JPH0327510B2 - - Google Patents

Info

Publication number
JPH0327510B2
JPH0327510B2 JP57189922A JP18992282A JPH0327510B2 JP H0327510 B2 JPH0327510 B2 JP H0327510B2 JP 57189922 A JP57189922 A JP 57189922A JP 18992282 A JP18992282 A JP 18992282A JP H0327510 B2 JPH0327510 B2 JP H0327510B2
Authority
JP
Japan
Prior art keywords
degreasing
sintered powder
powder
sintered
compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57189922A
Other languages
Japanese (ja)
Other versions
JPS5978979A (en
Inventor
Koichi Kojima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57189922A priority Critical patent/JPS5978979A/en
Publication of JPS5978979A publication Critical patent/JPS5978979A/en
Publication of JPH0327510B2 publication Critical patent/JPH0327510B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明は、有機結合材を含む焼結粉末成形体の
脱脂方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for degreasing a sintered powder compact containing an organic binder.

焼結体の製造方法としてセラミツク粉末や金属
粉末と、樹脂等を主体とする結合材を含む混合原
料を射出成形、押出成形等で所定の形状を持つ焼
結粉末成形体を作り、この焼結粉末成形体を加熱
して結合材を分解除去してグリーンコンパクトを
得る脱脂工程を経て、最後に、焼結粉末の焼結温
度に加熱して焼成し、セラミツクあるいは金属の
成形体を製造する方法が知られている。この焼結
粉末成形体を使用する方法は、生産性が高くかつ
寸法精度が高い表面平滑な焼結体が製造できるた
め、近年特に注目を浴びている。しかし、焼結粉
末成形体を使用する上記方法において、脱脂時に
焼結粉末成形体にクラツクが入つたり割れたりす
る等の不都合が多数発生する。特に焼結粉末とし
て微細な粉末を用いれば用いる程、脱脂工程にお
ける焼結粉末成形体のクラツクの発生率は高くな
る。
The method for manufacturing the sintered body is to make a sintered powder compact with a predetermined shape by injection molding, extrusion molding, etc. from a mixed raw material containing ceramic powder, metal powder, and a binder mainly made of resin, etc. A method of producing a ceramic or metal compact by heating the powder compact to decompose and remove the binder to obtain a green compact, followed by a degreasing process, and finally heating to the sintering temperature of the sintered powder and firing it. It has been known. This method of using a sintered powder compact has been attracting particular attention in recent years because it can produce a sintered body with high productivity and a smooth surface with high dimensional accuracy. However, in the above-mentioned method using a sintered powder compact, many disadvantages occur, such as cracking or breaking of the sintered powder compact during degreasing. In particular, the finer the powder used as the sintering powder, the higher the incidence of cracks in the sintered powder compact during the degreasing process.

