JPH03275574A - Method for coupling ceramics member and metallic member - Google Patents
Method for coupling ceramics member and metallic memberInfo
- Publication number
- JPH03275574A JPH03275574A JP7280090A JP7280090A JPH03275574A JP H03275574 A JPH03275574 A JP H03275574A JP 7280090 A JP7280090 A JP 7280090A JP 7280090 A JP7280090 A JP 7280090A JP H03275574 A JPH03275574 A JP H03275574A
- Authority
- JP
- Japan
- Prior art keywords
- metal member
- ceramics
- ceramic
- annular groove
- metallic member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims description 13
- 230000008878 coupling Effects 0.000 title abstract description 4
- 238000010168 coupling process Methods 0.000 title abstract description 4
- 238000005859 coupling reaction Methods 0.000 title abstract description 4
- 239000002184 metal Substances 0.000 claims description 71
- 230000008602 contraction Effects 0.000 claims description 4
- 238000005728 strengthening Methods 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 abstract description 12
- 239000000498 cooling water Substances 0.000 abstract description 7
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 4
- 238000001816 cooling Methods 0.000 abstract description 4
- 239000010935 stainless steel Substances 0.000 abstract description 4
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 229910000851 Alloy steel Inorganic materials 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 210000000078 claw Anatomy 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、セラミックス部材と金属部材との結合法に関
し、特に遠心送風機や過給機などのターボ機械における
回転軸に適用できる。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of joining ceramic members and metal members, and is particularly applicable to rotating shafts in turbo machines such as centrifugal blowers and superchargers.
従来の技術
ターボ機械において、セラミックス製の回転軸を使用す
るものが知られているが、一般にセラミックス製の回転
軸を金属製の回転軸に結合し、この金属製の回転軸にト
ルクを与えて回転させる構成が多く採用されている。Conventional turbomachines are known to use ceramic rotating shafts, but generally the ceramic rotating shaft is coupled to a metal rotating shaft and torque is applied to the metal rotating shaft. Many rotational configurations are used.
しかして、このようなセラミックス製の回転軸と金属製
の回転軸とを結合するのに、従来は、第3図及び第4図
に示すように、焼ばめの方法を利用している。Conventionally, a shrink fit method has been used to connect such a ceramic rotating shaft and a metal rotating shaft, as shown in FIGS. 3 and 4.
すなわち、まず、第3図に示すように、金属製の回転軸
を構成する中空円筒状の金属部材1が適当な加熱装置に
より高温に加熱され、この高温に加熱された金属部材1
の一端にセラミックス製の回転軸を構成する丸棒状のセ
ラミックス部材2が挿入される。That is, as shown in FIG. 3, first, a hollow cylindrical metal member 1 constituting a metal rotating shaft is heated to a high temperature by an appropriate heating device, and the metal member 1 heated to this high temperature is heated to a high temperature.
A round rod-shaped ceramic member 2 constituting a ceramic rotating shaft is inserted into one end of the rotary shaft.
そして、第4図に示すように、金属部材1が室温に戻る
ことにより、金属部材1の加熱前の内径はセラミックス
部材2の外径より小さくなるような寸法となっているた
め、セラミックス部材2を取り囲まない金属部材1の部
分1bは元の寸法に戻れるものの、セラミックス部材2
を取り囲む金属部材1の部分1aは元の寸法に戻ること
ができないので、セラミックス部材2を締め付けること
になる。この締め付は力により、セラミックス部材2と
金属部材1とが結合されることになる。As shown in FIG. 4, when the metal member 1 returns to room temperature, the inner diameter of the metal member 1 before heating becomes smaller than the outer diameter of the ceramic member 2. Although the portion 1b of the metal member 1 that does not surround the ceramic member 2 can return to its original size,
Since the portion 1a of the metal member 1 surrounding the metal member 1 cannot return to its original size, the ceramic member 2 is tightened. This tightening causes the ceramic member 2 and the metal member 1 to be joined together by force.
