JPH03274679A - Sealed metallic oxide-hydrogen storage battery - Google Patents

Sealed metallic oxide-hydrogen storage battery

Info

Publication number
JPH03274679A
JPH03274679A JP2076003A JP7600390A JPH03274679A JP H03274679 A JPH03274679 A JP H03274679A JP 2076003 A JP2076003 A JP 2076003A JP 7600390 A JP7600390 A JP 7600390A JP H03274679 A JPH03274679 A JP H03274679A
Authority
JP
Japan
Prior art keywords
activated carbon
hydrogen storage
battery
storage battery
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2076003A
Other languages
Japanese (ja)
Other versions
JP2867572B2 (en
Inventor
Yasuhiro Takeuchi
康弘 竹内
Junjiro Awano
順二郎 粟野
Yoshiharu Yamashita
山下 祥治
Eiji Kadouchi
英治 門内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2076003A priority Critical patent/JP2867572B2/en
Publication of JPH03274679A publication Critical patent/JPH03274679A/en
Application granted granted Critical
Publication of JP2867572B2 publication Critical patent/JP2867572B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To accelerate the reaction between the oxygen and the hydrogen inside a battery so as to suppress the rise of the internal pressure of the battery by arranging a catalyst, where activated carbon consisting of activated carbon fibers is made a carrier, in the battery. CONSTITUTION:A negative pole plate 1 consisting of hydrogen occluding alloy and an Ni positive electrode 2 are wound through a separator 3 into spiral shape and are arranged in a case 4. A catalyst consisting of an activated fiber carrier is put on this electrode through an insulating plate 5, and those are sealed with a sealing plate 7 which has a relief valve. A positive electrode terminal 8 is connected to a positive lead 9. For activated carbon, cloth-shaped activated carbon fibers, which are heat-treated under the mixed gas atmosphere of He and steam, and are a fablic of cloth or felt-like made from the material, obtained from phenol line, pitch line, acrylic line, or rayon line, as a starting material, are used. It soaked in the PdCl2 solution as a catalyst, and after drying, activation treatment is applied.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水素吸蔵合金を負極材料とし、金属酸化物電
極を正極とする密閉形金属酸化物・水素蓄電池の改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an improvement in a sealed metal oxide/hydrogen storage battery that uses a hydrogen storage alloy as a negative electrode material and a metal oxide electrode as a positive electrode.

従来の技術 従来、負極材料として水素吸蔵合金を用いたこの種のア
ルカリ蓄電池は、高エネルギー密度、低公害電池として
注目され、金属酸化物正極との組合わせによる密閉形金
属酸化物・水素電池が提案されている。
Conventional technology This type of alkaline storage battery, which uses a hydrogen storage alloy as the negative electrode material, has attracted attention as a high-energy density, low-pollution battery, and sealed metal oxide hydrogen batteries in combination with a metal oxide positive electrode have been Proposed.

水素吸蔵合金は使用時に電解液中で酸化されやすく、通
常その表面に水酸化物が形成され、次第に電極容量が減
少してやがて寿命に達する。そして、密閉形金属酸化物
・水素蓄電池では過充電時に金属酸化物例えば、ニッケ
ル正極から酸素が発生するが、上述したように水素吸蔵
合金の劣化が起こると、酸素と合金が吸蔵している水素
との反応が妨げられ、酸素が吸収されなくなる。さらに
、水素吸蔵合金負極から水素が発生するようになるため
、電池内圧を上昇させる原因となる。
Hydrogen storage alloys are easily oxidized in the electrolyte during use, and hydroxides are usually formed on their surfaces, which gradually reduces the electrode capacity and eventually reaches the end of its life. In a sealed metal oxide/hydrogen storage battery, oxygen is generated from the metal oxide (e.g., nickel positive electrode) during overcharging, but as mentioned above, when the hydrogen storage alloy deteriorates, oxygen and the hydrogen stored in the alloy This prevents the reaction with oxygen from being absorbed. Furthermore, hydrogen is generated from the hydrogen storage alloy negative electrode, which causes an increase in the internal pressure of the battery.

従来、上記のような不都合を解消するため、負極に触媒
を添加する方法が提案されているく特開昭62−291
862号公報)。しかし、これは水素吸蔵合金粉末、触
媒および結合剤等で水素吸蔵合金負極を形成したもので
あり、この方法では、とくに高率充電時において、触媒
性能を最大限に発揮させることが困難であり、充分な効
果を発揮させるには多量の触媒物質が必要であった。
In order to solve the above-mentioned disadvantages, a method of adding a catalyst to the negative electrode has been proposed.
Publication No. 862). However, this method forms a hydrogen storage alloy negative electrode using hydrogen storage alloy powder, a catalyst, a binder, etc., and with this method, it is difficult to maximize the catalyst performance, especially during high rate charging. However, a large amount of catalytic material was required to achieve a sufficient effect.

発明が解決しようとする課題 本発明は、上記問題点を解決するためになされたもので
あり、電解液中での水素吸蔵合金の酸化を防止して電池
寿命を延ばすとともに、電池内で発生する酸素および、
水素による電池内圧の上昇を防止することができる密閉
形金属酸化物・水素蓄電池を提供することを目的とする
Problems to be Solved by the Invention The present invention has been made to solve the above-mentioned problems, and extends the life of the battery by preventing oxidation of the hydrogen storage alloy in the electrolyte, and also prevents the oxidation of the hydrogen storage alloy generated within the battery. oxygen and
An object of the present invention is to provide a sealed metal oxide/hydrogen storage battery that can prevent an increase in battery internal pressure due to hydrogen.

課題を解決するための手段 本発明の密閉形金属酸化物・水素蓄電池は、金属酸化物
例えば、ニッケル酸化物、カドミウム酸化物等からなる
正極、水素吸蔵合金電極からなる負極の間にセパレータ
を介在させた電極体と、活性炭を担体とした触媒体とで
構成し、これらを密閉形容器に収容し、アルカリ水溶液
電解液を充填して密封したことを特徴とするものである
。なお、本発明において用いられる触媒担体としての活
性炭は、フェノール系原料を出発物質として得られた活
性炭繊維からなり、その形状としては、クロス状く織物
状)もしくはフェルト状であることが好ましい。
Means for Solving the Problems The sealed metal oxide/hydrogen storage battery of the present invention has a separator interposed between a positive electrode made of a metal oxide such as nickel oxide, cadmium oxide, etc. and a negative electrode made of a hydrogen storage alloy electrode. The device is characterized in that it is composed of an electrode body made of carbon and a catalyst body using activated carbon as a carrier, and these are housed in a closed container, which is then filled with an alkaline aqueous electrolyte and sealed. The activated carbon used as a catalyst carrier in the present invention is made of activated carbon fibers obtained using a phenolic raw material as a starting material, and is preferably in the form of a cloth, a fabric, or a felt.

さらに、前記活性炭担体に担持する触媒としてはたとえ
ば、白金(Pt)、パラジウム(Pd)。
Furthermore, examples of the catalyst supported on the activated carbon carrier include platinum (Pt) and palladium (Pd).

ロジウム(Rd)、ルテニウム(Ru)から選ばれる少
なくとも1種の金属を担持させたものを挙げることがで
きる。
Examples include those on which at least one metal selected from rhodium (Rd) and ruthenium (Ru) is supported.

作用 このような密閉形金属酸化物・水素蓄電池によれば、高
活性な触媒が電池内に配置されているため、電池内で発
生する酸素と水素との反応を効率よく促進させ迅速に水
にもどすことができる。
Function: According to such a sealed metal oxide/hydrogen storage battery, a highly active catalyst is placed inside the battery, which efficiently promotes the reaction between oxygen and hydrogen generated within the battery and quickly converts it into water. It can be returned.

従って従来問題であった電池内圧の上昇を抑制し、安全
性を高めるのみでなく、電池寿命をも向上させることが
できる。
Therefore, it is possible to suppress the increase in battery internal pressure, which has been a problem in the past, and not only improve safety but also improve battery life.

実施例 以下、本発明の実施例を図面に従い説明する。Example Embodiments of the present invention will be described below with reference to the drawings.

負極で使用する水素吸蔵合金としては、MmN i 4
.2M ns、a (Mmはミシュメタル〉を選び、こ
の合金のインゴットを耐圧容器内に収容して、水素の吸
蔵および除去を行ない活性化処理を施した。この水素吸
蔵合金粉末に適量(3−t%〜5wt%)のポリビニル
アルコールを結着剤として加え、よく混合し、発泡状金
属多孔体内に充填し、加圧乾燥後リードを取り付は負極
電極とした。また、正極には公知の焼結形ニッケルを用
い、セパレータ(ポリプロピレン製フィルムおよびナイ
ロン製フィルムより構成)を介在させ全体を渦巻状に巻
いて電極体を形成させた。さらに活性炭を担体とした触
媒体を組み込み、アルカリ水溶液(30%KOH)電解
液を注入して密閉形金属酸化物・水素蓄電池を作製した
。前記活性炭には、ヤシガラ粒状炭(約C2〜311w
11のタブレット状)と、フェノール系(ノボラック硬
化樹脂)原料を出発物質としたクロス状(織物)、フエ
九ト状(マット状とも言う。)の布地で、ヘリウム(H
e)と水蒸気の混合ガス雰囲気下でs o o ’cの
温度で賦活化を行って得られたクロス状・フェルト状の
活性炭繊維を使用した。また、触媒物質としてはパラジ
ウム(Pd)を用い、活性炭担体に対し0.1wt%担
持させた。担持方法は、所定濃度の塩化パラジウム水溶
液(PdC12)を調整し、これに活性炭担体を浸漬さ
せ、乾燥後、水素10%の窒素ガス気流中において35
0℃で活性化処理をおこなって作製した。
The hydrogen storage alloy used in the negative electrode is MmN i 4
.. 2M ns,a (Mm is mishmetal) was selected, and an ingot of this alloy was placed in a pressure container and subjected to activation treatment to absorb and remove hydrogen.A suitable amount (3-t % to 5 wt%) of polyvinyl alcohol was added as a binder, mixed well, and filled into the foamed metal porous body. After drying under pressure, the lead was attached as a negative electrode. In addition, a known sintering agent was used as a positive electrode. Using crystalline nickel, the whole was spirally wound with a separator (composed of a polypropylene film and a nylon film) interposed between them to form an electrode body.Furthermore, a catalyst body with activated carbon as a carrier was incorporated, and an aqueous alkaline solution (30 %KOH) electrolyte was injected to produce a sealed metal oxide/hydrogen storage battery.The activated carbon contained coconut husk granular carbon (approximately
11 tablet-like), cloth-like (fabric), and cloth-like (also called mat-like) fabrics made from phenolic (novolac cured resin) raw materials.
A cloth-like/felt-like activated carbon fiber obtained by activation at a temperature of s o o 'c in a mixed gas atmosphere of e) and water vapor was used. Further, palladium (Pd) was used as a catalyst material, and 0.1 wt% was supported on the activated carbon carrier. The supporting method is to prepare an aqueous solution of palladium chloride (PdC12) with a predetermined concentration, immerse the activated carbon support in this, dry it, and then immerse it in a nitrogen gas stream containing 10% hydrogen for 35 minutes.
It was produced by performing activation treatment at 0°C.

さら(こ、これらの活性炭を担体とする触媒をフッ素樹
脂による清水処理を施したものもまた同時に作製した。
At the same time, catalysts using these activated carbons as carriers were also prepared by subjecting them to clean water treatment using a fluororesin.

なお、清水処理は、フッ素樹脂の懸濁液(ダイキン工業
製 商品名 D−1)に浸漬後、100℃で乾燥して調
製した。電極体と触媒体の本実施例の具体的な構成は、
第1図の単2形の密閉形金属酸化物・水素蓄電池で示し
た。
The clear water treatment was prepared by immersing the sample in a fluororesin suspension (trade name D-1, manufactured by Daikin Industries, Ltd.) and then drying it at 100°C. The specific configuration of the electrode body and catalyst body in this example is as follows:
This is shown in Figure 1 as a AA sealed metal oxide/hydrogen storage battery.

第1図において、水素吸蔵合金からなる負極板1とニッ
ケル正極2はセパレータ3を介して渦巻状に巻かれてケ
ース4内に配置されている。この電極体上には絶縁板5
を介して、電池内に発生する水素ガスおよび酸素ガスを
水に変換するための活性炭繊維担体からなる触媒体6を
入れて安全弁を有する封口板7でケースを閉じることで
密閉化されている。8は正極リード9と接続している正
極端子である。
In FIG. 1, a negative electrode plate 1 made of a hydrogen storage alloy and a nickel positive electrode 2 are spirally wound with a separator 3 interposed therebetween and placed in a case 4. An insulating plate 5 is placed on this electrode body.
A catalyst body 6 made of an activated carbon fiber carrier for converting hydrogen gas and oxygen gas generated within the battery into water is inserted through the battery, and the case is sealed by closing the case with a sealing plate 7 having a safety valve. 8 is a positive terminal connected to the positive lead 9.

第2図に本実施例の密閉形ニッケル・水素蓄電池におけ
る充放電サイクルと電池内圧の変化を示した。蓄電池の
充放電条件は、600 m Aで5時間充電し、400
 m Aで放電した。この時の充放電サイクル試験の温
度は室温とし、各電池の充放電サイクル毎の内圧を圧力
センサーにより測定したものである。その結果、aで示
す本発明のクロス状活性炭繊維からなる触媒体を使用し
た電池、およびbで示すフェルト状活性炭繊維からなる
触媒体を使用した電池の内圧は各サイクル(50サイク
ル、100サイクル、150サイクル、200サイクル
、250サイクル)において、電池内圧の目標値5kg
/cj (安全弁の作動値)に対し、ヤシガラ粒状活性
炭より作製した電池C1の内圧よりも低い値を示した。
FIG. 2 shows the charge/discharge cycles and changes in battery internal pressure in the sealed nickel-metal hydride storage battery of this example. The charging and discharging conditions for the storage battery are as follows: Charge at 600 mA for 5 hours,
It was discharged at mA. The temperature of the charge/discharge cycle test at this time was room temperature, and the internal pressure of each battery was measured at each charge/discharge cycle using a pressure sensor. As a result, the internal pressure of the battery using the catalyst body made of the cross-shaped activated carbon fibers of the present invention shown in a, and the battery using the catalyst body made of felt-like activated carbon fibers shown in b was determined for each cycle (50 cycles, 100 cycles, 150 cycles, 200 cycles, 250 cycles), the target value of battery internal pressure is 5 kg.
/cj (operating value of the safety valve) showed a value lower than the internal pressure of battery C1 made from coconut shell granular activated carbon.

また、第3図に示す如く、清水処理を施すことによって
も電池内圧を低くする効果が認められた。
Furthermore, as shown in FIG. 3, the effect of lowering the battery internal pressure was also observed by performing clean water treatment.

次にフェノール系以外の出発原料がら得られた活性炭繊
維について記述する。フェノール系以外では、ピッチ系
、アクリル系、レーヨン系がら得られる活性炭繊維があ
る。これら各々の活性炭繊維〈フェルト状)を用い、先
の実施例と同様に密閉形ニッケル・水素蓄電池を作製し
同様に評価した結果を第4図に示す。その結果、電池の
内圧は、いずれの電池もヤシガラ活性炭を用いた電池(
第2図のC)よりも、各サイクル(50サイクル、10
0サイクル、150サイクル、200サイクル、250
サイクル)で、電池内圧が低い値を示した。また、その
ときの序列は、フェノール系、シ・−ヨン系、アクリル
系、ピッチ系の順てあり、フェノール系がもっとも優れ
ていた。なお、活性炭繊維の物性面でも、フェノール系
活性炭が、もっとも強くて柔軟性に冨んでいた。
Next, activated carbon fibers obtained from starting materials other than phenolic materials will be described. In addition to phenol-based fibers, there are activated carbon fibers obtained from pitch-based, acrylic-based, and rayon-based fibers. Using each of these activated carbon fibers (felt-like), a sealed nickel-metal hydride storage battery was fabricated in the same manner as in the previous example and evaluated in the same manner. The results are shown in FIG. As a result, the internal pressure of the batteries was found to be lower than that of batteries using coconut shell activated carbon (
Each cycle (50 cycles, 10
0 cycles, 150 cycles, 200 cycles, 250
cycle), the battery internal pressure showed a low value. At that time, the order was phenol, cyanide, acrylic, and pitch, with phenol being the most superior. In terms of physical properties of activated carbon fibers, phenolic activated carbon was the strongest and most flexible.

以上、本発明を実施例に従い説明したが特に、負極材料
、正極材料および、セパレータ材料等は、これらに限定
されるものではない。本発明で言うクロス状(織物状)
活性炭繊維とは、紐状の形状等も含むものである。
Although the present invention has been described above according to examples, the negative electrode material, positive electrode material, separator material, etc. are not limited to these. Cross shape (fabric shape) as used in the present invention
Activated carbon fibers also include string-like shapes.

発明の効果 以上記述した如く本発明によれば、電池寿命が長く、電
池内で発生する酸素および、水素による電池内圧の上昇
を防止することができる密閉形金属酸化物・水素蓄電池
を提供できるものである。
Effects of the Invention As described above, according to the present invention, it is possible to provide a sealed metal oxide/hydrogen storage battery that has a long battery life and can prevent an increase in internal pressure of the battery due to oxygen and hydrogen generated within the battery. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における触媒体を用いた密閉形
金属酸化物・水素蓄電池の構成を示す断面略図、第2図
、第3図および第4図は実施例の電池の充放電サイクル
に伴う電池内圧変化を示す図である。 1・・・・・・負極、2・・・・・・正極、3・・口・
・セパレータ、4・・・・・・電池ケース、5・・・・
・・絶縁板、6・・・・・・触媒体、7・・・・・・封
口板、8・・・・・・正極端子、9・・・・・・正極ノ
 −ド 。
FIG. 1 is a schematic cross-sectional view showing the structure of a sealed metal oxide/hydrogen storage battery using a catalyst body in an example of the present invention, and FIGS. 2, 3, and 4 are charge/discharge cycles of the battery in the example. FIG. 3 is a diagram showing changes in battery internal pressure due to 1... Negative electrode, 2... Positive electrode, 3... Mouth...
・Separator, 4...Battery case, 5...
...Insulating plate, 6...Catalyst body, 7...Sealing plate, 8...Positive electrode terminal, 9...Positive electrode node.

Claims (5)

【特許請求の範囲】[Claims] (1)金属酸化物電極からなる正極と水素吸蔵合金電極
からなる負極との間にセパレータを介在させた電極体と
、活性炭を担体とした触媒体とで構成され、アルカリ水
溶液を電解液とする密閉形金属酸化物・水素蓄電池にお
いて、前記活性炭が活性炭繊維からなることを特徴とす
る密閉形金属酸化物・水素蓄電池。
(1) Consists of an electrode body with a separator interposed between a positive electrode made of a metal oxide electrode and a negative electrode made of a hydrogen storage alloy electrode, and a catalyst body made of activated carbon as a carrier, and uses an alkaline aqueous solution as the electrolyte. A sealed metal oxide/hydrogen storage battery, wherein the activated carbon is made of activated carbon fiber.
(2)触媒体の担体が、クロス状(織物状)の活性炭繊
維からなることを特徴とする特許請求の範囲第1項記載
の密閉形金属酸化物・水素蓄電池。
(2) The sealed metal oxide/hydrogen storage battery according to claim 1, wherein the catalyst carrier is made of cross-shaped (fabric-like) activated carbon fibers.
(3)触媒体の担体が、フェルト状の活性炭繊維からな
ることを特徴とする特許請求の範囲第1項又は、第2項
記載の密閉形金属酸化物・水素蓄電池。
(3) The sealed metal oxide/hydrogen storage battery according to claim 1 or 2, wherein the catalyst carrier is made of felt-like activated carbon fiber.
(4)活性炭繊維の出発原料がフェノール系(硬化ノボ
ラック繊維)であることを特徴とする特許請求の範囲第
1項、第2項および第3項のいずれかに記載の密閉形金
属酸化物・水素蓄電池。
(4) The closed metal oxide according to any one of claims 1, 2, and 3, wherein the starting material of the activated carbon fiber is phenolic (cured novolac fiber). Hydrogen storage battery.
(5)触媒体表面をフッ素樹脂もしくはシリコン樹脂に
より溌水性処理したことを特徴とする特許請求の範囲第
1項、第2項、第3項および第4項のいずれかに記載の
密閉形金属酸化物・水素蓄電池。
(5) The closed-type metal according to any one of claims 1, 2, 3, and 4, wherein the surface of the catalyst body is treated with water-repellent treatment using a fluororesin or silicone resin. Oxide/hydrogen storage battery.
JP2076003A 1990-03-26 1990-03-26 Sealed metal oxide / hydrogen storage battery Expired - Fee Related JP2867572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2076003A JP2867572B2 (en) 1990-03-26 1990-03-26 Sealed metal oxide / hydrogen storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2076003A JP2867572B2 (en) 1990-03-26 1990-03-26 Sealed metal oxide / hydrogen storage battery

Publications (2)

Publication Number Publication Date
JPH03274679A true JPH03274679A (en) 1991-12-05
JP2867572B2 JP2867572B2 (en) 1999-03-08

Family

ID=13592631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2076003A Expired - Fee Related JP2867572B2 (en) 1990-03-26 1990-03-26 Sealed metal oxide / hydrogen storage battery

Country Status (1)

Country Link
JP (1) JP2867572B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0947010A4 (en) * 1996-11-12 2003-05-14 Philadelphia Scientific Llc The use of catalysts in standby valve-regulated lead acid cells

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170109912A (en) * 2016-03-22 2017-10-10 삼성에스디아이 주식회사 Apparatus for drying electrode plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0947010A4 (en) * 1996-11-12 2003-05-14 Philadelphia Scientific Llc The use of catalysts in standby valve-regulated lead acid cells

Also Published As

Publication number Publication date
JP2867572B2 (en) 1999-03-08

Similar Documents

Publication Publication Date Title
US4994334A (en) Sealed alkaline storage battery and method of producing negative electrode thereof
JPH07326353A (en) Manufacture of hydrogen storage alloy electrode
Kaiya et al. Improvement in cycle life performance of high capacity nickel-metal hydride battery
JPH03274679A (en) Sealed metallic oxide-hydrogen storage battery
JPS5937667A (en) Metal oxide-hydrogen battery
JPS59181459A (en) Metal oxide hydrogen battery
JPH0447676A (en) Manufacture of sealed storage battery
JP2867570B2 (en) Sealed metal oxide / hydrogen storage battery
US6129789A (en) Surface treatment method of hydrogen absorbing alloy
JP2000340221A (en) Nickel electrode, nickel hydrogen storage battery using same as positive electrode
JP2867571B2 (en) Sealed metal oxide / hydrogen storage battery
JP3387314B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH06283197A (en) Sealed nickel-hydrogen battery and activation thereof
JP4839575B2 (en) Nickel metal hydride battery
JPS6149379A (en) Zinc alkali cell
JP2673337B2 (en) Air-metal hydride secondary battery
JPH044574A (en) Secondary battery
JP3742149B2 (en) Alkaline secondary battery
JPH0562434B2 (en)
JPS62295353A (en) Enclosed type nickel-hydrogen storage battery
JPH04188561A (en) Alkaline storage battery
JPH0789487B2 (en) Cadmium electrode for alkaline storage battery and manufacturing method thereof
JP3504350B2 (en) Manufacturing method of alkaline secondary battery
JP4842605B2 (en) Method for producing electrode plate for alkaline storage battery
JP3069767B2 (en) Hydrogen storage alloy electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees