JPH0597527A - Molding of graphite-dispersing ceramics - Google Patents

Molding of graphite-dispersing ceramics

Info

Publication number
JPH0597527A
JPH0597527A JP3145220A JP14522091A JPH0597527A JP H0597527 A JPH0597527 A JP H0597527A JP 3145220 A JP3145220 A JP 3145220A JP 14522091 A JP14522091 A JP 14522091A JP H0597527 A JPH0597527 A JP H0597527A
Authority
JP
Japan
Prior art keywords
resin
prepolymer
molding
graphite
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3145220A
Other languages
Japanese (ja)
Other versions
JP3051897B2 (en
Inventor
Yoshiyuki Yasutomi
義幸 安富
Seiji Watabiki
誠次 綿引
Akira Nagai
永井  晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3145220A priority Critical patent/JP3051897B2/en
Publication of JPH0597527A publication Critical patent/JPH0597527A/en
Application granted granted Critical
Publication of JP3051897B2 publication Critical patent/JP3051897B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for molding a complicated-shape graphite- dispersing ceramic molding of high density with high dimensional accuracy by using a thermosetting resin prepolymer as a molding binder. CONSTITUTION:A mixture composed of a thermosetting resin prepolymer as a molding binder and a powdery ceramics in a volume ratio of (30:70) to (5:95) is molded in a mold at the flow point of the prepolymer and organic materials contained in the resin are subsequently decomposed in an inert gas and then sintered in an inert gas to obtain the objective graphite-dispersing ceramic molding. Use of the thermosetting resin prepolymer enables use of a solvent for mixing the ceramic raw materials therewith and, therefore, uniform blending. By decomposition of the thermosetting resin, graphite remains in the sintered material and thereby a sliding effect is exhibited.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高密度、高寸法精度セ
ラミックスの成形法に係り、特にグラファイト分散セラ
ミックスの成形法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for molding high density, high dimensional precision ceramics, and more particularly to a method for molding graphite-dispersed ceramics.

【0002】[0002]

【従来の技術】セラミックスの成形法には、粉末プレス
成形法、射出成形法、押出し成形法、鋳込み成形法など
が知られている。この成形工程は、極めて重要であり、
製品の性能に影響を及ぼす。例えば、射出成形法では、
寸法精度良く成形できるが、空気の巻き込みによるボイ
ドあるいはクラックの発生を防ぐことは難しい。また、
射出による材料の流れによって成形体にウェルドライン
を生じ、これが焼結後機械的強度の欠陥と成る。また、
通常の成形法では、成形体中の粒子充填率が60%以下
と低いために焼結時に大きく収縮、変形を伴う。そし
て、上記の成形法には熱可塑性バインダが良く用いられ
ている。なぜなら、熱可塑性バインダは加熱することに
より流動性が得られるためにセラミックス粉末との均一
な混合が容易であるためである。しかし、熱可塑性バイ
ンダでは、以下の欠点が有る。1)バインダの除去の際
にガスが発生し、フクレやクラックの原因となり、焼結
後機械的強度の欠陥と成る。2)成形時に金型あるいは
原料を加熱し、冷却後製品を取り出す必要が有り、成形
工程が長い。3)金型の加熱、冷却により金型が脆化す
る。4)成形品(製品)の冷却時に歪を生ずる。5)成
形品を冷却してから取り出す必要が有り、時間がかか
る。
2. Description of the Related Art As a ceramics molding method, a powder press molding method, an injection molding method, an extrusion molding method, a casting molding method and the like are known. This molding process is extremely important,
Affects product performance. For example, in the injection molding method,
It can be molded with high dimensional accuracy, but it is difficult to prevent the occurrence of voids or cracks due to air entrapment. Also,
The flow of material by injection causes weld lines in the compact, which leads to mechanical strength defects after sintering. Also,
In a usual molding method, since the particle filling rate in the molded body is as low as 60% or less, it is greatly contracted and deformed during sintering. A thermoplastic binder is often used in the above molding method. This is because the thermoplastic binder can be fluidized by heating and can be easily uniformly mixed with the ceramic powder. However, the thermoplastic binder has the following drawbacks. 1) Gas is generated at the time of removing the binder, which causes blisters and cracks, resulting in mechanical strength defects after sintering. 2) It is necessary to heat the mold or the raw material during molding and to take out the product after cooling, which requires a long molding process. 3) The mold becomes brittle by heating and cooling the mold. 4) Distortion occurs when the molded product (product) is cooled. 5) It takes time to cool the molded product before taking it out.

【0003】それに対して、熱可塑性樹脂は加熱により
流動性を得たのち、硬化することが出来る。成形品を冷
却しなくても取り出すことが出来る。しかし、熱硬化性
樹脂は溶剤に溶けないためセラミックス粉末との均一な
混合が困難であり、充填ムラを生じる。さらに、熱硬化
性樹脂量を多くするとセラミックス粒子充填率が小さく
なるとともに、バインダ除去の際、製品形状が崩れてし
まう問題点を有る。また、熱硬化性樹脂を用いていて
も、焼結を大気中で行っていたため、セラミックス中に
グラファイトを分散させた成形品を得ることはできなか
った。
On the other hand, a thermoplastic resin can be cured after it has been made fluid by heating. It can be taken out without cooling the molded product. However, since the thermosetting resin is insoluble in the solvent, it is difficult to uniformly mix it with the ceramic powder, resulting in uneven filling. Further, when the amount of the thermosetting resin is increased, the ceramic particle filling rate becomes small, and the product shape collapses when the binder is removed. Further, even if the thermosetting resin was used, it was not possible to obtain a molded article in which graphite was dispersed in ceramics because the sintering was performed in the atmosphere.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、成形
バインダに熱硬化性樹脂のプレポリマーを用いて、グラ
ファイト分散セラミックス成形体を高密度、高寸法精度
に成形する方法を提供することに有る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for molding a graphite-dispersed ceramic compact with high density and high dimensional accuracy by using a prepolymer of thermosetting resin as a molding binder. There is.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明では熱硬化性樹脂のプレポリマーとセラミッ
クス粉末との混合物を、プレポリマーの流動開始温度以
上の金型内で成形し、その後、不活性ガス中で樹脂中の
有機分を分解し、さらに不活性ガス中で焼結することを
特徴とするグラファイト分散セラミックスの成形法とし
たものである。また、本発明では、セラミックス粉末の
表面が熱硬化性樹脂のプレポリマーで覆われている混合
物を、プレポリマーの流動開始温度以上の金型内で成形
し、その後、不活性ガス中で樹脂中の有機分を分解し、
さらに不活性ガス中で焼結することを特徴とするグラフ
ァイト分散セラミックスの成形法としたものである。
In order to achieve the above object, in the present invention, a mixture of a thermosetting resin prepolymer and a ceramic powder is molded in a mold having a prepolymer flow starting temperature or higher, After that, the organic component in the resin is decomposed in an inert gas, and the resin is further sintered in an inert gas to obtain a graphite-dispersed ceramics molding method. Further, in the present invention, a mixture in which the surface of the ceramic powder is covered with a prepolymer of a thermosetting resin is molded in a mold having a temperature above the flow starting temperature of the prepolymer, and then the resin is treated in an inert gas in a resin. Decomposes the organic content of
Further, the method is a method for forming a graphite-dispersed ceramic, which is characterized by sintering in an inert gas.

