of the base metal portion, and the diameter of the positive electrode is configured to be 83% or more and 100% or less of the diameter of the alloyed portion. A non-aqueous electrolyte secondary battery.
JP2078360A 1990-03-26 1990-03-26 Non-aqueous electrolyte secondary battery Expired - Lifetime JP2989212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2078360A JP2989212B2 (en) 1990-03-26 1990-03-26 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2078360A JP2989212B2 (en) 1990-03-26 1990-03-26 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH03276578A true JPH03276578A (en) 1991-12-06
JP2989212B2 JP2989212B2 (en) 1999-12-13

Family

ID=13659831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2078360A Expired - Lifetime JP2989212B2 (en) 1990-03-26 1990-03-26 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2989212B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689512B2 (en) 2001-04-11 2004-02-10 Hitachi Maxell Ltd. Flat-shaped nonaqueous electrolyte battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689512B2 (en) 2001-04-11 2004-02-10 Hitachi Maxell Ltd. Flat-shaped nonaqueous electrolyte battery

Also Published As

Publication number Publication date
JP2989212B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
JP3148293B2 (en) Non-aqueous electrolyte secondary battery
JPH05101846A (en) Non-aqueous electrolytic secondary battery
JP2558519B2 (en) Button type lithium organic secondary battery and method of manufacturing the same
JP3081336B2 (en) Non-aqueous electrolyte secondary battery
JPH0646578B2 (en) Non-aqueous secondary battery
JPH0425676B2 (en)
JP3177257B2 (en) Non-aqueous electrolyte secondary battery
JP2798753B2 (en) Non-aqueous electrolyte secondary battery
JP2709303B2 (en) Non-aqueous electrolyte secondary battery
JPH06267542A (en) Nonaqueous electrolyte battery
JPH03276578A (en) Nonaqueous electrolyte secondary battery
JPH06310125A (en) Negative electrode for lithium secondary battery
JP2798742B2 (en) Non-aqueous electrolyte secondary battery
JPS61158665A (en) Nonaqueous electrolyte secondary battery
JPS61208748A (en) Lithium organic secondary battery
JP3025692B2 (en) Rechargeable battery
JP2865386B2 (en) Non-aqueous electrolyte secondary battery
JPS63285878A (en) Nonaqueous secondary battery
JP2840357B2 (en) Non-aqueous electrolyte secondary battery
JPH04160766A (en) Nonaqueous electrolyte secondary battery
JPH02236972A (en) Polyaniline battery
JP2798752B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2673836B2 (en) Non-aqueous electrolyte secondary battery
JP2771580B2 (en) Manufacturing method of lithium alloy plate
JPS63261674A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 11