JPH03274726A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03274726A
JPH03274726A JP2074639A JP7463990A JPH03274726A JP H03274726 A JPH03274726 A JP H03274726A JP 2074639 A JP2074639 A JP 2074639A JP 7463990 A JP7463990 A JP 7463990A JP H03274726 A JPH03274726 A JP H03274726A
Authority
JP
Japan
Prior art keywords
film
interlayer insulating
diffusion region
layer
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2074639A
Other languages
Japanese (ja)
Other versions
JP2547882B2 (en
Inventor
Hiroshi Fujii
拓 藤井
Narakazu Shimomura
奈良和 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2074639A priority Critical patent/JP2547882B2/en
Priority to DE69030433T priority patent/DE69030433T2/en
Priority to EP90314415A priority patent/EP0439965B1/en
Priority to KR1019900022098A priority patent/KR960002078B1/en
Priority to US07/725,326 priority patent/US5118640A/en
Priority to US07/728,024 priority patent/US5100828A/en
Publication of JPH03274726A publication Critical patent/JPH03274726A/en
Priority to TW079110800A01A priority patent/TW218933B/zh
Application granted granted Critical
Publication of JP2547882B2 publication Critical patent/JP2547882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To form a hole for reliably connecting with a diffusion region and to ensure high yield even if alignment accuracy of a patter during projection exposure is low by forming a high step in a first connection hole, which reaches one diffusion region using a conducting film formed simultaneously with a conductive buried film as a dammy and by forming a conductive film and a conducting buried film in a contact part. CONSTITUTION:After a word line 3 is formed, a poly-Si patterns 8, 28 are formed on a first layer insulating film 27, and after a second insulating layer 9 is deposited thereon, the layer insulating films 27, 9 in a formation place of connection hole for connecting a region which becomes a capacitor electrode to one diffusion layer of a substrate, and a conductive film 8 or a dammy of poly-Si patterns are etched and removed, a memory capacitor is formed. Thereby, an electrode area of the capacitor electrode increases. Since first and second connection holes 40, 42 are formed on each of one and the other diffusion layer by providing the poly-Si patterns 8, 28, an alignment margin of formation of contact holes 40, 42 in a capacitor electrode contact part and a bit-line contact part can be increased.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は半導体装置の製造方法に関し、特に配線幅08
μm以下の高集積半導体装置を高歩留まりて生産する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial application field The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device with a wiring width of 08
The present invention relates to a method for producing highly integrated semiconductor devices of micrometers or less with high yield.

(ロ)従来の技術 半導体基板の要部構成説明図を用いて従来技術及びその
問題点を説明する。
(b) Prior Art The prior art and its problems will be explained using diagrams illustrating the configuration of main parts of a semiconductor substrate.

従来技術においては第3図(a)、 (b)に示すよう
に、拡散によって形成した第1下層配線(拡散層)32
を有する半導体基板31に第2下層配線33を形成した
後、5iOz等の層間絶縁膜34を堆積し、その後フォ
トリソグラフィ、エツチング等の処理を施すことにより
接続穴34aか開口されろ。この接続穴34 aを彼っ
て上層配線35か形成さ乙、上層・下層間の配線か電気
的に接続されろ。
In the conventional technology, as shown in FIGS. 3(a) and 3(b), a first lower layer wiring (diffusion layer) 32 formed by diffusion is used.
After forming the second lower layer wiring 33 on the semiconductor substrate 31 having the same structure, an interlayer insulating film 34 of 5iOz or the like is deposited, and then a connection hole 34a is opened by performing treatments such as photolithography and etching. The upper layer wiring 35 is formed through this connection hole 34a, and the wiring between the upper layer and the lower layer is electrically connected.

ここで特に上記上層配線35がA1のようは金属材料η
\らGす、第1下層配線32が基板31に形成しfコ拡
散層からなる場合、接続穴34aが第1下層配線32で
ある拡散層に対して位置ず乙を起こした場合には、第4
図に示すように図示Qの矢印か示す部分において金属配
線35が基板31と短絡する可能性がある。しかしこの
ような短絡は、第5図に示すように、第1下層配線32
との接続の几めに接続穴部分に露出さ乙る基板表面を、
高濃度に不純物をドーピングした多結晶Si膜36て被
い、金属配線35と基板31との間に多結晶Sil[i
36を挟むことにより防止することがてきる。すなわち
接続穴34aに露出する拡散領域の端を高濃度に不純物
ドーピングした多結晶Si膜36で覆うことにより、基
板31と金属配線35間の短絡を阻止している。これは
多結晶Si膜36から高a¥にドーピングさ乙rこ不純
物が基板側に拡散するため、多結晶Si膜36は拡散領
域の端に堆積しても短絡は生こな(iことに起因する。
In particular, if the upper layer wiring 35 is made of metal η, such as A1,
When the first lower layer wiring 32 is formed on the substrate 31 and is made of an fco diffusion layer, if the connection hole 34a is not positioned with respect to the diffusion layer which is the first lower layer wiring 32, Fourth
As shown in the figure, there is a possibility that the metal wiring 35 is short-circuited with the substrate 31 at the portion indicated by the arrow Q in the figure. However, as shown in FIG.
In order to make connections with
A polycrystalline Si film 36 doped with impurities at a high concentration is coated, and a polycrystalline Si film 36 is formed between the metal wiring 35 and the substrate 31.
This can be prevented by sandwiching 36. That is, short circuits between the substrate 31 and the metal wiring 35 are prevented by covering the ends of the diffusion regions exposed in the connection holes 34a with a polycrystalline Si film 36 doped with impurities at a high concentration. This is because the highly doped impurities from the polycrystalline Si film 36 diffuse toward the substrate, so even if the polycrystalline Si film 36 is deposited at the edge of the diffusion region, short circuits will not occur. to cause.