【0006】前記の本発明の成形法において、原料混合
物中の熱硬化性樹脂のプレポリマーとセラミックス粉末
との比率は30:70から5:95vol%の範囲であ
り、焼結して得られたグラファイト分散セラミックス成
形体の粒子充填率が70vol%以上ある。また、原料
の表面が熱可塑性樹脂のプレポリマーで覆われている成
形用セラミックス系粉末は、フローテスターによる見掛
け粘度が、0.1MPa・sから0.3MPa・s(但
し、ノズル形状φ6×6.8mm、圧力39MPa)で
あるものがよい。本発明の成形法は次の各工程を含むも
のである。 (a)架橋前の熱硬化性樹脂のプレポリマーとセラミッ
クス粉末及び溶剤を混合する工程、(b)溶剤を除去す
る工程、(c)粉砕工程、(d)常温金型内で加圧成形
し、予備成形体を作製する工程、(e)不活性ガス中で
樹脂中の有機分を分解する工程、(f)不活性ガス中で
焼結する工程、以上の工程を含む。
In the above-described molding method of the present invention, the ratio of the prepolymer of the thermosetting resin to the ceramic powder in the raw material mixture was in the range of 30:70 to 5:95 vol% and was obtained by sintering. The particle filling rate of the graphite-dispersed ceramic compact is 70 vol% or more. Moreover, the ceramic powder for molding in which the surface of the raw material is covered with the prepolymer of the thermoplastic resin has an apparent viscosity of 0.1 MPa · s to 0.3 MPa · s by the flow tester (however, the nozzle shape φ6 × 6 It is preferable that the pressure is 0.8 mm and the pressure is 39 MPa). The molding method of the present invention includes the following steps. (A) A step of mixing the prepolymer of the thermosetting resin before cross-linking with the ceramic powder and the solvent, (b) a step of removing the solvent, (c) a crushing step, (d) pressure molding in a room temperature mold , A step of producing a preformed body, (e) a step of decomposing organic components in the resin in an inert gas, (f) a step of sintering in an inert gas, and the above steps.

【0007】上記において、前記セラミックス粉末は、
無機化合物及び/又は金属の粒子、短繊維、長繊維の少
なくとも一種から成る。この金属粒子は、最終焼結体で
は窒化物、酸化物、炭化物などに変化する。本発明で
は、熱硬化性樹脂のプレポリマーが溶剤に溶けるため、
粒子、短繊維、長繊維との混合、分散が容易である。該
粒子は、粒径10nmから1mm程度のものを使用するこ
とができるが、この範囲には限定されない。また、繊維
は、径0.1μmから1mm程度のもの、アスペクト比
は、10から100を使用することが好ましいが、この
範囲には限定されない。前記熱硬化性樹脂は、付加反応
型ポリイミド樹脂、エポキシ樹脂、尿素樹脂、メラミン
樹脂、フェノール樹脂、不飽和ポリエステル樹脂、アル
キド樹脂、ウレタン樹脂、ユリア樹脂、ジアリルフタレ
ート樹脂の少なくとも一種から成り、必要により、硬化
剤を混合する。特に、エポキシ樹脂は、硬化時の収縮が
小さいので高寸法精度成形に有効である。成形時におい
て、金型内で流動開始温度以上で加圧成形した後、硬化
する必要がある。上記熱硬化性樹脂と硬化剤の組合せを
行なうことにより、硬化時間を数十秒から数分以内に制
御することができ、成形工程の短縮化に有効である。ま
た、金型温度を一定にできるため、金型の脆化を防止で
きる。金型温度は、熱硬化性樹脂のプレポリマーとセラ
ミックス粉末の混合物が流動性を持つとともに、硬化す
る温度が好ましい。金型温度を制御することによって
も、硬化時間を制御可能である。一般には、100℃か
ら200℃の範囲にするのが好ましい。
In the above, the ceramic powder is
It comprises at least one of inorganic compound and / or metal particles, short fibers and long fibers. The metal particles are changed to nitrides, oxides, carbides, etc. in the final sintered body. In the present invention, the prepolymer of the thermosetting resin is soluble in the solvent,
Easy to mix and disperse with particles, short fibers and long fibers. As the particles, particles having a particle size of about 10 nm to 1 mm can be used, but the particle size is not limited to this range. Further, it is preferable to use fibers having a diameter of about 0.1 μm to 1 mm and an aspect ratio of 10 to 100, but not limited to this range. The thermosetting resin, at least one of addition reaction type polyimide resin, epoxy resin, urea resin, melamine resin, phenol resin, unsaturated polyester resin, alkyd resin, urethane resin, urea resin, diallyl phthalate resin, if necessary , Mix the curing agent. In particular, the epoxy resin is effective for high dimensional precision molding because the shrinkage upon curing is small. At the time of molding, it is necessary to carry out pressure molding in the mold at a flow starting temperature or higher and then cure. By combining the thermosetting resin and the curing agent, the curing time can be controlled within tens of seconds to several minutes, which is effective for shortening the molding process. Further, since the mold temperature can be kept constant, it is possible to prevent the mold from becoming brittle. The mold temperature is preferably a temperature at which the mixture of the thermosetting resin prepolymer and the ceramic powder has fluidity and is cured. The curing time can also be controlled by controlling the mold temperature. Generally, it is preferable to set the temperature in the range of 100 ° C to 200 ° C.

