JPH03274703A - Composition for forming resistor film - Google Patents

Composition for forming resistor film

Info

Publication number
JPH03274703A
JPH03274703A JP2073347A JP7334790A JPH03274703A JP H03274703 A JPH03274703 A JP H03274703A JP 2073347 A JP2073347 A JP 2073347A JP 7334790 A JP7334790 A JP 7334790A JP H03274703 A JPH03274703 A JP H03274703A
Authority
JP
Japan
Prior art keywords
thermal expansion
coefficient
glass
composition
glass powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2073347A
Other languages
Japanese (ja)
Inventor
Shigeharu Ishigame
重治 石亀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2073347A priority Critical patent/JPH03274703A/en
Publication of JPH03274703A publication Critical patent/JPH03274703A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve tenacity strength by using pyrochlore type conductive particles and glass powder which contains germanium oxide as the thick film resistor. CONSTITUTION:A composition for forming a resistor film contains pyrochlore type conductive particles of high coefficient of thermal expansion as the essential constituent to stabilize resistance value with high resistance. However, the composition for forming a resistor film which is a complex sinter of pyrochlore type conductive particles and glass powder is increased in coefficient of thermal expansion. Therefore, it weakens tenacity strength and cracks by thermal shock applied upon laser trimming so as to unstabilize resistance values. To prevent those, it is necessary in improvement of tenacity strength to make a composition for forming a resistor film and an alumina substrate matchable in coefficient of thermal expansion by decreases in the coefficient of thermal expansion of a glass powder used, and to apply the residual load of compression stress. Germanium oxide that is the glass constituent is suitable to decrease the coefficient of thermal expansion of glass powder because of low coefficient of thermal expansion with the result that addition of 1-10wt.% of germanium oxide can yield resistor films excellent in tenacity strength.

Description

【発明の詳細な説明】 (産業上の利用分野] 本発明は抵抗被膜形成用組成物に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a composition for forming a resistive film.

〔従来の技術〕[Conventional technology]

ハイブリットIC、チップ抵抗、抵抗ネットワーク等の
電子部品に利用されている厚膜抵抗体は精密な抵抗調整
の為に、レーザートリ逅ングで加工されているが、近年
、その加工速度が著しく増加し、それにつれて、厚膜抵
抗体に加わる熱衝撃が大きくなってきている。
Thick-film resistors used in electronic components such as hybrid ICs, chip resistors, and resistor networks are processed by laser processing for precise resistance adjustment, but in recent years, the processing speed has increased significantly. As a result, the thermal shock applied to thick film resistors has become larger.

厚膜抵抗ペーストの無機バインダーとして、各種のガラ
ス粉末があるが、その中で、PbO−5i02A 12
 z(h−Bz03系のガラス組成物が用いられている
のが一般的である。このPbO−3xOz−A l 2
03−B203系のガラスは、その成分中のPbOの含
有率によって、かなり広い温度範囲に渡って、任意の軟
化点を得られる優れた特徴があり、ガラス流動性を良く
する目的で、軟化点の低いガラスを得る為にpb。
There are various glass powders as inorganic binders for thick film resistance pastes, among which PbO-5i02A 12
z(h-Bz03-based glass compositions are generally used. This PbO-3xOz-A l 2
03-B203 series glass has the excellent feature of being able to obtain any desired softening point over a fairly wide temperature range depending on the content of PbO in its components. pb to obtain a glass with a low

の含有率が高いものが用いられている。しかし、高含有
率のpboガラスは熱膨張係数が大きくなり、特にガラ
スとセラミック基板の熱膨張係数の差がガラスの方が5
 X 10−’/”C以上大きくなると、セラミック基
板上で焼成されたガラスを無機バインダーとした厚膜抵
抗体に強い引張残留応力の歪みができ、その結果、厚膜
抵抗体の靭性強度を低下させたり、また、ガラス自体の
靭性強度をも弱くしている。その為、レーザートリミン
グで抵抗値調整加工を行う際にレーザーの発する熱衝撃
により、靭性強度が弱いと厚膜抵抗体にマクロ・クラン
クが発生し易くなり、抵抗値を不安定にしており、厚膜
抵抗体の靭性強度の強いものが望まれている。
A material with a high content of is used. However, high-content PBO glass has a large coefficient of thermal expansion, and in particular, the difference in coefficient of thermal expansion between glass and ceramic substrate is 5.
When X becomes larger than 10-'/''C, strong tensile residual stress distortion occurs in the thick film resistor using glass fired on a ceramic substrate as an inorganic binder, resulting in a decrease in the toughness and strength of the thick film resistor. It also weakens the toughness of the glass itself.Therefore, when performing resistance value adjustment processing by laser trimming, the thermal shock generated by the laser causes macroscopic damage to the thick film resistor if the toughness is weak. Since cranking tends to occur and the resistance value becomes unstable, thick film resistors with strong toughness and strength are desired.

