JPH02137787A - Glass-coated sintered silicon carbide and production thereof - Google Patents

Glass-coated sintered silicon carbide and production thereof

Info

Publication number
JPH02137787A
JPH02137787A JP29061288A JP29061288A JPH02137787A JP H02137787 A JPH02137787 A JP H02137787A JP 29061288 A JP29061288 A JP 29061288A JP 29061288 A JP29061288 A JP 29061288A JP H02137787 A JPH02137787 A JP H02137787A
Authority
JP
Japan
Prior art keywords
glass
silicon carbide
paste
sintered body
carbide sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29061288A
Other languages
Japanese (ja)
Inventor
Itsuki Hiramatsu
平松 厳
Toshiaki Sakaida
敏昭 坂井田
Kazuyoshi Shindo
和義 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Nippon Electric Glass Co Ltd filed Critical Showa Denko KK
Priority to JP29061288A priority Critical patent/JPH02137787A/en
Publication of JPH02137787A publication Critical patent/JPH02137787A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain the subject material free from cracks and voids, exhibiting high surface electric resistance and usable as substrate of various integrated circuits, etc., by forming a glass layer having specific component and composition on a surface of sintered silicon carbide. CONSTITUTION:A glass-coated sintered silicon carbide is produced by applying a glass layer composed of 15-23wt.% of Al2O3, 30-55wt.% of SiO2, 20-40wt.% of B2O3, 5-10wt.% of CaO and l-3wt.% of ZrO2 to a surface of sintered silicon carbide. It can be produced by melting the above composition in a platinum crucible at 1450-1500 deg.C, quenching the molten composition, crushing to a particle size of about 44mum, mixing the obtained glass powder with an organic binder to form a paste, applying the paste to a sintered silicon carbide and sintering at 850-1100 deg.C or applying the paste, subjecting to primary sintering at 1000-1450 deg.C, applying the paste again and carrying out the secondary sintering at 850-1000 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電気回路ノフ板、感熱ヘット基板などに使用さ
れるガラス被覆炭化珪素焼結体及びその製造法に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a glass-coated silicon carbide sintered body used for electrical circuit nozzle plates, heat-sensitive head substrates, etc., and a method for manufacturing the same.

(従来の技術) 炭化珪素焼結体は強度、耐熱性、熱伝導性に優れている
が、体積固有抵抗が102〜】06ΩC1と電気絶縁性
か低く、また焼結体表面には、径1〜2終■程度の多数
の気孔かあるため電気回路大版や、感熱ヘッド基板に使
用するには、焼結体表面を被覆することか必要である。
(Prior art) Silicon carbide sintered bodies have excellent strength, heat resistance, and thermal conductivity, but their volume resistivity is 102 to 06ΩC1, which is poor electrical insulation. Since there are a large number of pores of about 2 to 2 cm in size, it is necessary to coat the surface of the sintered body in order to use it for large electric circuit boards or thermal head substrates.

その方法は、炭化珪素焼結体表面にガラス粉末と有機バ
インダーよりなるペーストを塗布し焼成してガラス層を
焼結体表面に形成することか行なわれており、これに使
用されている従来のガラスはアルミナセラミックスに用
いられているガラス組成硼珪酸鉛系のガラスが用いられ
ていた。
The method involves applying a paste consisting of glass powder and an organic binder to the surface of a silicon carbide sintered body and firing it to form a glass layer on the surface of the sintered body. The glass used was lead borosilicate glass, which is used in alumina ceramics.

(発明か解決しようとする課題) 従来使用されているガラスは熱膨張係数か大きいため、
炭化珪素焼結体とは、熱膨張の違いによリa裂の発生、
又は炭化珪素焼結体との反応による気泡の発生により、
炭化珪素焼結体とガラスの密着性が劣り形成されるガラ
ス層が有効に活用てきない欠点があった。
(Invention or Problem to be Solved) Since conventionally used glass has a large coefficient of thermal expansion,
Silicon carbide sintered bodies are prone to rear cracks due to differences in thermal expansion.
Or, due to the generation of bubbles due to the reaction with the silicon carbide sintered body,
There was a drawback that the adhesion between the silicon carbide sintered body and the glass was poor, and the formed glass layer could not be used effectively.