【0008】熱硬化性樹脂のプレポリマーとセラミック
ス粉末の混合物が硬化する際の収縮率は0.5%以下、
特に高寸法精度を要求する場合は0.1%以下にするの
が好ましい。この硬化収縮により、金型との離型が容易
になる。本発明において、熱硬化性樹脂のプレポリマー
とセラミックス粉末の混合は、ポットミル、らいかい
機、スプレードライなどの方法により、セラミックス粉
末表面に熱硬化性樹脂のプレポリマーを付着させればよ
い。したがって、その方法は一般概念にとらわれない。
本発明において、複雑形状品を作製する場合、熱硬化し
ない温度で予備成形体を作製し、最終成形体が1個以上
の予備成形体を組み合わせたセラミックスの成形法を行
なうことも可能である。
When the mixture of the thermosetting resin prepolymer and the ceramic powder is cured, the shrinkage rate is 0.5% or less,
Especially when high dimensional accuracy is required, it is preferably 0.1% or less. This curing shrinkage facilitates release from the mold. In the present invention, the prepolymer of the thermosetting resin and the ceramic powder may be mixed by adhering the prepolymer of the thermosetting resin to the surface of the ceramic powder by a method such as a pot mill, a ladle machine, or spray drying. Therefore, the method is not bound by the general concept.
In the present invention, in the case of producing a product having a complicated shape, it is also possible to prepare a preformed body at a temperature at which it is not heat-cured and perform a ceramics molding method in which the final molded body is a combination of one or more preformed bodies.

【0009】[0009]

【作用】本発明において、熱硬化性樹脂のプレポリマー
とセラミックス粉末との比率を30:70から5:95
vol%の混合物とする理由について述べる。セラミッ
クス原料粉末自体は脆性の固体粒子から成っているた
め、そのままの加圧では充填が困難であり、バインダの
添加により流動性を助ける必要がある。このバインダの
添加量によって、焼結体の強度が左右される。例えば、
金属Siの反応焼結法によるSi3 4 焼結体の曲げ強
度と熱硬化性樹脂のプレポリマー添加量の関係を図1に
示す。また、成形体粒子充填率と熱硬化性樹脂のプレポ
リマー添加量との関係を図2に示す。このように、熱硬
化性樹脂のプレポリマー添加量により成形体の粒子充填
率及び焼結体の強度が左右される。最適添加量の場合の
み高強度品が得られる。これは、原料粉末にバインダ添
加量を増していくと、混合物の流動性は良好と成り、成
形が容易になる。その結果、成形体の密度が向上する。
しかし、原料粉末が理想的な密充填に有るときの空隙の
割合以上にバインダーを添加すると原料粉末はバインダ
ー中に孤立した状態になる。この場合、混合物の流動性
は良くなり、射出成形でも可能になるが、成形体中の粒
子充填率が低下する。そして、脱バインダー処理を行な
うと結合分である熱硬化性樹脂が分解するため、製品の
形状が崩れてしまう現象が生じる場合が有る。このよう
に、最適量の熱硬化性樹脂のプレポリマーを添加するこ
とにより、成形体の粒子充填率を70vol%以上にす
ることが出来る。
In the present invention, the ratio of the thermosetting resin prepolymer to the ceramic powder is 30:70 to 5:95.
The reason for using a mixture of vol% will be described. Since the ceramic raw material powder itself is composed of brittle solid particles, it is difficult to fill it by pressing as it is, and it is necessary to help the fluidity by adding a binder. The strength of the sintered body depends on the added amount of the binder. For example,
FIG. 1 shows the relationship between the bending strength of the Si 3 N 4 sintered body obtained by the reaction sintering method of metallic Si and the addition amount of the prepolymer of the thermosetting resin. Further, FIG. 2 shows the relationship between the filling rate of the molded particles and the addition amount of the prepolymer of the thermosetting resin. As described above, the particle filling rate of the compact and the strength of the sintered body depend on the amount of the prepolymer added of the thermosetting resin. A high-strength product can be obtained only with the optimum addition amount. This is because as the amount of the binder added to the raw material powder increases, the fluidity of the mixture becomes better and the molding becomes easier. As a result, the density of the molded body is improved.
However, if the binder is added in an amount higher than the ratio of the voids when the raw material powder is in an ideal close packing, the raw material powder will be in an isolated state in the binder. In this case, the fluidity of the mixture is improved, and injection molding is possible, but the packing rate of particles in the molded article is reduced. When the binder removal treatment is performed, the thermosetting resin that is the binding component is decomposed, which may cause a phenomenon that the shape of the product collapses. Thus, by adding an optimum amount of the prepolymer of the thermosetting resin, the particle filling rate of the molded body can be 70 vol% or more.

【0010】本発明において、表面が熱硬化性樹脂で覆
われている成形用セラミックス粉末のフローテスターに
よる見掛け粘度が、0.1MPa・sから0.3MPa
・s(但し、ノズル形状φ6×6.8mm、圧力39M
Pa)とする。フローテスターによる見掛け粘度と成形
体粒子充填率の関係を図3に示す。これは、図2と全く
同様の傾向に有り、原料の粘度が成形体粒子充填率に影
響していることが判る。その理由は、上記と全く同様で
ある。このように、最適の見掛け粘度とすることによ
り、成形体の粒子充填率を70vol%以上にすること
が出来る。上記の最終成形体については、含有されてい
る熱硬化性樹脂を不活性ガス中で熱分解した後、さら
に、不活性ガス中で、加圧焼結、ホットプレス焼結など
の方法により焼結体を作製する。ここで、含有されてい
る熱硬化性樹脂を熱分解するとグラファイトとして残留
し、焼結体中に点在し、摺動特性向上に有効であること
から、摺動部材に適している。また、セラミックス成形
体の成形方法は、プレス成形、鋳込み成形、ラバープレ
ス成形、押出成形、金型粉末成形など、成形体の形状と
焼結体に要求される特性等に応じて選択する。
In the present invention, the apparent viscosity of the molding ceramic powder whose surface is covered with the thermosetting resin is from 0.1 MPa · s to 0.3 MPa by a flow tester.
・ S (however, nozzle shape φ6 × 6.8mm, pressure 39M
Pa). FIG. 3 shows the relationship between the apparent viscosity of the flow tester and the packing rate of the molded particles. This has the same tendency as in FIG. 2, and it can be seen that the viscosity of the raw material affects the packing rate of the molded particles. The reason is exactly the same as above. As described above, by adjusting the apparent viscosity to the optimum value, the particle filling rate of the molded product can be 70 vol% or more. For the above-mentioned final molded product, after thermally decomposing the contained thermosetting resin in an inert gas, it is further sintered by a method such as pressure sintering or hot press sintering in an inert gas. Make a body. Here, when the contained thermosetting resin is pyrolyzed, it remains as graphite and is scattered in the sintered body, which is effective for improving the sliding characteristics, and is therefore suitable for a sliding member. The method for forming the ceramic molded body is selected according to the shape of the molded body and the properties required for the sintered body, such as press molding, casting molding, rubber press molding, extrusion molding, and die powder molding.

【0011】[0011]

【実施例】以下、実施例により具体的に説明するが、本
発明はこれらに限定されない。 実施例1 平均粒径2μmのSiC粒子と平均粒径0.1μmの金
属Siを20:80vol%の割り合いの原料配合比の
混合粉末に成形用バインダとしてエポキシ樹脂のプレポ
リマーを1〜50vol%添加し、溶剤としてアセトン
を添加しポットミルで24時間混合した。そして、混合
物中の溶剤を乾燥除去した後、この原料をメカニカルプ
レスを用いて成形圧力1000kgf/cm2 、温度1
60℃で、2分間保圧し、直径50mm、厚さ20mm
のものを成形した。得られた成形体の粒子体積充填率と
エポキシ樹脂のプレポリマー量との関係を図2に示す。
これより、エポキシ樹脂のプレポリマー量5から30v
ol%では成形体の粒子充填率が70vol%以上ある
ことが判る。この各成形体から不活性ガス中で成形バイ
ンダ中の有機分を除去し遊離炭素分を残し、窒素雰囲気
中1100℃から1350℃を3℃/hの昇温速度で長
時間かけて加熱した。これにより遊離カーボン1〜6v
ol%、Si3 4 ウイスカ/粒子=5/95vol%
の焼結体を得た。3点曲げ試験強度とエポキシ樹脂のプ
レポリマー量の関係を図1に示す。エポキシ樹脂のプレ
ポリマー量20vol%のものでは、620MPaの曲
げ強度が得られた。焼結体中の気孔形状は、5μm以下
と小さく、原料とバインダが均一に混合されていること
が判った。なお、エポキシ樹脂のプレポリマー量40v
ol%以上の成形体は脱バインダ後、形状が崩れてしま
った。
EXAMPLES The present invention will be described in more detail below with reference to examples, but the present invention is not limited thereto. Example 1 SiC particles having an average particle size of 2 μm and metallic Si having an average particle size of 0.1 μm were mixed into a mixed powder having a raw material compounding ratio of 20:80 vol%, and a prepolymer of an epoxy resin was used as a binder for molding in an amount of 1 to 50 vol%. Acetone was added as a solvent and mixed in a pot mill for 24 hours. Then, after the solvent in the mixture is dried and removed, the raw material is mechanically pressed with a molding pressure of 1000 kgf / cm 2 and a temperature of 1 kg.
Pressure is maintained for 2 minutes at 60 ℃, diameter 50mm, thickness 20mm
Was molded. The relationship between the particle volume filling rate of the obtained molded product and the amount of prepolymer of the epoxy resin is shown in FIG.
From this, the prepolymer amount of epoxy resin is 5 to 30v
It can be seen that the particle filling rate of the molded product is 70 vol% or more when it is ol%. The organic content in the molding binder was removed from each of the molded bodies in an inert gas to leave the free carbon content, and the molded body was heated at 1100 ° C to 1350 ° C at a temperature rising rate of 3 ° C / h for a long time in a nitrogen atmosphere. By this, free carbon 1-6v
ol%, Si 3 N 4 whiskers / particles = 5/95 vol%
A sintered body of was obtained. The relationship between the three-point bending test strength and the amount of epoxy resin prepolymer is shown in FIG. With an epoxy resin having a prepolymer amount of 20 vol%, a bending strength of 620 MPa was obtained. The pore shape in the sintered body was as small as 5 μm or less, and it was found that the raw material and the binder were uniformly mixed. The prepolymer amount of epoxy resin is 40v
The shape of the molded body of ol% or more collapsed after removing the binder.

【0012】比較のために上記の原料粉末に架橋後のエ
ポキシ樹脂粉末20vol%を加え、アセトンを混合し
ポットミルで24時間混合した。そして、混合物中の溶
剤を乾燥除去した後、この原料をメカニカルプレスを用
いて成形圧力1000kgf/cm2 、温度160℃
で、2分間保圧し、直径50mm、厚さ20mmのもの
を成形した。この成形体から成形バインダを除去した
後、窒素雰囲気中1100℃から1350℃を3℃/h
の昇温速度で長時間かけて加熱した。得られた焼結体の
3点曲げ強度は230MPaと本発明に比較して1/2
以下である。これは、原料とバインダの混合が均一に出
来なかったために、大きな気孔(50μm)が欠陥とし
て残存したためである。
For comparison, 20 vol% of the epoxy resin powder after cross-linking was added to the above raw material powder, and acetone was mixed and mixed in a pot mill for 24 hours. After the solvent in the mixture is dried and removed, the raw material is mechanically pressed with a molding pressure of 1000 kgf / cm 2 and a temperature of 160 ° C.
Then, the pressure was held for 2 minutes to form a product having a diameter of 50 mm and a thickness of 20 mm. After removing the molding binder from this molded body, the temperature is changed from 1100 ° C to 1350 ° C at 3 ° C / h in a nitrogen atmosphere.
The heating was performed for a long time at a heating rate of. The three-point bending strength of the obtained sintered body was 230 MPa, which is 1/2 of that of the present invention.
It is below. This is because large pores (50 μm) remained as defects because the raw material and the binder could not be uniformly mixed.