(ハ)発明か解決しようとする課題 上述のような多結晶Si膜36て接続穴34aを覆う方
法には大きく2つの問題点がある。
(c) Problems to be Solved by the Invention The method of covering the connection hole 34a with the polycrystalline Si film 36 as described above has two major problems.

l)接続穴間の距離を縮小てきない。l) The distance between connection holes cannot be reduced.

例えば、接続穴部分において基板3Iを覆う役割を果r
二している多結晶Si@36をエツチングにより加工す
る場合を考える。多結晶S1膜36の加工後の形状を規
定するフォトレジストが、所定の位置からず把たために
基板の一部が露出した場合に、この状態で多結晶Si膜
36のエツチングを行うと、基板もシリコンであるため
に第6図の図示Rの矢印が示す部分に示すように露出部
分がエツチングされてしまう。このような基板のエツチ
ングは接合リーク等の不良原因になる。このため多結晶
Si膜36の接続穴34a上における端は必ず基板上の
露出した領域から一定距離d(0゜1μmから03μm
)  [第9図参照]離れたところに位置しなけ乙ばな
与ない。
For example, it plays the role of covering the board 3I at the connection hole part.
Consider the case where polycrystalline Si@36 is processed by etching. If the photoresist that defines the shape of the polycrystalline S1 film 36 after processing is not in the predetermined position and a part of the substrate is exposed, etching the polycrystalline Si film 36 in this state will cause the substrate to be etched. Since it is also made of silicon, the exposed portion is etched as shown by the arrow R in FIG. Such etching of the substrate causes defects such as junction leakage. Therefore, the end of the polycrystalline Si film 36 above the connection hole 34a must be at a certain distance d (from 0°1 μm to 03 μm) from the exposed area on the substrate.
) [Refer to Figure 9] If it is not located far away, it will not be affected.

一方、多結晶SLドパターフ間距離:よ投影露光機の解
像度で下限かきまる。従って接続穴間の最小距離は、投
影露光機の解像度(0,6μm程度)に加えて上記距離
dのほぼ2@C0,2μmから0.6μm)の距離にな
る。いいかえれば、接続穴34a、34c間の距離L;
第第9参参照コ投影露光機の解像度(0,6μm程度)
まで近接さ廿ることは不可能である。
On the other hand, the lower limit of the distance between polycrystalline SL dot patterns is determined by the resolution of the projection exposure machine. Therefore, the minimum distance between the connection holes is approximately 2@C0.2 .mu.m to 0.6 .mu.m of the distance d in addition to the resolution of the projection exposure machine (approximately 0.6 .mu.m). In other words, the distance L between the connection holes 34a and 34c;
See No. 9 Resolution of projection exposure machine (approximately 0.6 μm)
It is impossible to get that close.

2)接続穴の自己整合的形成が困難である。2) It is difficult to form connection holes in a self-aligned manner.

第7図に示すように第2下層配線33上に層間絶縁膜3
4bを堆積し、接続穴が形成されるべき箇所を層間絶縁
膜34bの膜厚に相当する厚さに及んでエツチングする
ことにより、第2下層配線33に対して自己整合的に基
板表面に接続穴が形成される。
As shown in FIG.
4b and etching the portion where the connection hole is to be formed to a thickness corresponding to the thickness of the interlayer insulating film 34b, thereby connecting to the substrate surface in a self-aligned manner with respect to the second lower layer wiring 33. A hole is formed.

しかしながら基板31と接続すべき上層配線層35が複
数層存在する場合、基板31上に層間絶縁膜34b、3
4cと多結晶Si膜とを第8図に示すように複数回堆積
しなければならず、このように複数層を堆積した場合、
下層配線上の層間絶縁膜の@犀より接続穴上の層間絶縁
膜の膜厚か犬となり、特に接続穴上のスペースか絶縁膜
て埋まり込み、自己整合的に接続穴を形成することが不
可能になる。
However, if there are multiple upper wiring layers 35 to be connected to the substrate 31, the interlayer insulating films 34b, 3
4c and the polycrystalline Si film must be deposited multiple times as shown in FIG. 8, and when multiple layers are deposited in this way,
The thickness of the interlayer insulating film above the connection hole will be larger than that of the interlayer insulating film on the lower layer wiring, and the space above the connection hole will be filled with the insulating film, making it impossible to form the connection hole in a self-aligned manner. It becomes possible.

本発明は上記のような問題点に鑑みてなされたしので、
半導体基板の拡散領域との接続を確実になすことができ
る接続穴を形成することかできるとともに、投影露光時
のパターンの重ね合わせ精度が低くても高歩留まりの半
導体装置の製造方法を提供するものである。
The present invention was made in view of the above-mentioned problems, and therefore,
To provide a method for manufacturing a semiconductor device that can form a connection hole that can reliably connect to a diffusion region of a semiconductor substrate, and that can also have a high yield even if the overlay accuracy of patterns during projection exposure is low. It is.