本発明の目的は炭化珪素焼結体表面に特定のガラス層を
形成し亀裂が生じることがなく、焼結体表面と接合性が
よいガラス被覆炭化珪素焼結体及びその製造法を提供す
ることにある。
An object of the present invention is to provide a glass-coated silicon carbide sintered body that forms a specific glass layer on the surface of a sintered silicon carbide body, prevents cracks from occurring, and has good bonding properties with the surface of the sintered body, and a method for manufacturing the same. It is in.

(課題を解決するための手段) 本発明は比較的融点が低いガラスであって、熱膨張係数
か炭化珪素焼結体と大差なく、また炭化珪素焼結体と反
応しないガラスについて検討を行った結果完成したもの
でその要旨は、AIJt15〜23g1量%(以下%は
重量基準) 、 5in2:to〜55%、B、0,2
0〜40%、CaO3〜lO%、 lrO,1〜3%の
組成よりなるガラスで表面を被覆した炭化珪素焼結体で
あり、またその製造法は前記ガラス粉末と*機バインダ
ーよりなるペーストを炭化珪素焼結体の表面に塗布し8
50〜1000°Cに加熱する方法及び前記ペーストを
塗布後期めに1000〜1450℃に加熱して被覆した
後、更に同ペーストをその上に塗布して850〜100
0°Cに加熱する方法である。
(Means for Solving the Problems) The present invention has investigated a glass that has a relatively low melting point, has a thermal expansion coefficient that is not significantly different from that of silicon carbide sintered bodies, and does not react with silicon carbide sintered bodies. The summary of the completed result is: AIJt15-23g1% by weight (hereinafter % is based on weight), 5in2:to-55%, B, 0,2
It is a silicon carbide sintered body whose surface is coated with glass having a composition of 0 to 40% CaO, 3 to 1% CaO, and 1 to 3% lrO. Apply to the surface of silicon carbide sintered body 8
A method of heating to 50 to 1000°C, and after coating the paste by heating it to 1000 to 1450°C late in the coating process, the same paste is further applied on top of the coating to a temperature of 850 to 1000°C.
This method involves heating to 0°C.

前記組成のガラスはアルカリ酸化物及びPbOを含まな
いのて熱膨張係数及び誘電率は比較的小さく、然し一般
的にはこれらを含まない系のガラスはガラス溶融温度が
高く、ガラスの製造及びガラス被覆の焼成温度か高くな
り炭化珪素焼結体のガラス被覆には不利である。しかし
ながら未発IJIにおいては特定の成分及び組成にする
ことにより1450°C以下で溶融が可能となった。炭
化珪素焼結体の熱膨張係数は、通常40〜42X 10
−’/’C程度であるか本発明のガラス組成はほぼ33
〜40x 10−’/℃である。
Since the glass of the above composition does not contain alkali oxides and PbO, its coefficient of thermal expansion and dielectric constant are relatively small.However, glasses that do not contain these generally have a high glass melting temperature and are difficult to manufacture and manufacture. The firing temperature of the coating becomes high, which is disadvantageous for coating a silicon carbide sintered body with glass. However, in the case of undeveloped IJI, it has become possible to melt it at temperatures below 1450°C by using specific ingredients and compositions. The thermal expansion coefficient of silicon carbide sintered body is usually 40 to 42X 10
-'/'C or so, the glass composition of the present invention is approximately 33
~40x 10-'/°C.

本発明のガラス組成はガラスの熱膨張係数を炭化珪素焼
結体の熱膨張係数に近い値とするためにガラス形成酸化
物であるSiO□を30〜55%とした。
The glass composition of the present invention contains 30 to 55% of SiO□, which is a glass-forming oxide, in order to make the coefficient of thermal expansion of the glass close to that of the silicon carbide sintered body.

SiO□か30%未満てはガラス熱膨張係数か大きくな
ると共にガラスか分相し易くなり平滑な被膜かてきない
。また55%を越えるとガラスの溶融が困難となり、ガ
ラス焼付温度か高くなり炭化珪素焼結体とガラスの反応
か起り発泡し易くなる。
If SiO□ is less than 30%, the coefficient of thermal expansion of the glass becomes large and the glass tends to undergo phase separation, making it impossible to form a smooth coating. Moreover, if it exceeds 55%, it becomes difficult to melt the glass, the glass baking temperature becomes high, and a reaction between the silicon carbide sintered body and the glass occurs, which tends to cause foaming.