【0013】実施例2 平均粒径1μmのTiN粒子と平均粒径0.1μmの金
属Siを20:80vol%の割り合いの原料配合比の
混合粉末に成形用バインダとしてフェノールノボラック
樹脂のプレポリマーを20vol%添加し、溶剤として
アセトンを添加しポットミルで24時間混合した。そし
て、混合物中の溶剤を乾燥除去した後、この原料をメカ
ニカルプレスを用いて成形圧力1000kgf/c
2 、温度160℃で、2分間保圧し、直径50mm、
厚さ20mmのものを成形した。これより、成形体の粒
子充填率が77vol%得られた。この成形体から不活
性ガス中で成形バインダ中の有機分を除去し遊離炭素分
を残し、窒素雰囲気中1100℃から1350℃を3℃
/hの昇温速度で長時間かけて加熱した。この焼結時の
寸法変化率は、0.12vol%と小さかった。3点曲
げ試験の結果、630MPaの曲げ強度が得られた。焼
結体中の気孔形状は、1μm以下と小さく、原料とバイ
ンダが均一に混合されていることが判った。
Example 2 TiN particles having an average particle size of 1 μm and metallic Si having an average particle size of 0.1 μm were mixed into a powder mixture having a raw material compounding ratio of 20:80 vol%, and a prepolymer of a phenol novolac resin was used as a molding binder. 20 vol% was added, acetone was added as a solvent, and the mixture was mixed in a pot mill for 24 hours. After the solvent in the mixture is dried and removed, the raw material is mechanically pressed at a molding pressure of 1000 kgf / c.
m 2 , temperature 160 ° C., holding pressure for 2 minutes, diameter 50 mm,
A product having a thickness of 20 mm was molded. From this, a particle filling rate of the molded body of 77 vol% was obtained. Organic matter in the molding binder was removed from this molded body in an inert gas to leave free carbon content, and the temperature was changed from 1100 ° C to 1350 ° C at 3 ° C in a nitrogen atmosphere.
The heating was performed at a heating rate of / h for a long time. The dimensional change rate during sintering was as small as 0.12 vol%. As a result of the three-point bending test, a bending strength of 630 MPa was obtained. The pore shape in the sintered body was as small as 1 μm or less, and it was found that the raw material and the binder were uniformly mixed.

【0014】実施例3 平均粒径1μmのAlN粒子と平均粒径0.2μmの金
属Siを50:50vol%の割り合いの原料配合比の
混合粉末に成形用バインダとしてエポキシ樹脂のプレポ
リマーを19vol%、硬化触媒としてテトラフェニル
ホスホニウムを1vol%添加し、溶剤としてアセトン
を添加しポットミルで24時間混合した。そして、混合
物中の溶剤を乾燥除去した後、この原料をメカニカルプ
レスを用いて成形圧力1000kgf/cm2 、温度1
60℃で、30秒保圧し、直径50mm、厚さ20mm
のものを成形した。これより、成形体の粒子充填率が7
5vol%得られた。この成形体から不活性ガス中で成
形バインダ中の有機分を除去し遊離炭素分を残し、窒素
雰囲気中1100℃から1350℃を4℃/hの昇温速
度で長時間かけて加熱した。3点曲げ試験の結果、63
0MPaの曲げ強度が得られた。焼結体中の気孔形状
は、2μm以下と小さく、原料とバインダが均一に混合
されていることが判った。また、硬化触媒を添加するこ
とにより、成形時間を短く出来ることが判った。本発明
において、ポリエチレンなどの熱可塑性樹脂やステアリ
ン酸などの滑剤を微量添加することにより、流動性(成
形性)を向上させることも出来る。本発明において、熱
可塑性樹脂のプレポリマーとセラミックス粉末と溶媒か
らなる混合物を、鋳込み成形法により成形し、溶剤を石
膏などにより除去する方法も可能であり、複雑形状の成
形に有効である。
Example 3 AlN particles having an average particle size of 1 μm and metallic Si having an average particle size of 0.2 μm were mixed into a mixed powder having a raw material mixing ratio of 50:50 vol%, and 19 vol of an epoxy resin prepolymer was used as a molding binder. %, Tetraphenylphosphonium as a curing catalyst was added in an amount of 1 vol%, acetone was added as a solvent, and they were mixed in a pot mill for 24 hours. Then, after the solvent in the mixture is dried and removed, the raw material is mechanically pressed with a molding pressure of 1000 kgf / cm 2 and a temperature of 1 kg.
Pressure is maintained for 30 seconds at 60 ° C, diameter 50 mm, thickness 20 mm
Was molded. From this, the particle packing ratio of the molded body is 7
5 vol% was obtained. From this molded body, the organic content in the molding binder was removed in an inert gas to leave the free carbon content, and the mixture was heated in a nitrogen atmosphere at 1100 ° C to 1350 ° C at a temperature rising rate of 4 ° C / h for a long time. As a result of 3-point bending test, 63
A bending strength of 0 MPa was obtained. The pore shape in the sintered body was as small as 2 μm or less, and it was found that the raw material and the binder were uniformly mixed. It was also found that the molding time can be shortened by adding a curing catalyst. In the present invention, the fluidity (moldability) can be improved by adding a small amount of a thermoplastic resin such as polyethylene or a lubricant such as stearic acid. In the present invention, a method of molding a mixture of a prepolymer of a thermoplastic resin, ceramic powder and a solvent by a casting molding method and removing the solvent with gypsum or the like is also possible, which is effective for molding a complicated shape.

【0015】実施例4 直径1μm、アスペクト比100のSiC繊維と平均粒
径0.1μmのSi3 4 を25:75vol%の割り
合いの原料配合比の混合粉末に、焼結助剤としてY2
3 を2vol%、Al23 を2vol%添加し、そし
て成形用バインダとしてフェノールノボラック樹脂のプ
レポリマーを25vol%添加し、溶剤としてアセトン
を添加しポットミルで24時間混合した。そして、混合
物中の溶剤を乾燥除去した後、この原料をメカニカルプ
レスを用いて成形圧力1000kgf/cm2 、温度1
50℃で、3分間保圧し、直径50mm、厚さ20mm
のものを成形した。これより、成形体の粒子充填率が7
3vol%得られた。この成形体から成形バインダを除
去し遊離炭素分を残し、窒素雰囲気中1450℃で2時
間加熱処理した。そして、窒素雰囲気中1750℃で5
時間処理し焼結体を作製した。630MPaの3点曲げ
強度、K1C=11.3の特性を持つ焼結体が得られた。
焼結時の収縮量は約7%と一般の常圧焼結品に比較して
1/2以下である。
Example 4 A mixed powder of SiC fibers having a diameter of 1 μm and an aspect ratio of 100 and Si 3 N 4 having an average particle diameter of 0.1 μm in a raw material mixture ratio of 25:75 vol% was used as a sintering aid Y. 2 O
2 vol% of 3 and 2 vol% of Al 2 O 3 were added, and 25 vol% of a prepolymer of a phenol novolac resin was added as a molding binder, and acetone was added as a solvent, and the mixture was mixed in a pot mill for 24 hours. Then, after the solvent in the mixture is dried and removed, the raw material is mechanically pressed with a molding pressure of 1000 kgf / cm 2 and a temperature of 1 kg.
Pressure is maintained at 50 ° C for 3 minutes, diameter 50mm, thickness 20mm
Was molded. From this, the particle packing ratio of the molded body is 7
3 vol% was obtained. The molded binder was removed from this molded body, leaving the free carbon content, and heat-treated at 1450 ° C. for 2 hours in a nitrogen atmosphere. And 5 at 1750 ° C. in a nitrogen atmosphere
It was treated for a time to produce a sintered body. A sintered body having characteristics of three-point bending strength of 630 MPa and K 1C = 11.3 was obtained.
The shrinkage amount at the time of sintering is about 7%, which is less than 1/2 of that of a general pressureless sintered product.