に)課題を解決するための手段及び作用この発明は、サ
イドウオールを備えたゲート部およびゲート部間の拡散
領域からなる下層配線を有する半導体基板上に堆積して
形成された複数の上層配線を、一方の拡散領域に接続す
るための第1接続穴と、上記上層配線を他方の拡散領域
に導電性埋込膜を介して接続するための第2接続穴とを
形成するに際して、(i)ゲート部を含む半導体基板上
に、全面に第1の層間絶縁層およびレジスト層を順次積
層し、所定−くターンのレジスト膜を形成した後、(i
1)そのしンスト膜をマスクにして他方の拡散領域上の
第1の層膜絶縁層のみを(生方の拡散領域の表面が少な
くとも一部露出するまで除去し、続いてレジスト膜を除
去した後、残存した第1Fi間絶縁膜を含む半導体基板
上に、全面に、第1層間絶縁膜よりエツチング速度の遅
い材料の導電層を積層し、所定パターンのレジスト膜を
形成した後、(iii)そのレジスト膜をマスクにして
導電層をエツチングし、一方の拡散領域上には、第1層
間絶縁膜を介して導電膜を残存させるとともに、他方の
拡散領域上には、その拡散領域と電気的に接続する導電
性埋込膜を残存させ、(iv)上記導電膜および導電性
埋込膜を含む第1層間絶縁膜上に、全面に第2の層間絶
縁層およびレジスト層を順次積層し、所定パターンのレ
ジスト膜を形成した後、(v)そのレジスト膜をマスク
にして一方の拡散領域上の第2の層間絶縁層、導電膜を
順次エツチングするとともに、さらに導電膜直下の第1
層間絶縁膜を一方の拡散領域の表面が少なくとら一部露
出するまで除去し、それによって第1接続穴を形成し、
(\1)少Cくとら他方の拡散領域を除く半導体基板上
に、第1上層配線部を形成し、第1!4j続穴を第1上
層配線部分て埋設し、011)さらに、第1上層配線部
を含む半導体基板上に、全面に、第3の層間絶縁層およ
び平坦化のための第4の層間絶縁層を順次積層した後、
導電性埋込膜上の第2層間絶縁膜および第3.第4の各
層間絶縁層を除去して第2接続穴を形成し、(vii)
その第2接続穴を含む第4層間絶縁膜上に、全面に所定
パターンの第2上層配線部を形成することを特徴とする
半導体装置の製造方法である。
B.) Means and Effects for Solving the Problems The present invention provides a method for forming a plurality of upper layer interconnects deposited on a semiconductor substrate having a lower layer interconnect consisting of a gate portion provided with a sidewall and a diffusion region between the gate portions. , when forming a first connection hole for connecting to one diffusion region and a second connection hole for connecting the above-mentioned upper layer wiring to the other diffusion region via a conductive buried film, (i) After sequentially laminating a first interlayer insulating layer and a resist layer over the entire surface of the semiconductor substrate including the gate portion, and forming a resist film with a predetermined number of turns, (i
1) Using the resist film as a mask, only the first insulating layer on the other diffusion region was removed until at least a portion of the surface of the other diffusion region was exposed, and then the resist film was removed. After that, a conductive layer made of a material whose etching rate is slower than that of the first interlayer insulating film is laminated on the entire surface of the semiconductor substrate including the remaining first interlayer insulating film, and a resist film in a predetermined pattern is formed, (iii) The conductive layer is etched using the resist film as a mask, leaving the conductive film on one diffusion region via the first interlayer insulating film, and electrically connecting the conductive layer on the other diffusion region. (iv) sequentially stacking a second interlayer insulating layer and a resist layer over the entire surface of the first interlayer insulating film including the conductive film and the conductive embedded film; After forming a resist film with a predetermined pattern, (v) using the resist film as a mask, the second interlayer insulating layer and the conductive film on one diffusion region are sequentially etched, and the first interlayer insulating layer immediately below the conductive film is etched.
removing the interlayer insulating film until at least a portion of the surface of one diffusion region is exposed, thereby forming a first connection hole;
(\1) Form a first upper layer wiring part on the semiconductor substrate excluding the other diffusion region with a low C, and bury the first upper layer wiring part in the first!4j connection hole,011) Furthermore, After sequentially laminating a third interlayer insulating layer and a fourth interlayer insulating layer for planarization over the entire surface of the semiconductor substrate including the upper wiring part,
a second interlayer insulating film on the conductive buried film and a third interlayer insulating film on the conductive buried film; removing each fourth interlayer insulating layer to form a second connection hole; (vii)
This method of manufacturing a semiconductor device is characterized in that a second upper layer wiring portion having a predetermined pattern is formed over the entire surface of the fourth interlayer insulating film including the second connection hole.

すなわち、この発明は、サイドウオールを備えたゲート
部およびゲート部間の拡散領域からなる下層配線を有す
る半導体基板上に堆積して形成された複数の上層配線を
、一方の拡散領域に接続するための第1接続穴と、上記
上層配線を他方の拡散領域に導電性埋込膜を介して接続
するための第2接続穴とを形成するに際して、第1接続
穴に、導電性埋込膜と同時に形成さたろ導′li膜をダ
ミーとして用いることによって一方の拡散領域にまで至
る高段差を形成し、第1上層配線部分の面積の増大を図
るようにしたらのである。まに、第1接続穴並びに第2
陸続穴を形成する際に、コンタクト部にそ乙ぞれ導電膜
および導電性埋込膜を形成し、そ乙によって位置合わせ
余裕を増大てきるようにすることか与、投影露光時のパ
ターンの重ね合わせ精度か低くてら良いため生産時に高
歩留まりを期待できる。
That is, the present invention provides a method for connecting a plurality of upper layer wirings deposited on a semiconductor substrate having a lower layer wiring consisting of a gate portion with a sidewall and a diffusion region between the gate portions to one diffusion region. When forming a first connection hole and a second connection hole for connecting the above-mentioned upper layer wiring to the other diffusion region via a conductive buried film, a conductive buried film and a conductive buried film are formed in the first connection hole. By using a thin conductive Li film formed at the same time as a dummy, a high step extending to one of the diffusion regions is formed, thereby increasing the area of the first upper layer wiring portion. The first connection hole and the second
When forming the connecting hole, a conductive film and a conductive buried film are formed on each contact part, so that the positioning margin can be increased depending on the contact part, and the pattern during projection exposure can be improved. High yield can be expected during production because the overlay accuracy is low.