このような従来の焼ばめによる方法では、セラミックス
部材2を締め付ける力を適切なものとするためには、金
属部材1の寸法と加熱温度とを適切に選ぶ必要があるが
、加熱温度を極端に上げることはできないため、金属部
材1の寸法設定に細心の注意を払う必要があった。特に
、金属部材1が径の小さい中空円筒状の回転軸の場合、
l/1000a++n以上の直径精度を要し、加工精度
上実施困難な場合があった。In such a conventional shrink fitting method, in order to obtain an appropriate tightening force for the ceramic member 2, it is necessary to appropriately select the dimensions of the metal member 1 and the heating temperature. Therefore, it was necessary to pay close attention to the dimensions of the metal member 1. In particular, when the metal member 1 is a hollow cylindrical rotating shaft with a small diameter,
This requires a diameter accuracy of 1/1000a++n or more, which may be difficult to implement due to processing accuracy.
また、金属部材1を均一な高温状態にするために加熱時
間が長くなり、加熱温度と時間によっては金属部材1の
内面にスケールが発生し、焼ばめが困難となる場合もあ
った。Further, heating time is required to bring the metal member 1 into a uniform high temperature state, and depending on the heating temperature and time, scale may occur on the inner surface of the metal member 1, making shrink fitting difficult.
更に、高温の金属部材1にセラミックス部材2を挿入す
る作業は、作業性が悪く、ロボット化等の自動化も難し
い不具合があった。Further, the work of inserting the ceramic member 2 into the high-temperature metal member 1 has a problem that the work efficiency is poor and automation such as robotization is difficult.
これに対し、丸棒状のセラミックス部材を中空円筒状の
金属部材の一端に挿入し、この金属部材のセラミックス
部材取り囲み部分を軸方向に沿って外側から冷却及びそ
の後に加熱を繰り返して、低温域及び高温域を順次移動
させ、これにより金属部材に収縮の塑性変形を生じさせ
て、セラミックス部材と金属部材とを結合する方法が特
願平167443号で提案された。第5図にその実施例
を示す。On the other hand, a round rod-shaped ceramic member is inserted into one end of a hollow cylindrical metal member, and the part of the metal member surrounding the ceramic member is repeatedly cooled from the outside along the axial direction and then heated. Japanese Patent Application No. 167443 proposed a method of bonding a ceramic member and a metal member by sequentially moving the metal member through a high temperature range, thereby causing plastic deformation due to contraction in the metal member. FIG. 5 shows an example thereof.
第5図において、1が中空円筒状の金属部材で、例えば
ステンレス鋼、炭素鋼、低合金鋼等から成る。また、2
が丸棒状のセラミックス部材で、例えば窒化ケイ素Si
、N、、アルミナAQ、O,、炭化ケイ素SiC等から
成る。そして、このセラミックス部材2が金属部材1の
一端に挿入される。In FIG. 5, reference numeral 1 denotes a hollow cylindrical metal member made of, for example, stainless steel, carbon steel, low alloy steel, or the like. Also, 2
is a round bar-shaped ceramic member, for example silicon nitride Si
, N, alumina AQ, O, silicon carbide SiC, etc. Then, this ceramic member 2 is inserted into one end of the metal member 1.
それから、このセラミックス部材2を取り囲んでいる金
属部材1の部分1aを、軸方向に沿って、外側から冷却
水ノズル3より噴出される冷却水4による冷却及びその
後に高周波加熱コイル5による加熱を繰り返して、低温
域6及び高温域7を順次移動させ、この低温域6と高温
域7とより成る軸方向温度分布の移動を金属部材1のセ
ラミックス取り囲み部分1aの軸方向全体にわたって1
回又はそれ以上行う。Then, the portion 1a of the metal member 1 surrounding the ceramic member 2 is repeatedly cooled along the axial direction by the cooling water 4 jetted from the cooling water nozzle 3 from the outside, and then heated by the high-frequency heating coil 5. Then, the low temperature region 6 and the high temperature region 7 are sequentially moved, and the movement of the axial temperature distribution consisting of the low temperature region 6 and the high temperature region 7 is carried out over the entire axial direction of the ceramic surrounding portion 1a of the metal member 1.
Do it twice or more.
これにより、金属部材1のセラミックス取り囲み部分1
aには、他の部分1bと異なり、熱ラチエツト効果によ
り収縮の塑性変形が生じ、その結果第6図に示すように
、室温に戻った状態の下で、この収縮塑性変形した金属
部材1の部分1aはセラミックス部材2を締め付け、セ
ラミックス部月2と金属部材1とが結合される。As a result, the ceramic surrounding portion 1 of the metal member 1
Unlike the other parts 1b, shrinkage plastic deformation occurs in part a due to the thermal ratchet effect, and as a result, as shown in FIG. The portion 1a tightens the ceramic member 2, and the ceramic member 2 and the metal member 1 are combined.