【0016】実施例5 平均粒径3μmのTiN粒子と平均粒径0.5μmの金
属Siを50:50vol%の割り合いの原料配合比の
混合粉末に成形用バインダとしてエポキシ樹脂のプレポ
リマーを19vol%、硬化触媒としてテトラフェニル
ホスホニウムを1vol%添加し、溶剤としてアセトン
を添加しポットミルで24時間混合した。そして、混合
物中の溶剤を乾燥除去した後、この原料をメカニカルプ
レスを用いて成形圧力500kgf/cm2 で直径40
mm、厚さ10mmの予備成形体を作製する。同様
に、平均粒径10μmのAl2 3 粒子と平均粒径0.
5μmの金属Siを50:50vol%の割り合いの原
料配合比の混合粉末に成形用バインダとしてエポキシ樹
脂のプレポリマーを19vol%、硬化触媒としてテト
ラフェニルホスホニウムを1vol%添加し、溶剤とし
てアセトンを添加しポットミルで24時間混合した。そ
して、混合物中の溶剤を乾燥除去した後、この原料をメ
カニカルプレスを用いて成形圧力500kgf/cm2
で直径40mm、厚さ10mmの予備成形体を作製す
る。そして、及びの予備成形体を金型に重ねて入れ
温度160℃で、30秒保圧し、直径40mm、厚さ2
0mmのものを成形した。この複合成形体から成形バイ
ンダを除去した後、窒素雰囲気中1100℃から135
0℃を4℃/hの昇温速度で長時間かけて加熱した。そ
の結果、導電性と絶縁性を有する構造体を作製すること
が出来た。複合材の接合(界面)部は、Siの窒化物で
あるSi3 4 で結合されていた。
Example 5 TiN particles having an average particle size of 3 μm and metallic Si having an average particle size of 0.5 μm were mixed into a mixed powder having a raw material compounding ratio of 50:50 vol%, and 19 vol of an epoxy resin prepolymer was used as a molding binder. %, Tetraphenylphosphonium as a curing catalyst was added in an amount of 1 vol%, acetone was added as a solvent, and they were mixed in a pot mill for 24 hours. Then, after the solvent in the mixture was dried and removed, the raw material was mechanically pressed at a molding pressure of 500 kgf / cm 2 to a diameter of 40.
A preform having a thickness of 10 mm and a thickness of 10 mm is prepared. Similarly, Al 2 O 3 particles having an average particle size of 10 μm and an average particle size of 0.
19 vol% of epoxy resin prepolymer as a molding binder, 1 vol% of tetraphenylphosphonium as a curing catalyst, and 1% by volume of acetone as a solvent are added to a mixed powder having a raw material mixing ratio of 50:50 vol% of 5 μm metal Si. And mixed in a pot mill for 24 hours. After the solvent in the mixture is dried and removed, the raw material is mechanically pressed at a molding pressure of 500 kgf / cm 2.
Then, a preform having a diameter of 40 mm and a thickness of 10 mm is prepared. Then, the preforms (1) and (2) were overlaid on a mold and kept at a temperature of 160 ° C. for 30 seconds, a diameter of 40 mm and a thickness of 2
A product having a diameter of 0 mm was molded. After removing the molding binder from this composite molded body, the temperature was changed from 1100 ° C.
0 ° C. was heated at a heating rate of 4 ° C./h for a long time. As a result, a structure having conductivity and insulation could be manufactured. The joint (interface) part of the composite material was bonded by Si 3 N 4 which is a nitride of Si.

【0017】実施例6 平均粒径1μmのSiC粒子と平均粒径0.2μmの金
属Siを25:75vol%の割り合いの原料配合比の
混合粉末に成形用バインダとしてエポキシ樹脂のプレポ
リマーを19vol%、硬化触媒としてテトラフェニル
ホスホニウムを1vol%添加し、溶剤としてアセトン
を添加しポットミルで24時間混合した。そして、混合
物中の溶剤を乾燥除去した後、この原料をメカニカルプ
レスを用いて成形圧力1000kgf/cm2 、温度1
60℃で、30秒保圧し、外径60mm、内径50m
m、厚さ20mmのリングを成形した。これより、成形
体の粒子充填率が72vol%得られた。この成形体か
ら成形バインダを除去し遊離炭素分を残し、窒素雰囲気
中1100℃から1350℃を4℃/hの昇温速度で長
時間かけて加熱した。3点曲げ試験の結果、570MP
aの曲げ強度が得られた。焼結体中の気孔形状は、3μ
m以下と小さく、原料とバインダが均一に混合されてい
ることが判った。摺動面を研摩した後、相手材にAl2
3 (相対密度:98%)を用いて摺動試験をおこなっ
た。摺動条件は、面圧10kgf/cm2 、すべり速度
3m/sec、大気中で行なった。その結果、摩擦係数
は0.005、摩耗量は0.01mg/cm2 /100
hと小さい。また、比較例としてSi3 4 /Al2
3 組合せの摺動試験の結果、摩擦係数は0.15、摩耗
量は0.21mg/cm2 /100hであり、本発明に
劣ることが判る。
Example 6 SiC particles having an average particle size of 1 μm and metallic Si having an average particle size of 0.2 μm were mixed into a mixed powder having a raw material compounding ratio of 25:75 vol%, and 19 vol of an epoxy resin prepolymer was used as a molding binder. %, Tetraphenylphosphonium as a curing catalyst was added in an amount of 1 vol%, acetone was added as a solvent, and they were mixed in a pot mill for 24 hours. Then, after the solvent in the mixture is dried and removed, the raw material is mechanically pressed with a molding pressure of 1000 kgf / cm 2 and a temperature of 1 kg.
Hold pressure at 60 ° C for 30 seconds, outer diameter 60 mm, inner diameter 50 m
A ring having a diameter of m and a thickness of 20 mm was formed. From this, a particle filling rate of the molded body of 72 vol% was obtained. The molding binder was removed from this molded body, leaving the free carbon content, and heated in a nitrogen atmosphere at 1100 ° C to 1350 ° C at a temperature rising rate of 4 ° C / h for a long time. Result of 3-point bending test: 570MP
The bending strength of a was obtained. The pore shape in the sintered body is 3μ
It was as small as m or less, and it was found that the raw material and the binder were uniformly mixed. After polishing the sliding surface, Al 2
A sliding test was conducted using O 3 (relative density: 98%). The sliding conditions were a surface pressure of 10 kgf / cm 2 and a sliding speed of 3 m / sec in the atmosphere. As a result, the friction coefficient of 0.005, the wear amount of 0.01mg / cm 2/100
h and small. In addition, as a comparative example, Si 3 N 4 / Al 2 O
3 combined sliding test results, the friction coefficient is 0.15, the wear amount was 0.21mg / cm 2 / 100h, inferior to the present invention.