本発明は、焼結粉末成形体の脱脂において、焼
結粉末成形体の周囲に耐熱粉末を配置し、更にそ
の耐熱粉末の周囲に焼結粉末成形体を構成する結
合材に含まれる樹脂を配置した状態で、かつ、非
酸化性雰囲気下で加熱することによりクラツクや
割れの発生しない完全なグリーンコンパクトが得
られることを発見し、 本発明の脱脂方法を完成したものである。本発
明の脱脂方法において、何故クラツクのないグリ
ーンコンパクトが得られるかについての確かな理
由は分つていない。考えられる理由は、焼結粉末
成形体の周囲に耐熱性粉末が覆つているため、加
熱により分解して焼結粉末成形体より逃げる気体
あるいは液体が、焼結粉末成形体の表面から耐熱
性粉末の粒子間を通つて逃げる。このため、焼結
粉末成形体の表面での大きな変化が緩和され、結
合材の脱脂がより均一に行われるものと考えられ
る。又、耐熱粉末層を介して、結合材を構成する
樹脂成分が配置されているために、脱脂のための
加熱時において、この樹脂が分解し、焼結粉末成
形体の周囲を樹脂の分解ガスが覆う。従つて、焼
結粉末成形体中の結合材の分解によつて生じるガ
スについても焼結粉末成形体内とその表面部にお
いて、大きな濃度差等の変化が生じにくい。この
ために、焼結粉末成形体の表面部において、クラ
ツクの発生等が少なくなるものと考えられる。し
かし真実のところは明確ではない。
In degreasing a sintered powder compact, the present invention arranges a heat-resistant powder around the sintered powder compact, and further arranges a resin contained in a binding material constituting the sintered powder compact around the heat-resistant powder. The inventors discovered that a perfect green compact without any cracks or cracks can be obtained by heating it under a non-oxidizing atmosphere, and completed the degreasing method of the present invention. The exact reason why crack-free green compacts can be obtained in the degreasing method of the present invention is not known. A possible reason is that the sintered powder compact is surrounded by heat-resistant powder, so the gas or liquid that decomposes and escapes from the sintered powder compact due to heating is absorbed by the heat-resistant powder from the surface of the sintered powder compact. escapes through the particles. Therefore, it is thought that large changes on the surface of the sintered powder compact are alleviated and degreasing of the binder is performed more uniformly. In addition, since the resin component constituting the binder is placed through the heat-resistant powder layer, this resin decomposes during heating for degreasing, and the decomposition gas of the resin surrounds the sintered powder compact. covers. Therefore, the gas generated by the decomposition of the binder in the sintered powder compact is unlikely to cause changes such as a large concentration difference between the sintered powder compact and its surface. For this reason, it is thought that the occurrence of cracks, etc. on the surface of the sintered powder compact is reduced. But the truth is not clear.

耐熱粉末層を介し配置される樹脂は耐熱粉末と
混合し、樹脂含有粉末層として、焼結粉末成形体
の周囲に配置された耐熱粉末層の周囲に配置する
のが好ましい。具体的には耐熱性容器内に樹脂含
有粉末層、焼結粉末成形体が埋め込まれた耐熱粉
末層、樹脂含有粉末層の三層構造とし、この容器
を加熱炉に入れて脱脂を行う。なお脱脂は非酸化
性雰囲気下で行う必要がある。
It is preferable that the resin disposed through the heat-resistant powder layer is mixed with heat-resistant powder and disposed as a resin-containing powder layer around the heat-resistant powder layer disposed around the sintered powder compact. Specifically, a heat-resistant container has a three-layer structure consisting of a resin-containing powder layer, a heat-resistant powder layer in which a sintered powder compact is embedded, and a resin-containing powder layer, and the container is placed in a heating furnace for degreasing. Note that degreasing must be performed in a non-oxidizing atmosphere.

樹脂は必ずしも樹脂100%の単体である必要は
なく、例えば焼結粉末成形体を作る時に発生する
スプレー、ゲート等の部分をそのまま分解ガス発
生よう樹脂材料として使用することができる。
The resin does not necessarily have to be 100% resin; for example, sprays, gates, etc. that are generated when making a sintered powder compact can be used as they are as a resin material to generate cracked gas.

本発明の脱脂に用いられる焼結粉末成形体の製
造方法は、セラミツクス粉末あるいは金属粉末と
樹脂を主体とする結合材とを含む混合材料を、射
出成形、押出成形等で所定の形状をもつ焼結粉末
成形体を作るものである。この焼結粉末成形体の
製造方法は、従来の焼結粉末成形体の製造方法と
同一のもので、従来の方法をそのまま用いること
ができる。例えば焼結粉末として窒化珪素
(Si3N4)、炭化珪素(SiC)、ジリコニヤ(ZrO2)、
アルミナ(Al2O3)、窒アルミニウム(AlN)、窒
化硼素(BN)タングステンカーバイト(WC)、
シリコン金属、ステンレス等の焼結可能なセラミ
ツクスあるいは金属粉末を使用することができ
る。
The method for producing the sintered powder compact used for degreasing of the present invention involves sintering a mixed material containing ceramic powder or metal powder and a binder mainly made of resin into a predetermined shape by injection molding, extrusion molding, etc. This is to make a compacted powder body. The method for producing this sintered powder compact is the same as the conventional method for producing a sintered powder compact, and the conventional method can be used as is. For example, silicon nitride (Si 3 N 4 ), silicon carbide (SiC), zirconia (ZrO 2 ),
Alumina (Al 2 O 3 ), aluminum nitride (AlN), boron nitride (BN), tungsten carbide (WC),
Sinterable ceramics such as silicon metal, stainless steel, or metal powder can be used.