二の発明における第1接続穴は、例えば、第1図(d)
に示すように、第1接続穴形戊領域Rを投影露光で形成
したレジストパターン30をマスクにRIEの異方性エ
ツチングにより、第2の層間絶縁層9、導電膜8および
第1層間絶縁膜27を順次エツチングすることによって
形成される。この接続穴は、第1図(e)に示ように、
底面が一方の拡散領域表面との界面1aを構成し、上方
開口lbが第2層間絶縁膜29における上方に突出した
鍔部分をそれぞれ構成してたるむのであるから、上方開
口1bと底面1aの高さHを有する高段差が形成されて
いるに第1図(e)参照、第2図参照二。
The first connection hole in the second invention is, for example, as shown in FIG. 1(d).
As shown in FIG. 3, the second interlayer insulating layer 9, the conductive film 8, and the first interlayer insulating film are etched by RIE anisotropic etching using the resist pattern 30 formed by projection exposure in the first connection hole-shaped open region R as a mask. It is formed by sequentially etching 27. This connection hole, as shown in Figure 1(e),
The bottom surface constitutes the interface 1a with the surface of one diffusion region, and the upper opening lb constitutes the upwardly protruding flange portion of the second interlayer insulating film 29 and sag. Therefore, the height of the upper opening 1b and the bottom surface 1a is A high level difference having a height H is formed as shown in FIG. 1(e) and FIG. 2.

しから、ダミーとして作用する導電膜8:第1図(cX
d)参照]は接続穴40が形成された際に:よ除去さ乙
ており、その分だけ深さ方向に配線面積を増大できる。
Therefore, the conductive film 8 acting as a dummy: FIG.
d)] are removed when the connection hole 40 is formed, and the wiring area can be increased by that amount in the depth direction.

従って、第1接続穴の内面に沿って配設された第1上層
配′S部分は、その配線部分の面積が増太さ乙得る。す
なわち、第1上層配線部と一方の拡散領域とのコンタク
ト部の段差を高いものに形成することによって、第1上
層配線部面積を増大できる。
Therefore, the area of the wiring portion of the first upper layer wiring portion disposed along the inner surface of the first connection hole is increased. That is, by forming the contact portion between the first upper layer wiring portion and one of the diffusion regions to have a high step, the area of the first upper layer wiring portion can be increased.

この発明における導電層としは、RIE等の異方性エツ
チングで除去さC5る際、5iOzl[よりエツチング
速度が遅いものが好ましく、多結晶ンリコンが最も好ま
しいものとして挙げられる。また、WSi等のシリサイ
ド膜とpolysi膜との積層膜も好ましい。
The conductive layer in this invention is preferably one whose etching rate is slower than 5iOzl when removed by anisotropic etching such as RIE, and polycrystalline silicon is the most preferable. Further, a laminated film of a silicide film such as WSi and a polysi film is also preferable.

そして、導電層は、例えば、投影露光により形成しtニ
フォトレジストパターンでRIEの異方性エツチング法
でエツチングさ乙、導電膜並グに導電性埋込膜か形成さ
れろ。
Then, the conductive layer is formed by, for example, projection exposure and etched using an anisotropic RIE etching method using a photoresist pattern to form a conductive buried film on the conductive film.

すなわち、第2上層配線部のコンタクト部には、第2接
続穴形収時の重ね合わせ余裕を増加する導電性埋込膜の
パッドが形成さ乙る。さらに、第1上層配線部分のコン
タクト部にし、第1接続穴形戊時の重ね合わせ余裕を増
加する導電膜が形成さ乙る。しかもこの導電膜はダミー
として作用し、第1接続穴が形成さ乙た際には、除去す
るようにしf二ことかこの発明の最大の特徴である。従
って、その除去分だけ第1上層配線部分、引いては第1
上層配′a部の配線面積を増大できる。
That is, a conductive buried film pad is formed in the contact portion of the second upper layer wiring portion to increase the overlapping margin when the second connection hole is formed. Furthermore, a conductive film is formed on the contact portion of the first upper layer wiring portion to increase the overlapping margin when forming the first connection hole. Moreover, this conductive film acts as a dummy and is removed when the first connection hole is formed. This is the most important feature of the present invention. Therefore, the first upper layer wiring portion is removed by that amount, and the first upper layer wiring portion is removed by the amount removed.
The wiring area of the upper layer wiring section a can be increased.

この発明における第1〜第4の層間絶縁層としては、5
1ftやSiNなどの材料のものか好ましいものとして
挙げられる。
The first to fourth interlayer insulating layers in this invention include 5
Preferred examples include materials such as 1ft and SiN.

(ホ)実施例 以下図に示す実施例に基づいてこの発明を詳述する。は
お、これによってこの発明は限定を受けるものではない
(e) Examples The present invention will be described in detail below based on examples shown in the drawings. However, this invention is not limited by this.

第1図(g)において、DRAM(MOSトランジスタ
)は、車さ0.4μm程度のSiO2の熱酸化膜2て素
子分離されr:、Si基板iと、その基板上に厚さ10
0玉程度のケート酸化膜3を介して、高濃度にPを拡散
して厚さ3000大程度の多結晶Si膜〔第2下層配線
としてのワード線であるゲート配線)4と、このゲート
配線の上面及び側面部にCVOWてS10.を堆積後、
RTEの異方性エツチングて形成さ乙たSi○、のスペ
ーサ5及び6と、このゲート配線4上にCVD法により
厚さ口2μm程度に形成された第1層間絶縁膜としての
S○、膜27と、上方開口1bから底面まての長さHが
1.2μIT程度の高段差を有して一方の拡散領域上に
形成された第1接続穴40と、他方の拡散領域上に厚さ
05μm程度の多結晶Si膜28を介して形成されγこ
ビット線接続穴としての第2接続穴42と、他方の拡散
領域を除く領域で、Si基板上にCVD法で厚さ0.1
μm程度で堆積されたSi O*())’l−21l−
縁1[29オヨヒ第1接続穴40を介して配設された第
1上層配線部41と、第1上層配線部上および他方の拡
散領域上における第1層間絶縁@29上に順次積層され
たそれぞれCVD法で厚さ0.1μm程度で堆積さ乙r
こ5iftの第311間絶禄@13およびCVD法で厚
さ0、3μm3μm程積さ乙f二平坦化のf二めの第1
層間絶縁膜I4と、上層に厚さ0,3μmaKのWSi
膜を堆積した後投影露光およびRIEの異方性エツチン
グにより形成された第2上層配線部としてのピット線t
5とから主としてなる。
In FIG. 1(g), a DRAM (MOS transistor) is separated by a SiO2 thermal oxide film 2 with a diameter of about 0.4 μm, and a Si substrate i with a thickness of 10 μm on the substrate.
A polycrystalline Si film (a gate wiring which is a word line as a second lower layer wiring) 4 with a thickness of about 3000 nm is formed by diffusing P at a high concentration through a gate oxide film 3 of about 0.0 nm, and this gate wiring. CVOW on the top and side surfaces of S10. After depositing
Si◯ spacers 5 and 6 formed by RTE anisotropic etching, and S◯◯ film as a first interlayer insulating film formed on this gate wiring 4 to a thickness of about 2 μm by CVD method. 27, a first connection hole 40 formed on one diffusion region with a high step difference in length H from the upper opening 1b to the bottom surface of about 1.2 μIT, and a first connection hole 40 formed on one diffusion region with a height difference of about 1.2μIT from the upper opening 1b to the bottom surface, and a A polycrystalline Si film 28 of approximately 0.05 μm in thickness is formed on the Si substrate to a thickness of 0.1 μm using the CVD method in the region excluding the second connection hole 42 as a gamma bit line connection hole and the other diffusion region.
SiO*())'l-21l- deposited on the order of μm
Edge 1 [29] The first upper layer wiring section 41 provided through the first connection hole 40 and the first interlayer insulation @ 29 on the first upper layer wiring section and on the other diffusion region were laminated in sequence. Each layer was deposited to a thickness of approximately 0.1 μm using the CVD method.
The 311th layer of this 5ift was deposited using the CVD method to a thickness of about 0.3μm and the second flattening layer.
Interlayer insulating film I4 and upper layer WSi with a thickness of 0.3 μmaK
A pit line t as a second upper layer wiring portion is formed by projection exposure and anisotropic etching of RIE after depositing a film.
5 and becomes the main character.

更に、第1上層配線部41は、下層に配設された、厚ざ
500A程度で高濃度にPをドーピングしr二多結晶S
i膜をCVD法で堆積し、かつ投影露光とRIEの異方
性エツチングでバターニングされてなるキャパシタ下部
電極lOと、厚さ80入程度のSiN膜のキャパシタ絶
縁膜11を介して上層に配設され、厚さ1500A程度
で高濃度にPをドーピングした多結晶Si膜を堆積した
後投影露光とRIEの異方性エツチングにより形成され
たキャパシタ上1ffi1[極12とからなる。
Furthermore, the first upper layer wiring section 41 is made of a polycrystalline S layer doped with P at a high concentration and having a thickness of about 500 A, which is disposed in the lower layer.
A capacitor lower electrode 10 is formed by depositing an i film by CVD and patterned by projection exposure and anisotropic etching by RIE, and a capacitor insulating film 11 made of an SiN film with a thickness of about 80 cm is interposed between the capacitor lower electrode 10 and the upper layer. A polycrystalline Si film doped with P at a high concentration to a thickness of about 1500 Å was deposited, and then formed by projection exposure and anisotropic etching using RIE.

次に製造方法について説明する。Next, the manufacturing method will be explained.

(i)まず、S i Otの上面部5,5iOtの側面
部(サイドウオール)6をそ乙ぞ乙有するゲート1[極
3を含むSi基板l上に、全面に第1の層間絶縁層とし
てasi○3層7およ5〈レジスト層(図示せず)を順
次積層し7第1図(a)参照]、所定パターンのレジス
ト膜を形成し+7後、(i1)そのレジスト膜をマスク
にしてRIEの異方性エツチングて他方の拡散領域に上
の第1層間絶縁層7のみを他方の拡散領域の表面1bが
少なくとも一部露出するまで除去し、続いてレジスト膜
を除去した後、残存した第1層間絶縁膜27を含むSi
基板l上に、全面に、第1層間絶縁膜27よりエツチン
グ速度の遅い材料の導電層としての多結晶Si層(図示
せず)およびレジスト層(図示せず)を順次積層し、所
定パターンのレジスト膜を形成した後、 (iii )そのレジスト膜をマスクにして導電層をエ
ツチングし、一方の拡散領域R上には、第1層間絶縁膜
27を介して導電膜8を残存させるとともに、他方の拡
散領域に上には、その拡散領域と電気的に接続する導電
性埋込膜28を残存させ[第1図(b)参照コ、 (iv)上記導電膜8および導電性埋込膜28を含乙・
第1層間絶縁膜27上に、全面に第2の層間絶縁層9お
よびレジスト層(図示せず)を順次積層し7第1図(c
)参照二、所定パターンのレジスト膜50を形成しIこ
後三筒1図(d)参、照]、(v)そのレジスト膜50
をマスクにして一方の拡散領域R上の第2の層間絶縁層
9、導電膜8を順次エツチングするととらに、さらに導
電膜8直下の第1層間絶縁膜27を一方の拡散領域Rの
表面の第1層間絶縁膜27との界面la上に一部露出す
るまで除去し、そ杷によって第1接続穴40および第2
層間絶縁膜29を形成し[第1図(e)参照]、 (vi)次に、少なくとも他方の拡散領域Kを除くSi
基板l上に、第1上層配線部41を形威し、第1接続穴
40を第1上層配線部分41aで埋設し[第1図(i’
)参照]、 (vi)さらに、第1上層配線部41を含むSi基板l
上に、全面に、第3の層間絶縁層13および平坦化のた
めの第4の層間絶縁層14を順次積層した後、導電性埋
込膜28上の第3.第4の各層間絶縁層13.+4を除
去して第2接続穴(ビット線接続穴)42を形威し、 (vii)その第2接続穴を含む第4層間絶縁膜14上
に、全面に所定5<ターンの第2上層配線部としてのヒ
ツト線15を形成する[第1図(g)参照]。
(i) First, a first interlayer insulating layer is formed on the entire surface of the Si substrate 1 including the gate 1 [pole 3] having the upper surface 5 of the SiOt and the side wall 6 of the 5iOt. asi○3 layers 7 and 5 (sequentially stacking resist layers (not shown) 7 see Figure 1 (a)), forming a resist film in a predetermined pattern +7, (i1) using the resist film as a mask. Then, only the first interlayer insulating layer 7 on the other diffusion region is removed by RIE anisotropic etching until at least a portion of the surface 1b of the other diffusion region is exposed, and then the resist film is removed. Si including the first interlayer insulating film 27
A polycrystalline Si layer (not shown) as a conductive layer made of a material whose etching rate is slower than that of the first interlayer insulating film 27 and a resist layer (not shown) are sequentially laminated on the entire surface of the substrate l, and a predetermined pattern is formed. After forming the resist film, (iii) the conductive layer is etched using the resist film as a mask, leaving the conductive film 8 on one diffusion region R via the first interlayer insulating film 27, and on the other. A conductive buried film 28 electrically connected to the diffusion region remains above the diffusion region [see FIG. 1(b), (iv) the conductive film 8 and the conductive buried film 28]. Including
A second interlayer insulating layer 9 and a resist layer (not shown) are sequentially laminated on the entire surface of the first interlayer insulating film 27.
2) After forming a resist film 50 with a predetermined pattern, the resist film 50 is formed.
Using as a mask, the second interlayer insulating layer 9 and the conductive film 8 on one diffusion region R are sequentially etched, and the first interlayer insulating film 27 directly under the conductive film 8 is etched on the surface of one diffusion region R. It is removed until a part of the interface la with the first interlayer insulating film 27 is exposed.
An interlayer insulating film 29 is formed [see FIG. 1(e)], and (vi) next, a Si layer is formed excluding at least the other diffusion region K.
A first upper layer wiring portion 41 is formed on the substrate l, and a first connection hole 40 is buried with a first upper layer wiring portion 41a [see FIG.
)], (vi) Furthermore, the Si substrate l including the first upper layer wiring section 41
After sequentially laminating a third interlayer insulating layer 13 and a fourth interlayer insulating layer 14 for planarization on the entire surface, a third interlayer insulating layer 13 and a fourth interlayer insulating layer 14 for planarization are deposited on the conductive buried film . Fourth interlayer insulating layer 13. +4 is removed to form a second connection hole (bit line connection hole) 42, and (vii) a second upper layer with a predetermined 5< turn is formed over the entire surface of the fourth interlayer insulating film 14 including the second connection hole. A human wire 15 as a wiring part is formed [see FIG. 1(g)].

このようにして、MOSトランジスタが形威される。In this way, a MOS transistor is formed.

本実施例では、ワード線3の形成後、第1層間絶縁膜2
7上にpolySiパターン8.28を形威し、その上
にさらに第2の層間絶縁層9を堆積後、キャパシタ電極
となる領域と基板の一方の拡散層との接続穴形成場所の
層間絶縁膜27,9及びpO1ySiパターンのうちダ
ミーの導電膜8をエツチングにより除去したのち、メモ
リーキャパシタを形成するようにしたので、キャパシタ
電極の電極面積が増大する。キャパシタ電極面積が増大
すると、同一の書き込み電圧で蓄積される電荷量が増大
し、α線入射で発生するソフトエラーにたいする信頼性
が向上する。
In this embodiment, after the word line 3 is formed, the first interlayer insulating film 2 is
A polySi pattern 8.28 is formed on the polySi pattern 8.28, and a second interlayer insulating layer 9 is further deposited on top of the polySi pattern 8. Since the memory capacitor is formed after the dummy conductive film 8 of the 27, 9 and pO1ySi patterns is removed by etching, the electrode area of the capacitor electrode increases. When the capacitor electrode area increases, the amount of charge stored at the same write voltage increases, and reliability against soft errors caused by incidence of α rays improves.

また、1)oly3iパターン8.28を設けることに
よって一方および他方のそ乙ぞれの拡散・層上に第1お
よび第2の接続穴40.42を形成するようにしたので
、キャパシタ電極コンタクト部およびヒツト線コンタク
ト部における各コンタクト穴40、42の形成の重ね合
わせ余裕を増加てきる。
In addition, 1) by providing the oly3i pattern 8.28, the first and second connection holes 40.42 are formed on the diffusion layer of one side and the other side, so that the capacitor electrode contact portion Also, the overlapping margin for forming each contact hole 40, 42 in the human line contact portion can be increased.