以上述べたように、この方法によれば、軸方向温度分布
の通過回数により中空円筒状の金属部利の収縮塑性変形
量を調節することができるので、金属部材の初期寸法に
ついてそれほど神経質になる必要がない。As mentioned above, according to this method, the amount of shrinkage plastic deformation of the hollow cylindrical metal part can be adjusted by the number of passes of the axial temperature distribution, so there is no need to worry about the initial dimensions of the metal part. There's no need.
そして、高温にさらされる時間が従来例の塊ばめの場合
はど長くないので、金属部+1の内面にスケールが発生
しに<<、かつ常温でセラミックス部材を金属部材の一
端に挿入できるので、ロボット化等の自動化も容易であ
る。In addition, since the time of exposure to high temperatures is not as long as in the case of conventional bulk fitting, the ceramic member can be inserted into one end of the metal member at room temperature without causing scale to form on the inner surface of the metal part +1. , automation such as robotization is also easy.
発明が解決しようとする課題
上述の特願平1−67443号に記載の方法は、実用的
にも十分使用できる方法であるが、回転軸が回転する際
に若干の軸力が負荷された場合、セラミックス軸が中空
円筒状金属部材から抜ける可能性がある。Problems to be Solved by the Invention The method described in the above-mentioned Japanese Patent Application No. 1-67443 is a method that can be used practically, but when a slight axial force is applied to the rotating shaft when it rotates. , there is a possibility that the ceramic shaft may come off from the hollow cylindrical metal member.
本発明は、そのような不具合を解消すべくなされたもの
で、セラミックス部材と金属部材との結合の信頼性を更
に増すようにした結合法を提供することを目的とする。The present invention was made in order to eliminate such problems, and an object of the present invention is to provide a bonding method that further increases the reliability of bonding a ceramic member and a metal member.
課題を解決するための手段
本発明によれば、環状の満を有する丸棒状のセラミック
ス部材をを中空円筒状の金属部材の一端に抑大し、この
金属部材のセラミックス部材取り囲み部分を軸方向に沿
って外側から冷却及びその後に加熱を繰り返して、低温
域及び高温域を順次移動させ、これにより金属部材に収
縮の塑性変形を生じさせて、セラミックス部材と金属部
材とを結合し、環状の溝の効果で結合を強化したことを
特徴とする結合法が提供される。Means for Solving the Problems According to the present invention, a round bar-shaped ceramic member having an annular shape is compressed at one end of a hollow cylindrical metal member, and a portion of the metal member surrounding the ceramic member is axially The ceramic member and the metal member are bonded together by repeatedly cooling and then heating from the outside to move the metal member sequentially through a low temperature region and a high temperature region. A bonding method is provided which is characterized in that bonding is strengthened by the effect of.
作用
上述の手段によれば、中空円筒状の金属部材の収縮塑性
変形の際、金属部材の一部が、セラミックス部材に円環
状に設けられた溝内部に向けて塑性変形するようになり
、これによってセラミックス軸と金属部材との結合が強
化される。According to the above-mentioned means, when the hollow cylindrical metal member undergoes shrinkage plastic deformation, a part of the metal member is plastically deformed toward the inside of the annular groove provided in the ceramic member. This strengthens the bond between the ceramic shaft and the metal member.
実施例
以下、第1図及び第2図を参照して本発明の実施例を詳
述する。なお、第1図及び第2図において、第3図ない
し第6図に示したものと同一の部分には同一の符号を付
して、その詳細な説明は省略する。Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 and 2. In FIGS. 1 and 2, the same parts as those shown in FIGS. 3 to 6 are denoted by the same reference numerals, and detailed explanation thereof will be omitted.
第1図及び第2図によれば、セラミックス部材2が金属
部材1と重なり合う部分に、浅い円環状の溝8が設けで
ある。他の条件は第5図に示した従来例と全く同じであ
る。According to FIGS. 1 and 2, a shallow annular groove 8 is provided in a portion where the ceramic member 2 overlaps the metal member 1. Other conditions are exactly the same as in the conventional example shown in FIG.