B2O3の添加は、ガラスの熱膨張係数及び粘性を低下
させる作用があるか本発明においてはBxChが20%
未満の場合ガラスの溶融が困難になり40%を越えると
ガラスか分相し易くなり、また耐水性か悪くなる。
Does the addition of B2O3 have the effect of lowering the thermal expansion coefficient and viscosity of the glass? In the present invention, BxCh is 20%.
If it is less than 40%, it becomes difficult to melt the glass, and if it exceeds 40%, the glass tends to undergo phase separation and its water resistance deteriorates.

A1□03はガラスの化学的耐久性を改善するか15%
未満ではガラスが分相し易くなり23%を越えるとガラ
スか分相し熱膨張係数が大きくなりガラス被膜に亀裂か
発生し易くなる。
A1□03 improves the chemical durability of glass by 15%
If it is less than 23%, the glass tends to undergo phase separation, and if it exceeds 23%, the glass tends to undergo phase separation and the coefficient of thermal expansion becomes large, making it easy for cracks to occur in the glass coating.

CaOはガラス融液の粘度を低下させ均質なガラスを得
るための重要な成分であるが5%未満ては、粘度の低下
か不充分でありガラスを焼付けたさいに失透する。また
10%を越えるとガラスの熱膨張係数か大きくなるため
ガラス被膜に亀裂が入り平滑な被膜を得ることかできな
い。
CaO is an important component for reducing the viscosity of the glass melt and obtaining a homogeneous glass, but if it is less than 5%, the viscosity decreases insufficiently and devitrification occurs when the glass is baked. If it exceeds 10%, the coefficient of thermal expansion of the glass increases, causing cracks in the glass coating and making it impossible to obtain a smooth coating.

Zr0tはガラスの化学的耐久性に効果があるか3%を
越えるとガラスの溶融温度が高くなり、またガラスの熱
膨張係数か大きくなり、 1%未満ではガラスの化学的
耐久性か劣ることよりいづれも好ましくない。
Does Zr0t have an effect on the chemical durability of glass?If it exceeds 3%, the melting temperature of the glass will increase and the coefficient of thermal expansion of the glass will also increase, while if it is less than 1%, the chemical durability of the glass will deteriorate. I don't like either of them.

これらのことから5i02は30〜55%、Al20f
f 15〜23%、+120:lは20〜40%、 C
aOは 5へ10%、Zr021〜3%とすることが必
要である。
From these things, 5i02 is 30-55%, Al20f
f 15-23%, +120:l 20-40%, C
It is necessary to set aO to 5 to 10% and ZrO to 21 to 3%.

次に製造法の発明について説明する。Next, the invention of the manufacturing method will be explained.

ガラス粉末は上記組成物を白金るつぼに入れ溶融し望ま
しくは急速冷却した後粉砕を行い粒度調整をする。
The glass powder is prepared by melting the above-mentioned composition in a platinum crucible, preferably rapidly cooling it, and then pulverizing it to adjust the particle size.

溶融は1450〜1500 ’Cてあり、急速冷却は例
えば溶融物を水中に流し込んで行なう方法である。冷却
固化したガラスはアルミナまたはメノー乳鉢等で粉砕を
行い粒度な44gm以下程度にする。
Melting is carried out at 1450 to 1500'C, and rapid cooling is carried out, for example, by pouring the melt into water. The cooled and solidified glass is crushed in an alumina or agate mortar to a particle size of about 44 gm or less.

このガラス粉末と有機バインターとを混合しペーストに
して、炭化珪素焼結体に塗布し焼成後冷却してガラス層
を固化させる1段階法も可能であるが、望ましくはペー
ストの塗布及び焼成を2段階て行うことによりすぐれた
性質のガラス被覆を炭化珪素焼結体上に形成させること
がてきる。
A one-step method is possible in which the glass powder and organic binder are mixed to make a paste, applied to a silicon carbide sintered body, and cooled after firing to solidify the glass layer, but it is preferable to apply the paste and bake in two steps. By carrying out the process in stages, a glass coating with excellent properties can be formed on the silicon carbide sintered body.