厚膜抵抗体の靭性強度を向上させる方法としては、一つ
には、ガラスの熱膨張係数をセラミ・ンク基板の熱膨張
係数に近ずけるか、それよりも小さくして、圧縮の残留
応力をかけることで解決出来る。
One way to improve the toughness and strength of thick film resistors is to make the thermal expansion coefficient of the glass closer to or smaller than that of the ceramic substrate to reduce compressive residual stress. It can be solved by multiplying.

この方法は、pboの含有率を滅じてB2O3、Sin
This method eliminates the pbo content and reduces B2O3, Sin
.

等のガラス網目構造のガラス構t2戒分の含有率を増や
せば良いのだが、融点577°CのB2O3で適正な熱
膨張係数を得ようとすると、厚膜焼成温度850°Cで
ガラス流動性が大きくなり過ぎて厚膜形成がうまく出来
なかったり、パイロクロア型導電粒子を不安定にする欠
点があり、また、融点670″CのSiO□で適正な熱
膨張係数を得ようとすると、反対に、ガラス流動性が無
くなり、ガラス粉末とパイロクロア型導電粒子との複合
体の焼結が進まず良い厚膜形成が出来ない欠点がある。
It would be better to increase the content of T2 precepts in the glass structure of the glass network structure, but if you try to obtain an appropriate coefficient of thermal expansion with B2O3 whose melting point is 577°C, the glass fluidity will decrease at the thick film firing temperature of 850°C. This has the disadvantage that thick films cannot be formed properly due to too large a value, and pyrochlore type conductive particles become unstable.Also, when trying to obtain an appropriate coefficient of thermal expansion with SiO□, which has a melting point of 670"C, it becomes difficult to form a thick film. However, there is a drawback that the glass fluidity is lost and the sintering of the composite of the glass powder and the pyrochlore type conductive particles does not progress, making it impossible to form a good thick film.

これらの欠点を解消しようとするものに、特公昭63−
39082に開示されておるように、その方法は、厚膜
抵抗ペースト中に、耐火物フィラーを添加して、焼結体
の熱膨張係数を低下させて、靭性強度の向上を図ってい
るが、この方法では耐大物フィラーを均一に分散させる
混練にやや難点があり、その結果、抵抗特性の電流ノイ
ズが悪化したりしている。また、一つには、ガラスに他
成分を添加して、ガラス自体の靭性強度を強くすること
である。この方法では、Y2O3,5c203、La2
O3、Aj2z03等挙げられるが、いずれも、ガラス
軟化点が高過ぎて、ガラス流動性が悪くなり、良い厚膜
形成が出来ない欠点があり、PbO−5iOz−A 1
2203−tbCh系ガラスでは効果が期待出来ないの
が、当比較例で明らかになっている。
To try to eliminate these shortcomings, the special
39082, that method involves adding a refractory filler to a thick film resistor paste to lower the coefficient of thermal expansion of the sintered body and improve its toughness and strength. This method has some difficulty in kneading the large-sized filler to uniformly disperse it, and as a result, the current noise of the resistance characteristics deteriorates. Another method is to add other components to glass to strengthen the toughness and strength of the glass itself. In this method, Y2O3,5c203, La2
PbO-5iOz-A 1
It is clear from this comparative example that no effect can be expected with 2203-tbCh glass.

この様に、従来のガラス組成物でのセラ旦ツク基板上に
焼結された厚膜抵抗体はセラミック基板との熱膨張係数
が不整合であったり、靭性強度の低いものであったりし
て、レーザートリ5ングの際に、厚膜抵抗体の切り口部
にマクロ・クランクが多く発生し、抵抗値を極めて不安
定にさせている等の問題点があった。
In this way, thick film resistors made of conventional glass compositions and sintered on ceramic substrates have mismatched coefficients of thermal expansion with the ceramic substrate, or have low toughness and strength. During laser trimming, many macro cranks were generated at the cut end of the thick film resistor, making the resistance value extremely unstable.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、上記問題点を解消するために、パイロ
クロア型導電粉末を使用した厚膜抵抗体の靭性強度を向
上させる抵抗被膜形成用組成物を提供することである。
An object of the present invention is to provide a composition for forming a resistive film that improves the toughness and strength of a thick film resistor using a pyrochlore type conductive powder in order to solve the above-mentioned problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達成するために、パイロクロア型導
電粒子と酸化ゲルマニウム1〜10重量%を含有したガ
ラス粉末とを含有する点に特徴がある。
In order to achieve the above object, the present invention is characterized in that it contains pyrochlore type conductive particles and glass powder containing 1 to 10% by weight of germanium oxide.