すなわち、金属部材1は中空円筒状のもので、例えばス
テンレス鋼、炭素鋼、低合金鋼等から成る。また、2が
丸棒状のセラミックス部材で、例えば窒化ケイ素5IJ
4、アルミナAo*os、炭化ケイ素SiC等から成る
。そして、このセラミックス部材2が金属部材1の一端
に押入される。That is, the metal member 1 has a hollow cylindrical shape and is made of, for example, stainless steel, carbon steel, low alloy steel, or the like. In addition, 2 is a round bar-shaped ceramic member, for example, silicon nitride 5IJ
4. Consists of alumina Ao*os, silicon carbide SiC, etc. Then, this ceramic member 2 is pushed into one end of the metal member 1.
それから、このセラミックス部材2を取り囲んでいる金
属部材1の部分1aを、軸方向に沿って、外側から冷却
水ノズル3より噴出される冷却水4による冷却及びその
後に高周波加熱コイル5による加熱を繰り返して、低温
域6及び高温域7を順次移動させ、この低温域6と高温
域7とより成る軸方向温度分布の移動を金属部材1のセ
ラミックス取り囲み部分1aの軸方向全体にわたって1
回又はそれ以上行う。Then, the portion 1a of the metal member 1 surrounding the ceramic member 2 is repeatedly cooled along the axial direction by the cooling water 4 jetted from the cooling water nozzle 3 from the outside, and then heated by the high-frequency heating coil 5. Then, the low temperature region 6 and the high temperature region 7 are sequentially moved, and the movement of the axial temperature distribution consisting of the low temperature region 6 and the high temperature region 7 is carried out over the entire axial direction of the ceramic surrounding portion 1a of the metal member 1.
Do it twice or more.
これにより、金属部材1のセラミックス取り囲み部分1
aには、他の部分1bと異なり、熱ラチエツト効果によ
り収縮の塑性変形が生じ、その結果第2図に示すように
、室温に戻った状態では、この収縮塑性変形した金属部
材1の部分1aはセラミックス部材2を締め付けるとと
もに、金属部材lの部分1aのうちセラミックス部材2
の環状溝8の外側の部分ICは収縮の塑性変形により、
環状溝8に入り込む形となる。したがって、金属部材1
の部分1aによるセラミックス部材2の締め付けに加え
て、セラミックス部材2の環状溝8内への金属部材1の
部分1Cの入り込みによって、セラミックス部材2と金
属部材1とがより強固に結合され、抜けにくくなる。As a result, the ceramic surrounding portion 1 of the metal member 1
Unlike the other parts 1b, shrinkage plastic deformation occurs in part 1a of the metal member 1 due to the thermal ratchet effect, and as a result, as shown in FIG. tightens the ceramic member 2, and also tightens the ceramic member 2 in the portion 1a of the metal member l.
The outer part IC of the annular groove 8 is plastically deformed due to contraction,
It has a shape that fits into the annular groove 8. Therefore, metal member 1
In addition to the tightening of the ceramic member 2 by the portion 1a, the insertion of the portion 1C of the metal member 1 into the annular groove 8 of the ceramic member 2 causes the ceramic member 2 and the metal member 1 to be more firmly connected, making it difficult for them to come off. Become.
次に、実験例について述べる。Next, an experimental example will be described.
金属部材1として管径がφ1400mmで板厚1 mm
のステンレス(SOS 304)製の中空円筒状部材を
用いこの金属部材の一端に窒化ケイ素5jsNaから成
る丸棒状のセラミックス部材2を挿入した。丸棒状のセ
ラミックス部材2には、深さ5 mm程度の浅い環状溝
8を設けた。The metal member 1 has a pipe diameter of φ1400 mm and a plate thickness of 1 mm.
A round bar-shaped ceramic member 2 made of silicon nitride 5jsNa was inserted into one end of the hollow cylindrical member made of stainless steel (SOS 304). A shallow annular groove 8 with a depth of about 5 mm was provided in the round bar-shaped ceramic member 2.
それから、冷却水ノズル3から噴出される冷却水4によ
る冷却により低温域6が50℃程度、また高周波加熱コ
イル5により高温域が650℃程度の高温となるように
したところ、高温域7と低温域6との間の温度勾配が7
5℃/wの軸方向温度分布が生じた。Then, by cooling with the cooling water 4 spouted from the cooling water nozzle 3, the low temperature region 6 was made to reach a high temperature of about 50°C, and the high frequency heating coil 5 made the high temperature region to a high temperature of about 650°C. The temperature gradient between area 6 and
An axial temperature distribution of 5° C./w resulted.
そして、この軸方向温度分布の移動距離を601111
11(爪の約7.2倍、r、平均半径、t:板厚)とじ
たところ、高温域7と低温域6とにより成る軸方向温度
分布により発生する熱応力は約100kg / mm”
であって、金属部材1の材料であるSOS 304の降
伏応力(650℃で14kg/ mm”程度)に比べ十
分に太きいため、この温度分布の移動の際、熱ラチエツ
ト効果により、金属部材1の収縮塑性変形が生した。Then, the moving distance of this axial temperature distribution is 601111
11 (approximately 7.2 times the claw, r: average radius, t: plate thickness), the thermal stress generated by the axial temperature distribution consisting of the high temperature region 7 and the low temperature region 6 is approximately 100 kg / mm.
Since the yield stress of SOS 304, which is the material of the metal member 1, is sufficiently large (approximately 14 kg/mm" at 650°C), when this temperature distribution shifts, the thermal ratchet effect causes the metal member 1 to Shrinkage plastic deformation occurred.
この1回の温度分布の移動の際に生じる金属部材1の半
径方向の収縮塑性変形量は、約0.04mmであった。The amount of shrinkage plastic deformation in the radial direction of the metal member 1 that occurred during this one movement of the temperature distribution was about 0.04 mm.
そして、温度分布移動の10回の繰り返しで、約0.5
mII、 50回の繰り返しで約0.9帥、100回の
繰り返しで約1 mmの半径方向の収縮塑性変形が見ら
れ、金属部材1はセラミックス部材2を締め付けるとと
もに、セラミックス部材2の環状溝8の中にも入り込ん
だ。Then, by repeating the temperature distribution movement 10 times, approximately 0.5
mII, shrinkage plastic deformation in the radial direction of about 0.9 mm after 50 repetitions and about 1 mm after 100 repetitions was observed, and the metal member 1 tightened the ceramic member 2, and the annular groove 8 of the ceramic member 2 It also got inside.
なお、熱ラチエツト効果については、温疫分イ!jの移
動方向により中空円筒状部材の収縮又は膨張の塑性変形
が生じることが知られており、温度分布の移動を第1図
に示した方向とは逆に、すなわち先に高温域7、それか
ら低温域6となるようにして、同じ<60111Il移
動した場合には、1回の移動で約0.08−mの半径方
向の膨張塑性変形が生じた。In addition, regarding the heat ratchet effect, it is important to note that there is a difference between heat and heat! It is known that plastic deformation of contraction or expansion of the hollow cylindrical member occurs depending on the direction of movement of j. When the same <60111Il movement was made so as to be in the low temperature region 6, a radial expansion plastic deformation of about 0.08-m occurred in one movement.
発明の効果
以上述べたように、本発明によれば、軸方向温度分布の
通過回数により中空円筒状の金属部材の収縮塑性変形量
を調節でき、金属部材の初期寸法についてそれほど神経
質になることがないという特願平1−67443号での
効果に加えて、セラミックス軸と金属製中空円筒とが抜
けにくくなるという点で、より信頼性の高い結合を得る
ことができる。Effects of the Invention As described above, according to the present invention, the amount of shrinkage plastic deformation of a hollow cylindrical metal member can be adjusted by the number of passes of the axial temperature distribution, and it is no longer necessary to be so concerned about the initial dimensions of the metal member. In addition to the effect of Japanese Patent Application No. 1-67443 that the ceramic shaft and the metal hollow cylinder are not easily separated, a more reliable connection can be obtained.
そして、高温にさらされる時間が従来例の焼ばめの場合
はど長くないので、金属部材の内面にスケールが発生し
に<<、かつ常温でセラミックス部材を金属部材の一端
に挿入できるので、ロボット化等の自動化も容易である
。In addition, since the time of exposure to high temperatures is not as long as in the case of conventional shrink fitting, the ceramic member can be inserted into one end of the metal member at room temperature without causing scale to form on the inner surface of the metal member. Automation such as robotization is also easy.
第1図は本発明によりセラミックス部材と金属部材とを
結合する方法の一例を示す図、第2図はその結合した状
態を示す図、第3図は焼ばめによりセラミックス部材と
金属部材とを結合する従来例を示す図、第4図は第3図
の例の結合状態を示す図、第5図は別な従来例を示す図
、第6図は第5図の例の結合状態を示す図である。
1・・金属部材、2・・セラミックス部材、8・・環状
の溝。FIG. 1 is a diagram showing an example of the method of joining a ceramic member and a metal member according to the present invention, FIG. 2 is a diagram showing the joined state, and FIG. 3 is a diagram showing a method for joining a ceramic member and a metal member by shrink fitting. A diagram showing a conventional example of coupling, FIG. 4 shows a coupled state of the example in FIG. 3, FIG. 5 shows another conventional example, and FIG. 6 shows a coupled state of the example in FIG. It is a diagram. 1. Metal member, 2. Ceramic member, 8. Annular groove.
Claims (1)
円筒状の金属部材の一端に挿入し、この金属部材のセラ
ミックス部材取り囲み部分を軸方向に沿って外側から冷
却及びその後に加熱を繰り返して、低温域及び高温域を
順次移動させ、これにより金属部材に収縮の塑性変形を
生じさせて、セラミックス部材と金属部材とを結合し、
環状の溝の効果で結合を強化したことを特徴とする結合
法。A round rod-shaped ceramic member with an annular groove is inserted into one end of a hollow cylindrical metal member, and the part of the metal member surrounding the ceramic member is repeatedly cooled from the outside along the axial direction and then heated to a low temperature. The ceramic member and the metal member are bonded by sequentially moving the ceramic member and the high temperature range, thereby causing plastic deformation due to contraction in the metal member,
A bonding method characterized by strengthening the bond with the effect of annular grooves.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7280090A JPH03275574A (en) | 1990-03-22 | 1990-03-22 | Method for coupling ceramics member and metallic member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7280090A JPH03275574A (en) | 1990-03-22 | 1990-03-22 | Method for coupling ceramics member and metallic member |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03275574A true JPH03275574A (en) | 1991-12-06 |
Family
ID=13499830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7280090A Pending JPH03275574A (en) | 1990-03-22 | 1990-03-22 | Method for coupling ceramics member and metallic member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03275574A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6861625B1 (en) * | 2000-05-22 | 2005-03-01 | Haimer Gmbh | Shrinking device for a toolholder |
-
1990
- 1990-03-22 JP JP7280090A patent/JPH03275574A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6861625B1 (en) * | 2000-05-22 | 2005-03-01 | Haimer Gmbh | Shrinking device for a toolholder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6260858B1 (en) | Insulated heat shrink tool holder | |
KR100755575B1 (en) | Glass-like carbon deformed molded article, process for producing the same, and joint structure for jointing a connecting member to a glass-like carbon hollow molded article | |
JPH0339993B2 (en) | ||
JPH03275574A (en) | Method for coupling ceramics member and metallic member | |
JP2888350B2 (en) | Joining structure of ceramic member and metal member | |
JPH01107930A (en) | Manufacture of heat exchanger tube with fin | |
JPS6239283B2 (en) | ||
KR100581302B1 (en) | Method of repairing a rocket thrust chamber | |
JPS61142024A (en) | Shrink-fit of ceramic shaft | |
JPS623834A (en) | Joint body of ceramic member and metallic member and its production | |
JPH10148470A (en) | Structure for connecting ceramic tubes | |
JPH0351319Y2 (en) | ||
JPS6347601Y2 (en) | ||
JPS6339739A (en) | Hot fitting method for si3n4-based ceramic | |
JP3941542B2 (en) | Hermetic bonding structure of ceramics and metal and apparatus parts having the structure | |
JP2004022382A (en) | Mounting structure for ceramic susceptor, support structure for ceramic susceptor, support member for ceramic susceptor, method of forming support structure for ceramic susceptor, and pressing gear | |
JP3119981B2 (en) | Combined body of ceramic member and metal member and method of combining the same | |
JPS5913678A (en) | Joint mechanism of ceramic shaft and metal shaft | |
JPH0524946A (en) | Joined structural body of ceramics member and metallic member | |
JPS6167527A (en) | Jointing method of ceramic shaft and metallic shaft | |
JPH0524947A (en) | Joined structural body of ceramics member and metallic member | |
SU941039A1 (en) | Soldering method | |
JPH01215769A (en) | Production of ceramic-metal coupled body | |
JPS61219765A (en) | Composite body of ceramic and metal | |
JPS63111203A (en) | Joined substance of ceramic member and metallic member |