1段階焼成法は、ガラス粉末と有機バインダーを塗膜の
厚み、または塗膜の均−性等よりガラス粉末を好ましく
は50〜60%含むように混合してペーストをつくり2
これを炭化珪素焼結体、または表面酸化処理を行った炭
化珪素焼結体の表面に塗布し、これを有機バインターの
種類により80〜400°Cの範囲の適当な温度に加熱
してバインダーを除去し次に850〜1000°Cの範
囲の一定温度で5〜30分間加熱し次いで急冷して均質
なガラス被覆を形成する方法である。
In the one-step firing method, a paste is prepared by mixing glass powder and an organic binder so that the glass powder content is preferably 50 to 60% depending on the thickness of the coating film or the uniformity of the coating film.
This is applied to the surface of a silicon carbide sintered body or a silicon carbide sintered body that has undergone surface oxidation treatment, and heated to an appropriate temperature in the range of 80 to 400°C depending on the type of organic binder to remove the binder. The method involves removing the glass, heating it for 5 to 30 minutes at a constant temperature in the range of 850 to 1000°C, and then rapidly cooling it to form a homogeneous glass coating.

この方法における炭化珪素焼結体の表面酸化処理は、炭
化珪素焼結体を例えば空気中で1300〜1400°C
の温度て0.5〜2時間時間部熱して行う。
The surface oxidation treatment of the silicon carbide sintered body in this method involves heating the silicon carbide sintered body at 1300 to 1400°C in air, for example.
This is carried out by heating for 0.5 to 2 hours at a temperature of .

この表面酸化処理を行うことによりガラス層か炭化珪素
焼結体表面への接着か容易になる。
This surface oxidation treatment facilitates adhesion of the glass layer to the surface of the silicon carbide sintered body.

またペースト塗布後の焼成温度はこのガラスの軟化温度
か76[)〜850℃であるため、焼成温度は溶融軟化
する850〜1000”Cの範囲が適当である。
Furthermore, since the firing temperature after applying the paste is the softening temperature of this glass, which is 76°C to 850°C, the firing temperature is suitably in the range of 850 to 1000''C, which is the melting and softening temperature.

焼成後のガラス被覆層の厚みは前記用途に対しては50
〜100 gmが望ましい。
The thickness of the glass coating layer after firing is 50 mm for the above applications.
~100 gm is desirable.

2段階焼成法は1次焼成ガラス被覆と2次焼成ガラス被
覆からなり、1次焼成ガラス被覆は、ガラス粉末に有機
バインターを混合しガラス粉末5〜20%含むペースト
をつくり、これを炭化珪素焼結体表面に塗布し、前記同
様80〜400°Cの範囲に加熱してバインダーを除去
し次いで1000〜145G’Cて5〜コ0分間加熱す
ることからなる。この加熱はガラスの粘性を下げ、炭化
珪素焼結体表面の気孔を濡しガラス層を形成させるため
であり、そのために前記温度範囲か適当である。この場
合の塗布するガラス粉末量はQ、S 〜1.0 mg/
 c rn’が望ましく、ガラス粉末量が0.5B/ 
c m’未満のときは被覆ガラスか不均一となり、 1
.0mg/cm’を越えるとカラス被覆中に気泡か残存
し易くなる6ペースト中のガラス粉末を10〜20%と
する理由は、10%に達しないときはガラス被覆か不均
一となり、20%を越えると薄く塗布することか困難に
なるかうである。
The two-step firing method consists of a first fired glass coating and a second fired glass coating.The first fired glass coating is made by mixing glass powder with an organic binder to create a paste containing 5 to 20% glass powder, which is then fired with silicon carbide. It consists of coating the surface of the compact, heating to a temperature in the range of 80 to 400 DEG C. to remove the binder, and then heating at 1000 to 145 G'C for 5 to 0 minutes. The purpose of this heating is to lower the viscosity of the glass, wet the pores on the surface of the silicon carbide sintered body, and form a glass layer, and for this purpose, the above temperature range is appropriate. In this case, the amount of glass powder to be applied is Q,S ~1.0 mg/
cr rn' is desirable, and the amount of glass powder is 0.5B/
If it is less than cm', the coated glass will be non-uniform, and 1
.. If it exceeds 0 mg/cm', bubbles tend to remain in the glass coating.6 The reason for setting the glass powder in the paste to 10 to 20% is that if it does not reach 10%, the glass coating will be uneven. If it exceeds it, it becomes difficult to apply a thin layer.

1次焼成ガラス被覆は炭化珪素焼結体の表面の気孔にガ
ラスか侵入し、次に述べる2次焼成における気泡の発生
を防止する。
In the first firing glass coating, the glass penetrates into the pores on the surface of the silicon carbide sintered body, and prevents the generation of bubbles during the second firing described below.