1作用] 該抵抗被膜形成用組成物には、熱膨張係数の大きいパイ
ロクロア型導電粒子が高抵抗で抵抗値を安定させるため
に10〜60重量%の必須成分として含有されている。
1 Effect] The composition for forming a resistive film contains 10 to 60% by weight of pyrochlore type conductive particles having a large coefficient of thermal expansion as an essential component in order to provide high resistance and stabilize the resistance value.

これら、PbJu206、BizRu20を等のパイロ
クロア型導電粒子の熱膨張係数は95〜120X10”
’/”Cと大きく、パイロクロア型導電粒子とガラス粉
末との複合焼結体である抵抗被膜形成用組成物の熱膨張
係数を大きくしている。また一方、セラミックのアル逅
す基板の熱膨張係数は70X10’/”Cであり、この
三者の熱膨張係数の差は著しく大きい為に、抵抗被膜形
成用組成物の方に引張応力が残留し、靭性強度を弱くし
、レーザートリ累ング加工の際、加わる熱衝撃でクラン
ク破損し抵抗値を不安定にさせると思われる。
The thermal expansion coefficient of these pyrochlore type conductive particles such as PbJu206 and BizRu20 is 95 to 120X10"
'/'C, which increases the coefficient of thermal expansion of the composition for forming a resistive film, which is a composite sintered body of pyrochlore type conductive particles and glass powder. The coefficient is 70X10'/"C, and since the difference in thermal expansion coefficient between these three is extremely large, tensile stress remains in the composition for forming a resistive film, weakening the toughness and strength, and making laser treatment difficult. It is thought that the crank will be damaged due to thermal shock during processing, making the resistance value unstable.

これらを防止するには、使用するガラス粉末の熱膨張係
数を小さくして、抵抗被膜形成用組成物とアルミナ基板
との熱膨張係数の整合性を持たせるか、抵抗被膜形成用
組成物の熱膨張係数がアルミナ基板のそれよりも小さく
して、圧縮応力を残留負荷することが靭性強度を向上さ
せる上で必要である。そこで本発明で、用いるガラス組
成の酸化ゲルマニウムGe0zは熱膨張係数が小さく、
ガラス粉末の熱膨張係数を小さくするのに適しており、
融点も1086〜1115°CとB2O3と5i02と
の中間的な融点を有し、厚膜焼成温度850″Cでガラ
スの流動性が劣ることなく厚膜形成ができ、かつ靭性強
度のあるガラス網目構造酸化物である。酸化ゲルマニウ
ムの添加量は1−10重量%が望ましい。添加量は1重
量%未満では、靭性強度の向上が見られず、また、10
重量%を越えるものについては、焼結性が良くなく、良
好な厚膜形成が得られない。
To prevent these problems, either reduce the coefficient of thermal expansion of the glass powder used to make the thermal expansion coefficient of the composition for forming a resistive film consistent with that of the alumina substrate, or In order to improve toughness and strength, it is necessary to make the expansion coefficient smaller than that of the alumina substrate and apply residual compressive stress. Therefore, in the present invention, the germanium oxide Ge0z used in the glass composition has a small coefficient of thermal expansion,
Suitable for reducing the thermal expansion coefficient of glass powder,
It also has a melting point of 1086 to 1115°C, which is intermediate between B2O3 and 5i02, and can form a thick film at a thick film firing temperature of 850"C without deteriorating glass fluidity, and has a glass network with toughness and strength. It is a structural oxide.The amount of germanium oxide added is preferably 1-10% by weight.If the amount added is less than 1% by weight, no improvement in toughness and strength is observed;
If the amount exceeds % by weight, the sinterability is poor and a good thick film cannot be formed.

[実施例] 以下に、本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

(1)ガラス粉末の作成 第1表に示す割合で、実施例N[11〜N017及び、
比較例No、 1〜N016につき、各々の組成の酸化
物をデジタル天秤で精秤し、各々の原料に供した。
(1) Preparation of glass powder Examples N [11 to N017 and
For Comparative Examples Nos. 1 to 016, oxides of each composition were precisely weighed using a digital balance, and used as each raw material.