結合材としても、従来と同様にアタクチツクポ
リプロピレン、プリエチレン、ポリアセタール等
の熱可塑性樹脂、あるいは、特殊の場合には、エ
ポキシ樹脂、ポリエステル樹脂等の熱硬化性樹脂
を主成分とする結合材を用いることができる。
又、上記樹脂と共に鉱油、パラフイン等の脂肪族
化合物、アントラセン、ナフタリン等の芳香族化
合物、天然ゴム、合成ゴム等のゴム成分、その他
の添加剤を用いることもできる。
As for the binding material, as in the past, we use thermoplastic resins such as atactic polypropylene, preethylene, and polyacetal, or in special cases, binding materials whose main component is thermosetting resins such as epoxy resins and polyester resins. Can be used.
In addition to the above resins, mineral oil, aliphatic compounds such as paraffin, aromatic compounds such as anthracene and naphthalene, rubber components such as natural rubber and synthetic rubber, and other additives may also be used.

焼結粉末成形体を製造する成形法としては、射
出成形法、押出成形法、特殊な場合には圧縮成形
法、その他熱可塑性、熱硬化性プラスチツクスの
成形方法と類似の成形法を用いることができる。
As the molding method for manufacturing the sintered powder compact, use injection molding, extrusion molding, compression molding in special cases, and other molding methods similar to those for thermoplastics and thermosetting plastics. Can be done.

本発明の脱脂方法で得られたグリーンコンパク
トは、その後、焼成して焼結体とされる。この焼
成はグリーンコンパクトを構成する焼結粉末の焼
成温度に加熱し、焼結粉末どうしを一体的に接合
して焼成するものである。尚、窒化物、炭化物等
のように、酸性雰囲気下で加熱すると、酸化分解
するセラミツクスについては、窒素ガス雰囲気下
あるいは非酸化性雰囲気下、時には真空中で焼成
する必要がある。又、金属粉末の焼結体を製造す
る場合においても、非酸化性雰囲気下で焼結する
必要がある。これら特殊雰囲気下の焼成も従来の
とおりの雰囲気ガスをそのまま使用して焼成する
ことができる。
The green compact obtained by the degreasing method of the present invention is then fired to form a sintered body. This firing involves heating to the firing temperature of the sintered powders constituting the green compact, joining the sintered powders together and firing them. Note that ceramics such as nitrides and carbides that undergo oxidative decomposition when heated in an acidic atmosphere need to be fired in a nitrogen gas atmosphere or a non-oxidizing atmosphere, sometimes in a vacuum. Also, when producing a sintered body of metal powder, it is necessary to sinter in a non-oxidizing atmosphere. Firing under these special atmospheres can also be performed using the conventional atmospheric gas as is.

本発明の脱脂における加熱速度、加熱温度につ
いては、従来と同様に結合材の加熱分解に必要と
する加熱温度及び時間を必要とする。ただし本発
明の脱脂方法においては、従来の脱脂方法に比較
してクラツク等の不都合が発生しにくい利点があ
るために、加熱速度を向上させ、脱脂に必要とす
る時間を短縮できる場合がある。
Regarding the heating rate and heating temperature in the degreasing of the present invention, the heating temperature and time required for thermal decomposition of the binder are required as in the conventional method. However, the degreasing method of the present invention has the advantage that inconveniences such as cracks are less likely to occur compared to conventional degreasing methods, so it may be possible to improve the heating rate and shorten the time required for degreasing.