2次焼成ガラス被覆は、1次焼成被覆の上に前記した1
段階焼成法と同様にペーストを塗布し加熱によりバイン
ターの除去、焼成によるガラス被mの形成を行なう方法
である。
The secondary fired glass coating is the above-mentioned 1.
Similar to the step firing method, this is a method in which a paste is applied, the binder is removed by heating, and a glass coating m is formed by firing.

この場合のペーストのガラス粉末は50〜60%である
ことか望ましい。本発明においてペーストに用いるハイ
ターとしては、エチルセルローズ、ニトロセルローズ等
の繊維系誘導体で有機溶剤として、テレピネオール、カ
ルピトールアセテートである。ガラス粉末はガラス組成
分を溶融固化させたカラスを粉砕し44ILm以下程度
に調製して用いてもよいか、好ましくは分級して10μ
m以下として使用する。
In this case, it is desirable that the glass powder content of the paste be 50 to 60%. In the present invention, the paste used in the paste is a fiber derivative such as ethyl cellulose or nitrocellulose, and the organic solvent is terpineol or carpitol acetate. The glass powder may be used by pulverizing glass made by melting and solidifying the glass components to a size of about 44 ILm or less, or preferably by classifying it to a size of 10 μm or less.
Use as less than m.

ペーストの塗布はスクリーン印刷又はドクターフレード
法等で炭化珪素焼結体表面に行なうことかてきる。
The paste can be applied to the surface of the silicon carbide sintered body by screen printing or the Dr.Frede method.

〔実施例1〕 第1表に示すガラス組成の原料粉末を秤量し混合を行い
、該混合粉末を白金るつぼに入れ電気加熱炉て1500
℃に加熱溶融し、溶融物を水中に流し込み急速冷却させ
ガラスを作製し1次に該ガラスをアルミナ製乳鉢て粉砕
し44JLll以下の粉末とし、更にこのガラス粉末を
エチルアルコール中に懸濁させ、沈降速度の差によって
分級を行い粒径10gm以下のガラス粉末を調製した。
[Example 1] Raw material powders having the glass composition shown in Table 1 were weighed and mixed, and the mixed powder was placed in a platinum crucible and heated in an electric heating furnace at 1500 m
℃, the melt is poured into water and rapidly cooled to produce a glass, firstly the glass is ground in an alumina mortar to form a powder of 44JL or less, further this glass powder is suspended in ethyl alcohol, Glass powder with a particle size of 10 gm or less was prepared by classifying based on the difference in sedimentation speed.

該ガラス粉末1001清部に対しバインターとしてエチ
ルセルローズ10重量部溶剤にテレピネオール60重量
部、カルピトールアセテート 5重量部を混練してペー
ストを調製した。次に予め脱脂洗滌を行った炭化珪素焼
結体(0,7厚みx 50x 50mm)片面に該ガラ
スペーストをスクリーン印刷したのち大気中で焼成をし
た。焼成は350℃て1時間加熱しバインダーを除去し
たのち 900°Cの温度で20分間保持した後急冷を
行い、ガラス被覆厚み100μlを形成した。
A paste was prepared by kneading 1001 parts of the glass powder with 10 parts by weight of ethyl cellulose as a binder, a solvent, 60 parts by weight of terpineol, and 5 parts by weight of carpitol acetate. Next, the glass paste was screen printed on one side of a silicon carbide sintered body (0.7 mm thick x 50 mm x 50 mm) which had been previously degreased and washed, and then fired in the air. Firing was carried out by heating at 350°C for 1 hour to remove the binder, then holding at a temperature of 900°C for 20 minutes, followed by rapid cooling to form a glass coating with a thickness of 100 μl.

得られたガラス被膜の気泡、亀裂、平滑性の状況を調べ
、その結果を第2表に示す。表中気泡、亀裂、平滑性に
ついて、気泡1.亀裂が発生しているもの及びモ滑性の
劣るものをx印、良好なもの○印、やや良好なものをΔ
印とした。
The resulting glass coating was examined for bubbles, cracks, and smoothness, and the results are shown in Table 2. Regarding bubbles, cracks, and smoothness in the table, bubbles 1. Those with cracks or poor slipperiness are marked with an x mark, those with good properties are marked with an ○ mark, and those with somewhat good slipperiness are marked with a Δ mark.
It was marked as a mark.

比較例の組成のものは1分相、失透か生し、更に亀裂、
気泡、平滑性が劣るが本発明のガラス組成には分相5失
透かなく亀裂、気泡、平滑性か共に良好である。
The composition of the comparative example had 1 phase separation, devitrification, and cracks.
Although bubbles and smoothness are poor, the glass composition of the present invention has no phase separation 5 devitrification and has good cracks, bubbles, and smoothness.

(実施例2) 実施例1で用いたNo、8.9.1O111のガラス組
成及び実施例と同一組成のバインダー、溶剤を用い、平
均粒径1.3ILmのガラス粉末を10%含むペースト
を調製してスクリーン印刷法で炭化珪素焼結体く0.7
厚みX 5(lx 50mg)の片面にガラス粉末量か
0.8sg/ c m”になるようにペーストを塗布し
大気中で焼成した。
(Example 2) A paste containing 10% of glass powder with an average particle size of 1.3 ILm was prepared using the glass composition of No. 8.9.1O111 used in Example 1 and the binder and solvent of the same composition as in Example. 0.7% silicon carbide sintered body by screen printing method.
A paste was applied to one side of a glass having a thickness of X 5 (lx 50 mg) so that the amount of glass powder was 0.8 sg/cm'' and fired in the air.

焼成は350℃で1時間加熱しバインダーを除去したの
ち、 1400°Cに加熱し30分間焼成を行い、放冷
してガラス層を形成させ、次に平均粒径3μ塵のガラス
粉末を実施例1と同一のバインター、溶剤を用いてペー
ストを調製し、前記ガラス被覆面にスクリーン印刷法で
塗布し、350°Cの温度で1時間加熱しバインダーを
除去した後夫々 900℃の温度で15分、】000°
Cの温度で5分加熱して焼成を行い、急冷してガラス被
覆を形成させた。その結果を前記No、順に13.14
.15.16として第3表に示す。2段階目のガラス被
覆の厚みは1004 rsである。この方法を用いるこ
とにより炭化珪素焼結体の表面の気孔を被覆し平滑な気
泡、亀裂の発生のない接着性の良好なガラス被覆かでき
る。
Firing was performed at 350°C for 1 hour to remove the binder, then heated to 1400°C for 30 minutes, left to cool to form a glass layer, and then glass powder with an average particle size of 3μ dust was used as an example. A paste was prepared using the same binder and solvent as in 1, and applied to the glass-coated surface by screen printing, heated at a temperature of 350°C for 1 hour to remove the binder, and then heated at a temperature of 900°C for 15 minutes. , ]000°
Firing was performed by heating at a temperature of C for 5 minutes, followed by rapid cooling to form a glass coating. The results are numbered 13.14 in order.
.. It is shown in Table 3 as 15.16. The thickness of the second stage glass coating is 1004 rs. By using this method, the pores on the surface of the silicon carbide sintered body can be covered, and a smooth glass coating with good adhesion without bubbles and cracks can be obtained.

第  1  表 第  2  表 (発明の効果) 本発明による炭化珪素焼結体上のガラス被覆は亀裂かな
く、また気泡もない均一なガラス和か形成され、炭化珪
素焼結体の表面の電気抵抗か大きくなるのて、この焼結
体は各種集積回路用基板等としてすぐれた性質を持って
おり実用的な効果は著しい。
Table 1 Table 2 (Effects of the Invention) The glass coating on the silicon carbide sintered body according to the present invention has no cracks or bubbles, and is formed into a uniform glass coating, which reduces the electrical resistance of the surface of the silicon carbide sintered body. Because of its large size, this sintered body has excellent properties as a substrate for various integrated circuits, and its practical effects are remarkable.

第  3  表Table 3

Claims (3)

【特許請求の範囲】[Claims] (1)炭化珪素焼結体の表面にAl_2O_315〜2
3重量%、SiO_230〜55重量%、B_2O_3
20〜40重量%、CaO5〜10重量%、ZrO_2
1〜3重量%の組成のガラスを被覆した炭化珪素焼結体
(1) Al_2O_315~2 on the surface of silicon carbide sintered body
3% by weight, SiO_230-55% by weight, B_2O_3
20-40% by weight, CaO5-10% by weight, ZrO_2
A silicon carbide sintered body coated with glass having a composition of 1 to 3% by weight.
(2)炭化珪素焼結体の表面に請求の範囲第1項のガラ
ス粉末と有機バインダーとよりなるペーストを塗布し8
50〜1000℃に加熱することを特徴とするガラス被
覆炭化珪素焼結体の製造法。
(2) Applying a paste consisting of the glass powder and organic binder of claim 1 to the surface of the silicon carbide sintered body;
A method for producing a glass-coated silicon carbide sintered body, which comprises heating to 50 to 1000°C.
(3)炭化珪素焼結体の表面に請求の範囲第1項のガラ
ス粉末と有機バインダーとよりなるペーストを塗布し1
000〜1450℃に加熱して第1次ガラス被覆を形成
し更にその上に前記ペーストを塗布し850〜1000
℃に加熱して第2次ガラス被覆を形成することを特徴と
するガラス被覆炭化珪素焼結体の製造法。
(3) Applying a paste consisting of the glass powder and organic binder of claim 1 to the surface of the silicon carbide sintered body;
000 to 1450°C to form a primary glass coating, and then apply the paste on top of the primary glass coating.
1. A method for producing a glass-coated silicon carbide sintered body, which comprises heating to a temperature of 0.degree. C. to form a secondary glass coating.
JP29061288A 1988-11-17 1988-11-17 Glass-coated sintered silicon carbide and production thereof Pending JPH02137787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29061288A JPH02137787A (en) 1988-11-17 1988-11-17 Glass-coated sintered silicon carbide and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29061288A JPH02137787A (en) 1988-11-17 1988-11-17 Glass-coated sintered silicon carbide and production thereof

Publications (1)

Publication Number Publication Date
JPH02137787A true JPH02137787A (en) 1990-05-28

Family

ID=17758252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29061288A Pending JPH02137787A (en) 1988-11-17 1988-11-17 Glass-coated sintered silicon carbide and production thereof

Country Status (1)

Country Link
JP (1) JPH02137787A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012072700A2 (en) 2010-12-02 2012-06-07 Commissariat à l'énergie atomique et aux énergies alternatives Method for preparing a glass/silicon-carbide composite material
CN109824367A (en) * 2019-02-21 2019-05-31 国网河南省电力公司社旗县供电公司 A kind of silicon carbide-based composite circuit board and preparation method thereof
CN113800950A (en) * 2021-08-27 2021-12-17 咸阳盈和电子材料有限公司 Glass coating for surface of silicon carbide rod and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012072700A2 (en) 2010-12-02 2012-06-07 Commissariat à l'énergie atomique et aux énergies alternatives Method for preparing a glass/silicon-carbide composite material
CN109824367A (en) * 2019-02-21 2019-05-31 国网河南省电力公司社旗县供电公司 A kind of silicon carbide-based composite circuit board and preparation method thereof
CN113800950A (en) * 2021-08-27 2021-12-17 咸阳盈和电子材料有限公司 Glass coating for surface of silicon carbide rod and preparation method thereof

Similar Documents

Publication Publication Date Title
JPS5946900B2 (en) Non-porous glass-ceramic body
US3564587A (en) Sealing glass compositions and articles bonded therewith
JPH01224240A (en) Dielectric composition
JPS58151345A (en) Glass composition with low dielectric constant
US3927238A (en) Lead-free glaze for high density alumina
JP4100591B2 (en) Lead-free glass powder and plasma display panel barrier rib composition
JPH02137787A (en) Glass-coated sintered silicon carbide and production thereof
US4378409A (en) Electrical resistor material, resistor made therefrom and method of making the same
JPS5964545A (en) Glass-ceramic composite material
JP3606744B2 (en) Heat resistant material and method for producing the same
JP3829887B2 (en) Dielectric materials for plasma display panels
JPS60118648A (en) Glaze composition for ceramic base
JPS6326522B2 (en)
CN108585503B (en) Novel anti-static ceramic glaze and preparation method and application thereof
JP2519938B2 (en) Glass composition
JPS6350345A (en) Glass ceramic sintered body
JPS6055454B2 (en) Colored ceramic color frit composition
JPH0446035A (en) Glaze composition
JPS6342705B2 (en)
JPS6054721B2 (en) Paste composition for forming insulators
JPH07115977B2 (en) Glass-coated silicon carbide sintered body and method for producing the same
JPH02102147A (en) Decorative glass composition
JPH0218562B2 (en)
JP7506566B2 (en) Sealing and coating materials
JPH0768065B2 (en) Glass-coated aluminum nitride sintered body and method for producing the same