まず、ライカイ機で原料を1.5〜2時間混合し、混合
後、原料粉末を白金ルツボに入れ、電気炉中で1350
〜1450°Cで1〜2時間熔融する。途中で数回白金
棒で熔融ガラスを撹拌し、ガラスの均質性を上げ、充分
ガラスが清澄したらカーボン板上にガラスを流出させ、
赤味のあるうちに700°Cに保持しである電気炉へガ
ラスを入れて徐冷する。
First, the raw materials are mixed in a Raikai machine for 1.5 to 2 hours, and after mixing, the raw material powder is placed in a platinum crucible, and heated to 1350 in an electric furnace.
Melt at ~1450°C for 1-2 hours. Stir the molten glass several times with a platinum rod during the process to improve the homogeneity of the glass, and when the glass is sufficiently clarified, pour the glass onto a carbon plate.
While the glass is still reddish, it is held at 700°C and then placed in an electric furnace to slowly cool it.

ガラスの熱膨脹係数の測定には、この徐冷した泡のない
ガラスを切り出して用いる。
To measure the coefficient of thermal expansion of glass, this slowly cooled bubble-free glass is cut out and used.

室温に冷えたガラスをメノウ乳鉢で粗粉砕し、ジルコニ
ア製ボールミルでエチルアルコールあるいは、イソプロ
パツール等の有機溶剤を適当量加えて、回転数100r
pn、72時間、湿式微粉砕する。
Coarsely grind the glass cooled to room temperature in an agate mortar, add an appropriate amount of ethyl alcohol or an organic solvent such as isopropanol in a zirconia ball mill, and grind at 100 rpm.
pn, wet milling for 72 hours.

混合後のスラリー状になった懸濁液を容器に移して、温
度60〜120″Cの乾燥炉中で有機溶剤を蒸発させて
乾燥したガラス粉末を得る。
The slurry-like suspension after mixing is transferred to a container, and the organic solvent is evaporated in a drying oven at a temperature of 60 to 120''C to obtain a dried glass powder.

(2)ペーストの作成及び、評価サンプルの作成平均粒
径0.05μmのパイロクロア型導電粒子と平均粒径2
μmになった各種組成のガラス粉末を重量比25ニア5
に各々精秤し、有機ビヒクルとしてエチルセルロ−ズ を30重量%加えてスリーロールミルで充分に混練して
抵抗ペーストを得る。
(2) Creation of paste and creation of evaluation samples Pyrochlore-type conductive particles with an average particle size of 0.05 μm and average particle size 2
Glass powder of various compositions with a weight ratio of 25 near 5
Each was weighed accurately, 30% by weight of ethyl cellulose was added as an organic vehicle, and thoroughly kneaded in a three-roll mill to obtain a resistance paste.

この作製した抵抗ペーストをスクリーンパターンlX1
mrr1口が数個あるスクリーンで96%アルミナ基板
上にスクリーン印刷法で塗布し、最高温度150°Cで
電気炉で乾燥後、空気雰囲気式ベルト炉でピーク温度8
50°C、ピーク時間9分間で焼成し、焼成厚膜を得、
評価サンプルに供した。
This prepared resistor paste is used as a screen pattern lX1.
It was coated on a 96% alumina substrate using a screen printing method using a screen with several mrr holes, dried in an electric furnace at a maximum temperature of 150°C, and then heated to a peak temperature of 8 in an air atmosphere belt furnace.
Baking was performed at 50°C for a peak time of 9 minutes to obtain a fired thick film.
It was used as an evaluation sample.

なお、焼成厚膜の平均膜厚は8〜10μmであった。ま
た、試験に供したガラスは全て、焼成中に複合酸化物と
してのパイロクロア型導電粒子が高温ガラス流動によっ
て、分解を受けていないことが高精度×線回折分析によ
って確認している。
Note that the average thickness of the fired thick film was 8 to 10 μm. In addition, high-precision x-ray diffraction analysis has confirmed that the pyrochlore-type conductive particles as composite oxides of all the glasses tested are not decomposed by the high-temperature glass flow during firing.

(3)WJ性強度の評価方法 アルミナ基板上に焼成された、厚膜抵抗体の靭性強度は
ピンカース硬度計の圧子を利用して、次の様な評価法を
選択した。
(3) Evaluation method of WJ strength The following evaluation method was selected to evaluate the toughness of a thick film resistor fired on an alumina substrate using an indenter of a Pinkers hardness tester.