以下、実施例により説明する。 Examples will be explained below.

ステンレス容器1の内部の底に平均粒径50ミク
ロンのアルミナ粉末を厚さ約2cmに敷きつめアル
ミナ粉末層21を形成した。このアルミナ粉末層
21の上にアタクチツクポリプロピレン20重量%
を含むアルミナ粉末混合層を厚さ2cmに敷きつ
め、樹脂含有層22を形成した。この樹脂含有層
22の上面に厚さ約26cmのアルミナ粉末層23を
形成し、このアルミナ粉末層23の中に3個の焼
結粉末成形体3を埋設した。尚、この焼結粉末成
形体は、平均粒径2ミクロンの窒化珪素粉末80重
量部とアタクチツクポリプロピレン20重量部とよ
りなる混合原料を、射出成形により成形して得ら
れた直径15cm軸長20cmのタービンローターであ
る。さらにこのアルミナ粉末層23の上面にアタ
クチツクポリプロピレン20重量%を含む厚さ2cm
の樹脂含有層24を形成し、さらにその上にアル
ミナ粉末を被覆し、厚さ5cmのアルミナ粉末層2
5を形成した。そしてこのステンレス容器1の蓋
11を閉じ、このステンレス容器1を窒素雰囲気
下にある加熱炉に挿入し、昇温速度5℃/Hrの
加熱上昇速度で500℃まで加熱した。その後、20
℃/Hrで冷却し、20℃まで冷却されたところで
ステンレス容器1より脱脂されたカーボンロータ
のグリーンコンパクトを取り出した。得られた3
個のグリーンコンパクトともいずれもそれら表面
にマイクロクラツク等の不都合は見られず、完全
な脱脂が達成された。尚、参考までに同じステン
レス容器1の中に焼結粉末成形体3のみを3個入
れ、ステンレス容器1の蓋をした状態で、同じ窒
素雰囲気下にある加熱炉に入れ同一の加熱、冷却
条件で脱脂を行つた。しかし3個中3個共に得ら
れたグリーンコンパクトの表面にはクラツクの発
生が見られた。
Alumina powder having an average particle size of 50 microns was spread at the bottom of the interior of the stainless steel container 1 to a thickness of about 2 cm to form an alumina powder layer 21. On this alumina powder layer 21, 20% by weight of atactic polypropylene is applied.
A resin-containing layer 22 was formed by spreading an alumina powder mixed layer containing 2 cm thick. An alumina powder layer 23 having a thickness of about 26 cm was formed on the upper surface of this resin-containing layer 22, and three sintered powder compacts 3 were embedded in this alumina powder layer 23. This sintered powder compact was obtained by injection molding a mixed raw material consisting of 80 parts by weight of silicon nitride powder with an average particle size of 2 microns and 20 parts by weight of atactic polypropylene, with a diameter of 15 cm and an axial length of 20 cm. turbine rotor. Further, on the upper surface of this alumina powder layer 23, a thickness of 2 cm containing 20% by weight of atactic polypropylene is applied.
A resin-containing layer 24 with a thickness of 5 cm is formed, and alumina powder is further coated thereon to form an alumina powder layer 2 with a thickness of 5 cm.
5 was formed. Then, the lid 11 of the stainless steel container 1 was closed, and the stainless steel container 1 was inserted into a heating furnace under a nitrogen atmosphere and heated to 500° C. at a heating rate of 5° C./Hr. Then 20
The green compact of the degreased carbon rotor was taken out from the stainless steel container 1 after cooling to 20°C. Obtained 3
No defects such as microcracks were observed on the surfaces of any of the green compacts, and complete degreasing was achieved. For reference, three sintered powder compacts 3 were placed in the same stainless steel container 1, and with the lid of the stainless steel container 1 closed, they were placed in a heating furnace under the same nitrogen atmosphere and heated and cooled under the same conditions. I degreased it. However, cracks were observed on the surfaces of all three of the three green compacts obtained.