【0018】[0018]

【発明の効果】従来の熱可塑性樹脂を用いたセラミック
ス成形法に比較して、製品の寸法安定性が向上し、金型
の寿命が延び、脱脂によるクラックが防止できる。熱硬
化性樹脂のプレポリマーを用いることにより、セラミッ
クス原料との混合に、溶媒を用いることができ、均一に
混合が可能である。上記の点から、量産品の成形法とし
て優れている。さらに、プレポリマー熱硬化性樹脂を分
解すると焼結体中にグラファイトが残存し、摺動効果を
もたらすため、ベアリング、ガイドレール、歯車、オル
ダムリング、軸受、フローティングシールなどの摺動部
材に適用できる。
As compared with the conventional ceramics molding method using a thermoplastic resin, the dimensional stability of the product is improved, the life of the mold is extended, and cracks due to degreasing can be prevented. By using the prepolymer of the thermosetting resin, a solvent can be used for mixing with the ceramic raw material, and uniform mixing is possible. From the above points, it is an excellent molding method for mass-produced products. Furthermore, when the prepolymer thermosetting resin is decomposed, graphite remains in the sintered body and brings about a sliding effect, so it can be applied to sliding members such as bearings, guide rails, gears, Oldham rings, bearings, and floating seals. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】金属Siの反応焼結法によるSi3 4 焼結体
の曲げ強度と熱硬化性樹脂のプレポリマー添加量の関係
を示すグラフである。
FIG. 1 is a graph showing the relationship between the bending strength of a Si 3 N 4 sintered body obtained by the reaction sintering method of metallic Si and the addition amount of a prepolymer of a thermosetting resin.

【図2】成形体粒子充填率と熱硬化性樹脂のプレポリマ
ー添加量との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the packing rate of molded particles and the amount of prepolymer added to the thermosetting resin.

【図3】フローテスターによる見掛け粘度と成形体粒子
充填率の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the apparent viscosity by a flow tester and the packing rate of molded particles.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 熱硬化性樹脂のプレポリマーとセラミッ
クス粉末の混合物を、プレポリマーの流動開始温度以上
の金型内で成形し、その後、不活性ガス中で樹脂中の有
機分を分解し、さらに不活性ガス中で焼結することを特
徴とするグラファイト分散セラミックスの成形法。
1. A mixture of a thermosetting resin prepolymer and a ceramic powder is molded in a mold having a temperature above the flow initiation temperature of the prepolymer, and then the organic component in the resin is decomposed in an inert gas, Furthermore, a method for forming graphite-dispersed ceramics, characterized by sintering in an inert gas.
【請求項2】 セラミックス粉末の表面が熱硬化性樹脂
のプレポリマーで覆われている混合物を、プレポリマー
の流動開始温度以上の金型内で成形し、その後、不活性
ガス中で樹脂中の有機分を分解し、さらに不活性ガス中
で焼結することを特徴とするグラファイト分散セラミッ
クスの成形法。
2. A mixture in which the surface of ceramic powder is covered with a prepolymer of a thermosetting resin is molded in a mold having a temperature above the flow initiation temperature of the prepolymer, and then the mixture is heated in an inert gas in the resin. A method for forming graphite-dispersed ceramics, which comprises decomposing organic matter and further sintering in an inert gas.
【請求項3】 前記混合物中の熱硬化性樹脂のプレポリ
マーとセラミックス粉末との比率は、30:70から
5:95vol%であることを特徴とする請求項1又は
2記載のグラファイト分散セラミックスの成形法。
3. The graphite-dispersed ceramics according to claim 1, wherein the ratio of the prepolymer of the thermosetting resin to the ceramic powder in the mixture is 30:70 to 5:95 vol%. Molding method.
【請求項4】 焼結して得られたグラファイト分散セラ
ミックス成形体は、粒子充填率が70vol%以上であ
ることを特徴とする請求項3記載のグラファイト分散セ
ラミックスの成形法。
4. The method for molding graphite-dispersed ceramics according to claim 3, wherein the graphite-dispersed ceramics molded body obtained by sintering has a particle packing rate of 70 vol% or more.
【請求項5】 セラミックス粉末の表面が熱硬化性樹脂
のプレポリマーで覆われている混合物は、フローテスタ
ーによる見掛け粘度が、0.1MPa・sから0.3M
Pa・s(但し、ノズル形状φ6×6.8mm、圧力3
9MPa)であることを特徴とする請求項2記載のグラ
ファイト分散セラミックスの成形法。
5. A mixture in which the surface of ceramic powder is covered with a prepolymer of thermosetting resin has an apparent viscosity of 0.1 MPa · s to 0.3 M measured by a flow tester.
Pa · s (however, nozzle shape φ6 × 6.8 mm, pressure 3
9 MPa), The method for molding a graphite-dispersed ceramic according to claim 2.
【請求項6】 (a)熱硬化性樹脂のプレポリマーとセ
ラミックス粉末及び溶剤を混合する工程、(b)溶剤を
除去する工程、(c)粉砕工程、(d)常温金型内で加
圧成形し、予備成形体を作製する工程、(e)不活性ガ
ス中で樹脂中の有機分を分解する工程、(f)不活性ガ
ス中で焼結する工程、を含むことを特徴とするグラファ
イト分散セラミックスの成形法。
6. (a) a step of mixing a prepolymer of thermosetting resin with ceramic powder and a solvent, (b) a step of removing the solvent, (c) a pulverizing step, (d) pressurization in a room temperature mold Graphite characterized by including a step of molding and producing a preformed body, (e) a step of decomposing an organic component in a resin in an inert gas, and (f) a step of sintering in an inert gas. Forming method of dispersed ceramics.
【請求項7】 前記セラミックス粉末は、無機化合物及
び/又は金属の粒子、短繊維、長繊維の少なくとも一種
から成ることを特徴とする請求項1〜6のいずれか1項
に記載のグラファイト分散セラミックスの成形法。
7. The graphite-dispersed ceramics according to claim 1, wherein the ceramic powder is made of at least one of inorganic compound and / or metal particles, short fibers and long fibers. Molding method.
【請求項8】 前記熱硬化性樹脂のプレポリマーは、ポ
リイミド樹脂、エポキシ樹脂、尿素樹脂、メラミン樹
脂、フェノール樹脂、不飽和ポリエステル樹脂、アルキ
ド樹脂、ウレタン樹脂、ユリア樹脂、ジアリルフタレー
ト樹脂の少なくとも一種から成ることを特徴とする請求
項1〜6のいずれか1項記載のグラファイト分散セラミ
ックスの成形法。
8. The prepolymer of the thermosetting resin is at least one of polyimide resin, epoxy resin, urea resin, melamine resin, phenol resin, unsaturated polyester resin, alkyd resin, urethane resin, urea resin and diallyl phthalate resin. The method for forming a graphite-dispersed ceramic according to any one of claims 1 to 6, comprising:
【請求項9】 前記熱硬化性樹脂のプレポリマーは、ポ
リイミド樹脂、エポキシ樹脂、尿素樹脂、メラミン樹
脂、フェノール樹脂、不飽和ポリエステル樹脂、アルキ
ド樹脂、ウレタン樹脂、ユリア樹脂、ジアリルフタレー
ト樹脂の少なくとも一種と硬化剤から成ることを特徴と
する請求項1〜6のいずれか1項記載のグラファイト分
散セラミックスの成形法。
9. The prepolymer of the thermosetting resin is at least one of polyimide resin, epoxy resin, urea resin, melamine resin, phenol resin, unsaturated polyester resin, alkyd resin, urethane resin, urea resin, diallyl phthalate resin. 7. The method for forming a graphite-dispersed ceramics according to claim 1, which comprises:
JP3145220A 1991-05-22 1991-05-22 Method for producing graphite dispersed ceramic molded body Expired - Lifetime JP3051897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3145220A JP3051897B2 (en) 1991-05-22 1991-05-22 Method for producing graphite dispersed ceramic molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3145220A JP3051897B2 (en) 1991-05-22 1991-05-22 Method for producing graphite dispersed ceramic molded body

Publications (2)

Publication Number Publication Date
JPH0597527A true JPH0597527A (en) 1993-04-20
JP3051897B2 JP3051897B2 (en) 2000-06-12

Family

ID=15380140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3145220A Expired - Lifetime JP3051897B2 (en) 1991-05-22 1991-05-22 Method for producing graphite dispersed ceramic molded body

Country Status (1)

Country Link
JP (1) JP3051897B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043922A (en) * 2006-08-21 2008-02-28 Denso Corp Manufacturing method of base material for exhaust gas cleaning filter
JP2009216671A (en) * 2008-03-12 2009-09-24 Toyama Prefecture Nondestructive inspection method of die and its device
JP2021154751A (en) * 2020-02-17 2021-10-07 湖北工業株式会社 Manufacturing method of molded body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043922A (en) * 2006-08-21 2008-02-28 Denso Corp Manufacturing method of base material for exhaust gas cleaning filter
JP2009216671A (en) * 2008-03-12 2009-09-24 Toyama Prefecture Nondestructive inspection method of die and its device
JP2021154751A (en) * 2020-02-17 2021-10-07 湖北工業株式会社 Manufacturing method of molded body

Also Published As

Publication number Publication date
JP3051897B2 (en) 2000-06-12

Similar Documents

Publication Publication Date Title
US20210283801A1 (en) In situ synthesis, densification and shaping of non-oxide ceramics by vacuum additive manufacturing technologies
JPH0264063A (en) Production of bonding type silicon carbide molded article
KR100721278B1 (en) Ceramic component containing inclusions and a method for forming the same
JPH0597527A (en) Molding of graphite-dispersing ceramics
US4572828A (en) Method for producing silicon nitride sintered body of complex shape
EP0560258B1 (en) Reaction injection molding of silicon nitride ceramics having crystallized grain boundary phases
JPH05505588A (en) Improved method for producing large cross-section injection molded or slip cast ceramic bodies
JPH05503683A (en) Method for producing large cross-section injection molded or slip cast ceramic bodies
JPS593955B2 (en) Method for manufacturing high-strength, heat-resistant silicon compound fired moldings
RU2781232C1 (en) Ceramic suspension for 3d printing and a method for producing complex-profile silicon carbide products based on reaction-bonded silicon carbide using 3d printing
KR20030013542A (en) Method for Manufacturing Homogeneous Green Bodies from the Powders of Multimodal Particle Size Distribution Using Centrifugal Casting
JP4018488B2 (en) INORGANIC POROUS BODY AND INORGANIC OBJECT USING THE SAME AND PUMP IMPELLER, CASING OR LINER RING
JPS62113765A (en) Manufacture of silicon carbide formed body
JPH07113103A (en) Production of gas permeable compact
KR101545813B1 (en) Manufacturing method of SiC Tube and Crucible using Si impregnation
JPH04280870A (en) Lightweight highly rigid ceramic and its production thereof
JPH06287055A (en) Production of sintered article of ceramic
JPH06279125A (en) Production of silicon nitride-based composite
JPS6339402B2 (en)
JPS643829B2 (en)
JPH0776134B2 (en) Adhesive for silicon carbide based compact and method for producing silicon carbide based sintered body
Ikegami et al. The low pressure injection moulding of stainless steel powder
JPS6131340A (en) Manufacture of ceramic sintered body
JPH04238866A (en) Production of tube of sintered material of silicon carbide
JPH05148007A (en) Production of ceramic product