500g荷重のビッカース圧子を厚膜抵抗体面上に静か
に当て、15秒間保持し、四角錐の圧痕を形成させ、正
方形の表面の凹稜からクラ・ツク破損の発生の有無を観
察した。
A Vickers indenter with a load of 500 g was gently applied to the surface of the thick film resistor and held for 15 seconds to form a square pyramidal indentation, and the presence or absence of crack damage was observed from the concave ridges of the square surface.

なお、靭性強度率は式1の様にあられし、これをもって
クランク発生率(χ)を評価した。
Incidentally, the toughness strength ratio was expressed as shown in Equation 1, and the crank occurrence rate (χ) was evaluated using this.

靭性強度率−(クラック破損のあるサンプル数)/(全
測定サンプル数) X100X・・・式1クランク発生
率の少ない方が、焼成体の靭性強度が高いと判断出来、
このクラック発生率が10〜20%以内にあれば、経験
的に焼成体の耐レーザー性に効果あると言える。
Toughness strength ratio - (number of samples with crack damage) / (total number of measured samples)
If this crack occurrence rate is within 10 to 20%, it can be said from experience that it is effective in improving the laser resistance of the fired product.

以上の結果を第1表に示した。The above results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、実施例に示すごとく
、靭性強度の優れた抵抗被膜形成用組成物が得られる。
As described in detail above, according to the present invention, a composition for forming a resistive film having excellent toughness and strength can be obtained as shown in the Examples.

Claims (1)

【特許請求の範囲】[Claims] パイロクロア型導電粒子と酸化ゲルマニウム1〜10重
量%を含有したガラス粉末とを含有する抵抗被膜形成用
組成物。
A composition for forming a resistive film containing pyrochlore type conductive particles and glass powder containing 1 to 10% by weight of germanium oxide.
JP2073347A 1990-03-26 1990-03-26 Composition for forming resistor film Pending JPH03274703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2073347A JPH03274703A (en) 1990-03-26 1990-03-26 Composition for forming resistor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2073347A JPH03274703A (en) 1990-03-26 1990-03-26 Composition for forming resistor film

Publications (1)

Publication Number Publication Date
JPH03274703A true JPH03274703A (en) 1991-12-05

Family

ID=13515536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2073347A Pending JPH03274703A (en) 1990-03-26 1990-03-26 Composition for forming resistor film

Country Status (1)

Country Link
JP (1) JPH03274703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10923252B2 (en) 2016-09-29 2021-02-16 Kyocera Corporation Resistor, circuit board, and electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10923252B2 (en) 2016-09-29 2021-02-16 Kyocera Corporation Resistor, circuit board, and electronic device

Similar Documents

Publication Publication Date Title
US9556343B2 (en) Conductive fine particle and metal paste for electrode formation and electrode
JPH03170347A (en) Thermister compound
US4060663A (en) Electrical resistor glaze composition and resistor
JP2005235754A (en) Conductive material, its manufacturing method, resistor paste, resistor and electronic component
JP3611160B2 (en) Thick film resistor paste
CN110642519B (en) Encapsulation slurry for aluminum nitride substrate and preparation method and application thereof
JPS60155544A (en) Borosilicate glass composition
CN104319043B (en) Manufacturing method of negative-temperature-coefficient thermistor chip electrode
JPH03274703A (en) Composition for forming resistor film
KR101138246B1 (en) Manufacturing method of paste composition having low temperature coefficient resistance for resistor, thick film resistor and manufacturing method of the resistor
CN113793716B (en) Low-voltage coefficient resistance paste
JP2795467B2 (en) Good adhesive metal paste
JPS6326522B2 (en)
CN107935398B (en) Lead-free low-melting-point glass powder for metal aluminum substrate insulating medium slurry and preparation method thereof
JPH0346705A (en) Copper paste
JPS6177637A (en) Glass composition for glaze
JPH03183640A (en) Resistor paste and ceramic substrate
JPH02137787A (en) Glass-coated sintered silicon carbide and production thereof
JP2761320B2 (en) Inorganic composition for overcoat
JPH11209147A (en) Dielectric paste for plasma display panel
JPH07115977B2 (en) Glass-coated silicon carbide sintered body and method for producing the same
JPH06163202A (en) Thick film resistor paste and thick film resistor and manufacturing method thereof
JPH02212336A (en) Glass-ceramic composition and its use
JPH0416420B2 (en)
CN109231976A (en) A kind of lower thermal conductivity high-strength ceramic baseplate material and preparation method thereof