(へ)発明の効果 以上のように、本発明によ乙ぽ(i)投影露光時のパタ
ーンの重ね合わせ精度か低くてもよいfこめ生産時に高
歩留まりか期待てきる。また、(i1)キャパシタ電極
と拡散層どのコンタクト部の段差を利用してキャパシタ
電極面積を増大させることかできる。キャパシタ電極面
積を増大することにより、同一の書き込み電圧でも、得
られる蓄積電荷量を増大てき、ソフトエラー等にたいす
る信頼性を向上できる効果がある。
(f) Effects of the Invention As described above, the present invention can be expected to (i) provide high yield during production, even when the overlay accuracy of patterns during projection exposure may be low. Furthermore, (i1) the area of the capacitor electrode can be increased by utilizing the difference in level between the contact portion of the capacitor electrode and the diffusion layer. By increasing the area of the capacitor electrode, the amount of accumulated charge that can be obtained can be increased even with the same write voltage, which has the effect of improving reliability against soft errors and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を説明するための製造工程
説明図、第2図(a)および(b)はそれぞれ上記実施
例を説明するための要部構成説明図および要部の形状を
示す説明図、第3〜9図は従来例を説明するための構成
説明図である。 ・・・・・Si基板、2・・・・・・熱酸化膜、・・・
・ゲート酸化膜、4・・・・・・多結晶Si膜、6・・
・・・Sin、のスペーサ、 O・・・・・・キャパシタ下部電極、 l・・・・・キャパシタ絶縁膜、 2・・・・・・キャパシタ上部電極、 3・・・・・・5iOt膜(第3層間絶縁膜)、4・・
・・・・  〃  (第4  〃  )、5・・・・・
・ビット線 (第2上層配線部)、7・・・・・・5i
Oz@(第4層間絶縁膜)、9・・・・・・510g膜
(第2  〃  )、O・・・・・・第1接続穴、41
・・・・・・第1上層配線部、2・・・・・・ビット線
接続穴(第2接続穴)。 図 第3図 第5図 116図 第7図 jI8図
FIG. 1 is a manufacturing process explanatory diagram for explaining one embodiment of the present invention, and FIGS. 2(a) and (b) are diagrams for explaining the configuration of main parts and the shape of the main parts, respectively, for explaining the above embodiment. FIGS. 3 to 9 are configuration explanatory diagrams for explaining the conventional example. ...Si substrate, 2...thermal oxide film, ...
・Gate oxide film, 4... Polycrystalline Si film, 6...
...Sin spacer, O...capacitor lower electrode, l...capacitor insulating film, 2...capacitor upper electrode, 3...5iOt film ( 3rd interlayer insulating film), 4...
...〃 (4th〃), 5...
・Bit line (second upper layer wiring part), 7...5i
Oz@ (fourth interlayer insulating film), 9...510g film (second), O...first connection hole, 41
. . . 1st upper layer wiring section, 2 . . . Bit line connection hole (second connection hole). Figure 3 Figure 5 Figure 116 Figure 7 jI8 Figure

Claims (1)