また、前記実施例で使用したステンレス容器1
の内部の底に平均粒径50ミクロンのアルミナ粉末
を厚さ約4cmに敷きつめる。次に、厚さ26cmのア
ルミナ粉末層を形成し、このアルミナ粉末層中に
前記実施例と同じ焼結粉末成形体3を3個埋設し
た。更に、この上に7cmのアルミナ粉末層を形成
し、ステンレス容器1の蓋をした状態で前記実施
例と同じ窒素雰囲気下にある加熱炉に入れ前記実
施例と同一の加熱、冷却条件で脱脂を行つた。し
かし、3個中3個共に得られたグリーンコンパク
トの表面にはクラツクの発生が見られた。
In addition, the stainless steel container 1 used in the above example
Spread alumina powder with an average particle size of 50 microns to a thickness of about 4 cm at the bottom of the inside. Next, an alumina powder layer with a thickness of 26 cm was formed, and three sintered powder compacts 3, which were the same as those in the previous example, were embedded in this alumina powder layer. Furthermore, a 7 cm layer of alumina powder was formed on top of this, and the stainless steel container 1 was placed in a heating furnace under the same nitrogen atmosphere as in the previous example with the lid on, and degreased under the same heating and cooling conditions as in the previous example. I went. However, cracks were observed on the surfaces of all three of the three green compacts obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例に示す脱脂方法に用いられ
たステンレス容器1中の焼結粉末成形体の配置状
態を示す断面図である。 1……ステンレス容器、21,23,25……
アルミナ粉末層、22,24……樹脂含有層、3
……焼結粉末成形体。
The figure is a sectional view showing the arrangement of sintered powder compacts in a stainless steel container 1 used in the degreasing method shown in the embodiment of the present invention. 1... Stainless steel container, 21, 23, 25...
Alumina powder layer, 22, 24...Resin-containing layer, 3
...Sintered powder compact.

Claims (1)

【特許請求の範囲】 1 有機結合材と焼結粉末との混合原料を射出成
形、押出成形等で成形して得られた焼結粉末成形
体を加熱し、該焼結粉末成形体より有機結合材を
脱脂する焼結粉末成形体の脱脂方法において、 該焼結粉末成形体の周囲に耐熱性粉末層を配置
し、さらに該耐熱性粉末層の周囲に該有機結合材
を構成する樹脂を配置した状態でかつ非酸化性雰
囲気下で加熱することを特徴とする有機結合材を
含む焼結粉末成形体の脱脂方法。 2 焼結粉末は、窒化珪素、シリコン金属、ステ
ンレス金属、炭化珪素の一種である特許請求の範
囲第1項記載の脱脂方法。 3 耐熱性粉末は、アルミナ、窒化珪素、炭化珪
素、窒化硼素の一種である特許請求の範囲第1項
記載の脱脂方法。 4 樹脂はアタクチツクポリポロピレン、ポリエ
チレン、ポリアセタールの一種である特許請求の
範囲第1項記載の脱脂方法。
[Scope of Claims] 1 A sintered powder compact obtained by molding a mixed raw material of an organic binder and a sintered powder by injection molding, extrusion molding, etc. is heated, and the organic bond is removed from the sintered powder compact. In a method for degreasing a sintered powder compact, a heat-resistant powder layer is arranged around the sintered powder compact, and a resin constituting the organic binder is further arranged around the heat-resistant powder layer. 1. A method for degreasing a sintered powder compact containing an organic binder, the method comprising heating in a non-oxidizing atmosphere. 2. The degreasing method according to claim 1, wherein the sintered powder is one of silicon nitride, silicon metal, stainless metal, and silicon carbide. 3. The degreasing method according to claim 1, wherein the heat-resistant powder is one of alumina, silicon nitride, silicon carbide, and boron nitride. 4. The degreasing method according to claim 1, wherein the resin is one of atactic polypropylene, polyethylene, and polyacetal.
JP57189922A 1982-10-28 1982-10-28 Method of degreaing sintered powder formed body containing organic binder Granted JPS5978979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57189922A JPS5978979A (en) 1982-10-28 1982-10-28 Method of degreaing sintered powder formed body containing organic binder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57189922A JPS5978979A (en) 1982-10-28 1982-10-28 Method of degreaing sintered powder formed body containing organic binder

Publications (2)

Publication Number Publication Date
JPS5978979A JPS5978979A (en) 1984-05-08
JPH0327510B2 true JPH0327510B2 (en) 1991-04-16

Family

ID=16249447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57189922A Granted JPS5978979A (en) 1982-10-28 1982-10-28 Method of degreaing sintered powder formed body containing organic binder

Country Status (1)

Country Link
JP (1) JPS5978979A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641601B2 (en) * 1988-11-24 1994-06-01 三洋化成工業株式会社 Molding composition
JPH0699723B2 (en) * 1989-12-26 1994-12-07 テック大洋工業株式会社 Manufacturing method of metal molding
JPH0711011B2 (en) * 1989-12-27 1995-02-08 三洋化成工業株式会社 Molding composition and method for producing sintered body using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5598303A (en) * 1978-09-22 1980-07-26 Bofors America Compact strain gauge and making method thereof
JPS55144502A (en) * 1979-04-23 1980-11-11 Siemens Ag Strain gauge bridge circuit and manufacturing method thereof
JPS57100793A (en) * 1980-12-16 1982-06-23 Nippon Electric Co High density multilayer circuit board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5598303A (en) * 1978-09-22 1980-07-26 Bofors America Compact strain gauge and making method thereof
JPS55144502A (en) * 1979-04-23 1980-11-11 Siemens Ag Strain gauge bridge circuit and manufacturing method thereof
JPS57100793A (en) * 1980-12-16 1982-06-23 Nippon Electric Co High density multilayer circuit board

Also Published As

Publication number Publication date
JPS5978979A (en) 1984-05-08

Similar Documents

Publication Publication Date Title
US4248813A (en) Process for producing high density sintered products
US3998646A (en) Process for forming high density silicon carbide
US6417126B1 (en) Ceramics and process for producing
JPS6256107B2 (en)
US4019913A (en) Process for fabricating silicon carbide articles
ATE16275T1 (en) DENSE MOLDINGS OF POLYCRYSTALLINE HEXAGONAL BORON NITRIDE AND PROCESS FOR THEIR PRODUCTION BY ISOSTATIC HOT PRESSING.
US5252267A (en) Process for microwave sintering boron carbide
WO1982004245A1 (en) Process for the production of mouldings from materials based on silicon nitride
JPH0327510B2 (en)
JP4845112B2 (en) AlN-SiC-TiB2 composite sintered body manufacturing method
US4447389A (en) Method for manufacturing tubes by sintering
JPH06144918A (en) Production of ceramic granulated powder and production of ceramic sintered body
US5091222A (en) Method for forming a ceramic film
JPS593955B2 (en) Method for manufacturing high-strength, heat-resistant silicon compound fired moldings
JPH0770610A (en) Method for sintering injection-molded product
JPS6177671A (en) Method of dewaxing ceramic formed body containing organic binder
RU2730092C1 (en) Composition with carbon nanotubes for producing carbon billet for high-density sic/c/si ceramics and method of producing articles from sic/c/si ceramics
WO2004035506A1 (en) Hardened/toughened freeze cast ceramics
JPH0597527A (en) Molding of graphite-dispersing ceramics
JPH0127993B2 (en)
WO1990012769A2 (en) Heat-sink structures with increased heat dissipation capacity and methods for the production of such structures
CA1063325A (en) Preparing complex shapes of ultra-high density silicon nitride and silicon carbide by a hot isostatic gas powder vehicle
JPH05318431A (en) Production of inclination function material
JP2784280B2 (en) Ceramic composite sintered body, method for producing the same, and sliding member
JPH1053453A (en) Production of high density ceramics