【特許請求の範囲】 1、サイドウォールを備えたゲート部およびゲート部間
の拡散領域からなる下層配線を有する半導体基板上に堆
積して形成された複数の上層配線を、一方の拡散領域に
接続するための第1接続穴と、上記上層配線を他方の拡
散領域に導電性埋込膜を介して接続するための第2接続
穴とを形成するに際して、 (i)ゲート部を含む半導体基板上に、全面に第1の層
間絶縁層およびレジスト層を順次積層し、所定パターン
のレジスト膜を形成した後、 (ii)そのレジスト膜をマスクにして他方の拡散領域
上の第1の層膜絶縁層のみを他方の拡散領域の表面が少
なくとも一部露出するまで除去し、続いてレジスト膜を
除去した後、残存した第1層間絶縁膜を含む半導体基板
上に、全面に、第1層間絶縁膜よりエッチング速度の遅
い材料の導電層を積層し、所定パターンのレジスト膜を
形成した後、(iii)そのレジスト膜をマスクにして
導電層をエッチングし、一方の拡散領域上には、第1層
間絶縁膜を介して導電膜を残存させるとともに、他方の
拡散領域上には、その拡散領域と電気的に接続する導電
性埋込膜を残存させ、 (iv)上記導電膜および導電性埋込膜を含む第1層間
絶縁膜上に、全面に第2の層間絶縁層およびレジスト層
を順次積層し、所定パターンのレジスト膜を形成した後
、 (v)そのレジスト膜をマスクにして一方の拡散領域上
の第2の層間絶縁層、導電膜を順次エッチングするとと
もに、さらに導電膜直下の第1層間絶縁膜を一方の拡散
領域の表面が少なくとも一部露出するまで除去し、それ
によって第1接続穴を形成し、 (vi)少なくとも他方の拡散領域を除く半導体基板上
に、第1上層配線部を形成し、第1接続穴を第1上層配
線部分で埋設し、 (vii)さらに、第1上層配線部を含む半導体基板上
に、全面に、第3の層間絶縁層および平坦化のための第
4の層間絶縁層を順次積層した後、導電性埋込膜上の第
2層間絶縁膜および第3、第4の各層間絶縁層を除去し
て第2接続穴を形成し、(viii)その第2接続穴を
含む第4層間絶縁膜上に、全面に所定パターンの第2上
層配線部を形成することを特徴とする半導体装置の製造
方法。
[Claims] 1. A plurality of upper layer interconnects formed by depositing on a semiconductor substrate having a lower layer interconnect consisting of a gate portion with sidewalls and a diffusion region between the gate portions are connected to one diffusion region. When forming a first connection hole for connecting the upper wiring to the other diffusion region and a second connection hole for connecting the upper layer wiring to the other diffusion region via the conductive buried film, After sequentially laminating a first interlayer insulating layer and a resist layer on the entire surface to form a resist film in a predetermined pattern, (ii) using the resist film as a mask, deposit the first interlayer insulating layer on the other diffusion region. After removing only the layer until at least a portion of the surface of the other diffusion region is exposed, and then removing the resist film, a first interlayer insulating film is applied over the entire surface of the semiconductor substrate including the remaining first interlayer insulating film. After laminating a conductive layer made of a material with a slower etching rate and forming a resist film in a predetermined pattern, (iii) the conductive layer is etched using the resist film as a mask, and the first interlayer is etched on one diffusion region. A conductive film is left via the insulating film, and a conductive buried film electrically connected to the other diffusion region is left on the other diffusion region, (iv) the conductive film and the conductive buried film are left on the other diffusion region. After sequentially laminating a second interlayer insulating layer and a resist layer over the entire surface of the first interlayer insulating film, forming a resist film in a predetermined pattern, (v) using the resist film as a mask, one diffusion region is formed. The upper second interlayer insulating layer and the conductive film are sequentially etched, and the first interlayer insulating film immediately below the conductive film is removed until at least a portion of the surface of one diffusion region is exposed, thereby forming the first connection hole. (vi) forming a first upper layer wiring section on the semiconductor substrate excluding at least the other diffusion region, and filling the first connection hole with the first upper layer wiring section; (vii) further forming a first upper layer wiring section; After sequentially laminating a third interlayer insulating layer and a fourth interlayer insulating layer for planarization over the entire surface of the semiconductor substrate including the wiring portion, a second interlayer insulating film and a fourth interlayer insulating layer on the conductive buried film are laminated. 3. Remove each fourth interlayer insulating layer to form a second connection hole, and (viii) form a second upper layer wiring portion in a predetermined pattern over the entire surface of the fourth interlayer insulating film including the second connection hole. 1. A method of manufacturing a semiconductor device, characterized by forming a semiconductor device.
JP2074639A 1989-12-29 1990-03-23 Method for manufacturing semiconductor device Expired - Fee Related JP2547882B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2074639A JP2547882B2 (en) 1990-03-23 1990-03-23 Method for manufacturing semiconductor device
EP90314415A EP0439965B1 (en) 1989-12-29 1990-12-28 Method of manufacturing a semiconductor memory
KR1019900022098A KR960002078B1 (en) 1989-12-29 1990-12-28 Fabricating method of semiconductor memory device
DE69030433T DE69030433T2 (en) 1989-12-29 1990-12-28 Manufacturing method for semiconductor memory
US07/725,326 US5118640A (en) 1989-12-29 1991-07-08 Method of manufacturing a semiconductor memory
US07/728,024 US5100828A (en) 1989-12-29 1991-07-08 Method of manufacturing a semiconductor memory using dummy source/drain contacting method
TW079110800A01A TW218933B (en) 1989-12-29 1993-02-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2074639A JP2547882B2 (en) 1990-03-23 1990-03-23 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH03274726A true JPH03274726A (en) 1991-12-05
JP2547882B2 JP2547882B2 (en) 1996-10-23

Family

ID=13552984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2074639A Expired - Fee Related JP2547882B2 (en) 1989-12-29 1990-03-23 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2547882B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100278270B1 (en) * 1998-06-17 2001-02-01 김영환 Method for forming semiconductor device
KR100430688B1 (en) * 1996-12-31 2004-08-02 주식회사 하이닉스반도체 Method of forming contact hole of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430688B1 (en) * 1996-12-31 2004-08-02 주식회사 하이닉스반도체 Method of forming contact hole of semiconductor device
KR100278270B1 (en) * 1998-06-17 2001-02-01 김영환 Method for forming semiconductor device

Also Published As

Publication number Publication date
JP2547882B2 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
US4970564A (en) Semiconductor memory device having stacked capacitor cells
JP3562895B2 (en) Method for manufacturing semiconductor device having landing pad
JP3520114B2 (en) Method for manufacturing semiconductor device
JPH05102430A (en) Semiconductor device and manufacture thereof
JPH0645329A (en) High-integration semiconductor device and manufacture
JP2898686B2 (en) Semiconductor memory device and method of manufacturing the same
JP2865155B2 (en) Semiconductor device and manufacturing method thereof
US5118640A (en) Method of manufacturing a semiconductor memory
JP3230696B2 (en) Method for manufacturing semiconductor memory device
US5285110A (en) Interconnection structure in semiconductor device
JPH03274726A (en) Manufacture of semiconductor device
JP3352114B2 (en) Method for manufacturing semiconductor memory cell
US7473631B2 (en) Method of forming contact holes in a semiconductor device having first and second metal layers
JP2765133B2 (en) Method for manufacturing semiconductor device
JP2000114481A (en) Manufacture of semiconductor memory device
JPH06275847A (en) Semiconductor device having floating gate and its manufacture
JPH0982916A (en) Semiconductor device and its manufacture
JPH0637273A (en) Semiconductor device and manufacture thereof
JP3256946B2 (en) Contact formation method
JPH05326718A (en) Semiconductor device and manufacture thereof
JPH11102967A (en) Manufacture of semiconductor device
JP2001196477A (en) Semiconductor device
JP3172229B2 (en) Method for manufacturing semiconductor device
JP2855991B2 (en) Method for manufacturing semiconductor device
JPH08306878A (en) Method of fabricating semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees