JP4842605B2 - Method for producing electrode plate for alkaline storage battery - Google Patents

Method for producing electrode plate for alkaline storage battery Download PDF

Info

Publication number
JP4842605B2
JP4842605B2 JP2005286359A JP2005286359A JP4842605B2 JP 4842605 B2 JP4842605 B2 JP 4842605B2 JP 2005286359 A JP2005286359 A JP 2005286359A JP 2005286359 A JP2005286359 A JP 2005286359A JP 4842605 B2 JP4842605 B2 JP 4842605B2
Authority
JP
Japan
Prior art keywords
electrode plate
solution
alkaline
nickel
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005286359A
Other languages
Japanese (ja)
Other versions
JP2007095602A (en
Inventor
千浩 藤澤
英次 渡邉
正樹 樋口
直樹 中田
彰 平川
健司 藤井
信生 前田
哲也 広地
純一 高橋
浩二 宮口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
FDK Tottori Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, FDK Tottori Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005286359A priority Critical patent/JP4842605B2/en
Publication of JP2007095602A publication Critical patent/JP2007095602A/en
Application granted granted Critical
Publication of JP4842605B2 publication Critical patent/JP4842605B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明はニッケル・カドミウム蓄電池、ニッケル・水素蓄電池などのアルカリ蓄電池に係り、特に、多孔性焼結基板に高密度に活物質が充填された焼結式極板を備えたアルカリ蓄電池用極板の製造方法に関する。   The present invention relates to an alkaline storage battery such as a nickel / cadmium storage battery or a nickel / hydrogen storage battery, and more particularly, to an alkaline storage battery electrode plate including a sintered electrode plate in which a porous sintered substrate is filled with an active material at a high density. It relates to a manufacturing method.

従来、アルカリ蓄電池に使用されるニッケル極板やカドミウム極板としては、活物質の利用率が高く、極板の導電性がよくて放電性能やサイクル特性に優れるなどの特徴を有する焼結式極板が広く使用されている。このような焼結式極板はニッケル焼結基板に、所謂、化学含浸法により活物質を充填して製造される。具体的には、まず、ニッケル粉末とカルボキシメチルセルロースなどの増粘剤を水で混練したスラリーを導電性芯体に塗着した後、還元性雰囲気で焼結して多孔性ニッケル焼結基板を作製する。この後、得られた多孔性ニッケル焼結基板を硝酸塩(例えば、硝酸ニッケルや硝酸カドミウムなど)を主体とする溶液に浸漬して、硝酸塩を多孔性ニッケル焼結基板の細孔中に含浸させる。   Conventionally, as a nickel electrode plate or a cadmium electrode plate used for an alkaline storage battery, a sintered electrode having features such as high utilization of active material, good electrode plate conductivity, and excellent discharge performance and cycle characteristics. Board is widely used. Such a sintered electrode plate is manufactured by filling a nickel sintered substrate with an active material by a so-called chemical impregnation method. Specifically, first, a slurry obtained by kneading nickel powder and a thickener such as carboxymethyl cellulose with water is applied to the conductive core, and then sintered in a reducing atmosphere to produce a porous nickel sintered substrate. To do. Thereafter, the obtained porous nickel sintered substrate is immersed in a solution mainly composed of nitrate (for example, nickel nitrate or cadmium nitrate) to impregnate the nitrate in the pores of the porous nickel sintered substrate.

ついで、乾燥した後、アルカリ溶液中に浸漬して、多孔性ニッケル焼結基板の細孔中に含浸された硝酸塩を水酸化物に活物質化し、最後に水洗し、乾燥して焼結式ニッケル極板や焼結式カドミウム極板を製造するようにしている。このような化学含浸法にあっては、硝酸塩含浸工程→中間乾燥工程→活物質化するアルカリ処理工程→水洗工程の一連の処理工程が1サイクルとなるが、1サイクルだけでは必要な活物質量を多孔性ニッケル焼結基板中に充填することができず、通常、必要な充填量が得られるまで充填サイクルを繰り返して行い、最後工程として乾燥を行って製造するようにしている。   Next, after drying, it is immersed in an alkaline solution to convert the nitrate impregnated into the pores of the porous nickel sintered substrate into a hydroxide, finally washed with water, dried and sintered nickel An electrode plate and a sintered cadmium electrode plate are manufactured. In such a chemical impregnation method, a series of treatment steps of nitrate impregnation step → intermediate drying step → alkaline treatment step for converting into active material → water washing step is one cycle, but the amount of active material required in only one cycle Can not be filled in the porous nickel sintered substrate, and normally, the filling cycle is repeated until the necessary filling amount is obtained, and drying is carried out as the last step for production.

ところで、上述したアルカリ処理工程において、多孔性ニッケル焼結基板の浸漬処理を繰り返す毎に、当該多孔性ニッケル焼結基板に含浸された硝酸塩によりアルカリ液中に硝酸イオンが蓄積されるようになる。この場合、アルカリ液中の硝酸イオンが多くなると、硝酸ナトリウムなどの形で浸漬された焼結基板に残存するようになり、特性が低下した極板が得られるようになる。そこで、アルカリ液中に硝酸イオンが蓄積されないような措置を講じることが、特許文献1(米国特許第3647586号明細書)にて提案されるようになった。   By the way, whenever the immersion treatment of the porous nickel sintered substrate is repeated in the alkali treatment step described above, nitrate ions are accumulated in the alkaline liquid by the nitrate impregnated in the porous nickel sintered substrate. In this case, when the nitrate ions in the alkaline solution increase, the nitrate ions remain on the sintered substrate immersed in the form of sodium nitrate or the like, and an electrode plate having deteriorated characteristics can be obtained. Therefore, it has been proposed in Patent Document 1 (US Pat. No. 3,647,586) to take measures to prevent nitrate ions from accumulating in the alkaline solution.

ここで、特許文献1において開示されたものにおいては、アルカリ処理工程において用いられるアルカリ液を硝酸イオン除去装置に循環させて、アルカリ液中の硝酸イオンを除去し、アルカリ液中に硝酸イオンが蓄積されないようにしている。
米国特許第3647586号明細書
Here, in what was disclosed by patent document 1, the alkali liquid used in an alkali treatment process is circulated to the nitrate ion removal apparatus, the nitrate ion in an alkali liquid is removed, and nitrate ion accumulates in an alkali liquid. I'm trying not to be.
US Pat. No. 3,647,586

しかしながら、上述した特許文献1において提案された硝酸イオン除去装置を用いて硝酸イオンを除去するようにしても、得られた極板の充放電特性が低下するという現象が生じた。そこで、本発明者等が、充放電特性が低下する原因を種々検討した結果、アルカリ液中のクロムイオンが影響しているのではないかという知見を得た。ここで、アルカリ液中に所定量以上のクロムイオンが存在するようになると、アルカリ処理においてクロムイオンが極板に付着するようになる。そして、クロムイオンが付着した極板を用いると活物質利用率が低下して、充放電特性が低下するという問題を生じた。これは、極板表面にクロムイオンが存在することにより、極板の反応が阻害されて充放電特性が低下するためと考えられる。   However, even when nitrate ions are removed using the nitrate ion removing device proposed in Patent Document 1 described above, a phenomenon occurs in which the charge / discharge characteristics of the obtained electrode plate deteriorate. Thus, as a result of various studies on the cause of the deterioration of the charge / discharge characteristics, the present inventors have obtained the knowledge that chromium ions in the alkaline solution may have an effect. Here, when a predetermined amount or more of chromium ions are present in the alkaline solution, the chromium ions adhere to the electrode plate in the alkali treatment. And when the electrode plate which chromium ion adhered was used, the active material utilization rate fell and the problem that charging / discharging characteristics fell occurred. This is presumably because the presence of chromium ions on the surface of the electrode plate inhibits the reaction of the electrode plate and deteriorates the charge / discharge characteristics.

そこで、アルカリ液中にクロムイオンが存在する原因を追及したところ、アルカリ処理工程において用いられるアルカリ液槽の材質や焼結極板の芯体の材質がステンレスであることに起因することが明らかになった。すなわち、ステンレス中に含まれるクロムがアルカリ液中にわずかに溶出したものが徐々に蓄積されたものである。この場合、アルカリ液槽の材質や焼結極板の芯体の材質をステンレスなどのクロムを含む材料からクロムを含まない材料に変更すれば、アルカリ液中にクロムイオンが存在することは防止できる。ところが、アルカリ液槽や焼結極板の芯体をステンレスで形成することは長年にわたって広く行われていることであるため、これらの材質をステンレスから多の材質に変更することは、この種の極板のコストが上昇するという経済上の理由で不可能である。   Therefore, when the cause of the presence of chromium ions in the alkaline solution was investigated, it was clearly found that the material of the alkaline solution bath used in the alkali treatment process and the core material of the sintered electrode plate were stainless steel. became. That is, the chromium contained in the stainless steel is slightly accumulated in the alkaline solution and gradually accumulated. In this case, if the material of the alkaline solution tank or the core of the sintered electrode plate is changed from a material containing chromium such as stainless steel to a material not containing chromium, the presence of chromium ions in the alkaline solution can be prevented. . However, since it has been widely performed for many years to form the core of the alkaline bath and the sintered electrode plate, changing these materials from stainless steel to many materials is of this kind. This is not possible due to economic reasons that the cost of the plates increases.

本発明は上記問題点を解消するためになされたものであって、アルカリ液槽や焼結極板の芯体にクロムなどを含むステンレスを用いても、アルカリ処理を行った極板の充放電特性が低下しないような製造方法を提供することを目的とするものである。   The present invention has been made to solve the above problems, and charging / discharging of an electrode plate that has been subjected to alkali treatment even if stainless steel containing chromium or the like is used for the core of an alkaline solution bath or a sintered electrode plate. An object of the present invention is to provide a production method in which the characteristics are not deteriorated.

上記課題を解決するために、本発明のアルカリ蓄電池の製造方法は、多孔性焼結基板を硝酸塩を主体とする水溶液に浸漬する浸漬工程と、この硝酸塩を主体とする水溶液に浸漬された多孔性焼結基板を加熱して乾燥する中間乾燥工程と、中間乾燥された多孔性焼結基板をアルカリ溶液中に浸漬するアルカリ浸漬工程と、アルカリ分を除去する水洗工程とからなる充填サイクルを備え、アルカリ浸漬工程におけるアルカリ溶液中のクロムイオン濃度を50ppm以下に規制するようにしている。   In order to solve the above problems, the alkaline storage battery manufacturing method of the present invention includes a dipping step of immersing a porous sintered substrate in an aqueous solution mainly containing nitrate, and a porous material immersed in an aqueous solution mainly containing this nitrate. An intermediate drying step of heating and drying the sintered substrate, an alkali immersion step of immersing the intermediate dried porous sintered substrate in an alkaline solution, and a filling cycle consisting of a water washing step of removing the alkali content, The chromium ion concentration in the alkali solution in the alkali dipping process is regulated to 50 ppm or less.

このように、アルカリ浸漬工程におけるアルカリ溶液中のクロムイオン濃度を50ppm以下に規制すると、アルカリ処理においてクロムイオンが極板に付着したとしても、その不着量は極少量のため、活物質利用率が低下するのが防止できて、充放電特性を向上させることが可能となる。
この場合、アルカリ溶液中のクロムイオン濃度を50ppm以下に規制するためには、アルカリ溶液中のクロムイオン濃度が50ppmを越える濃度になると、当該アルカリ溶液の一部を廃棄し、新たなアルカリ溶液を追加するようにすれば、簡単にアルカリ溶液中のクロムイオン濃度を50ppm以下に規制することが可能となるので望ましい。
Thus, when the chromium ion concentration in the alkali solution in the alkali dipping step is regulated to 50 ppm or less, even if chromium ions adhere to the electrode plate in the alkali treatment, the amount of non-adherence is extremely small, and the active material utilization rate is low. Decrease can be prevented and charge / discharge characteristics can be improved.
In this case, in order to regulate the chromium ion concentration in the alkaline solution to 50 ppm or less, when the chromium ion concentration in the alkaline solution exceeds 50 ppm, a part of the alkaline solution is discarded and a new alkaline solution is added. If added, the chromium ion concentration in the alkaline solution can be easily regulated to 50 ppm or less, which is desirable.

ついで、本発明のアルカリ蓄電池の製造方法の好適な実施の形態を以下に説明するが、本発明は以下の実施の形態に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。なお、図1は本発明の一実施形態に係るニッケル−カドミウム蓄電池を模式的に示す断面図である。   Next, a preferred embodiment of the method for producing an alkaline storage battery of the present invention will be described below. However, the present invention is not limited to the following embodiment, and may be changed as appropriate without departing from the scope of the present invention. Can be implemented. FIG. 1 is a cross-sectional view schematically showing a nickel-cadmium storage battery according to an embodiment of the present invention.

1.ニッケル焼結基板
メチルセルロース溶液と、造孔剤としてのメチルメタアクリレート−アクリロニトリル共重合体を主成分とする完全発泡有機中空球体と、ニッケル粉末とを真空引きしながら混練することによりスラリーを作製した。得られたスラリーをステンレスにニッケルメッキをほどして形成した導電性芯体11a(12a)の両面に塗布して乾燥させた後、還元性雰囲気下で1000℃で10分間焼結して、多孔度が84%で、厚みが0.60mmのニッケル焼結基板11b(12b)を作製した。
1. Nickel Sintered Substrate A slurry was prepared by kneading a methyl cellulose solution, a completely foamed organic hollow sphere mainly composed of a methyl methacrylate-acrylonitrile copolymer as a pore-forming agent, and nickel powder while vacuuming. The obtained slurry was applied to both surfaces of a conductive core 11a (12a) formed by un-plating stainless steel and dried, and then sintered at 1000 ° C. for 10 minutes in a reducing atmosphere. A nickel sintered substrate 11b (12b) having a degree of 84% and a thickness of 0.60 mm was produced.

2.ニッケル正極板
上述のように作製されたニッケル焼結基板11bを金属質量換算でNi:Co=1:1の組成比を有する硝酸塩溶液(25℃で、比重が1.30のもの)に浸漬(第1浸漬工程)した。この後、50℃で30分間乾燥(中間乾燥工程)させた。ついで、濃度が8.0mol/lで温度が80℃の水酸化ナトリウム水溶液中に30分間浸漬してアルカリ処理(アルカリ処理工程)を行い、ニッケル焼結基板11bの細孔内に析出させた硝酸塩を水酸化物に置換させた。その後、雰囲気温度が100〜150℃になるように調整して、60分間アルカリ熱処理を行った。
2. Nickel positive electrode plate The nickel sintered substrate 11b produced as described above is immersed in a nitrate solution (having a specific gravity of 1.30 at 25 ° C.) having a composition ratio of Ni: Co = 1: 1 in terms of metal mass ( (First immersion step). Then, it was made to dry at 50 degreeC for 30 minutes (intermediate drying process). Next, nitrate was deposited in the pores of the nickel sintered substrate 11b by immersing in an aqueous solution of sodium hydroxide having a concentration of 8.0 mol / l and a temperature of 80 ° C. for 30 minutes for alkali treatment (alkali treatment step). Was replaced with hydroxide. Thereafter, an alkali heat treatment was performed for 60 minutes by adjusting the atmospheric temperature to 100 to 150 ° C.

ついで、金属質量換算でNi:Co:Cd=97:1:2の組成比を有する硝酸塩溶液(80℃で、比重が1.70のもの)に浸漬(第2浸漬工程)した。この後、50℃で30分間乾燥(中間乾燥工程)させた。ついで、濃度が8.0mol/lで温度が80℃の水酸化ナトリウム水溶液中に30分間浸漬してアルカリ処理(アルカリ処理工程)を行った後、イオン交換水中で水洗してアルカリ分を除去(水洗工程)した。この後、50℃で30分間乾燥(乾燥工程)させて、水分を除去した。その後、再び上記の第2浸漬工程に戻り、上記と同様な浸漬工程、中間乾燥工程、アルカリ処理工程、水洗工程および乾燥工程を7回繰り返して行うことにより、所定の活物質量が充填されたニッケル正極板11を作製した。   Subsequently, it was immersed (second immersion step) in a nitrate solution (with a specific gravity of 1.70 at 80 ° C.) having a composition ratio of Ni: Co: Cd = 97: 1: 2 in terms of metal mass. Then, it was made to dry at 50 degreeC for 30 minutes (intermediate drying process). Next, after alkali treatment (alkali treatment step) by immersing in an aqueous solution of sodium hydroxide having a concentration of 8.0 mol / l and a temperature of 80 ° C. for 30 minutes, the alkali content is removed by rinsing in ion-exchanged water ( Washing step). Then, it was dried at 50 ° C. for 30 minutes (drying process) to remove moisture. Then, it returned to said 2nd immersion process again, and the predetermined amount of active materials was filled by repeating the immersion process similar to the above, an intermediate drying process, an alkali treatment process, a water washing process, and a drying process 7 times. A nickel positive electrode plate 11 was produced.

ここで、アルカリ溶液中のクロムイオン濃度が0ppmのアルカリ溶液を用いてアルカリ処理を行って作製したものをニッケル正極板a1とした。また、アルカリ溶液中のクロムイオン濃度が9ppmのアルカリ溶液を用いてアルカリ処理を行って作製したものをニッケル正極板a2とし、アルカリ溶液中のクロムイオン濃度が25ppmのアルカリ溶液を用いてアルカリ処理を行って作製したものをニッケル正極板a3とした。また、アルカリ溶液中のクロムイオン濃度が50ppmのアルカリ溶液を用いてアルカリ処理を行って作製したものをニッケル正極板a4とし、アルカリ溶液中のクロムイオン濃度が60ppmのアルカリ溶液を用いてアルカリ処理を行って作製したものをニッケル正極板a5とした。   Here, a nickel positive electrode plate a1 was prepared by performing an alkali treatment using an alkaline solution having a chromium ion concentration of 0 ppm in the alkaline solution. Further, a nickel positive electrode plate a2 was prepared by performing an alkali treatment using an alkali solution having a chromium ion concentration of 9 ppm in the alkali solution, and the alkali treatment was performed using an alkali solution having a chromium ion concentration of 25 ppm in the alkali solution. What was produced was used as the nickel positive electrode plate a3. Further, a nickel positive electrode plate a4 was prepared by performing an alkali treatment using an alkali solution having a chromium ion concentration of 50 ppm in the alkali solution, and the alkali treatment was performed using an alkali solution having a chromium ion concentration of 60 ppm in the alkali solution. The nickel positive electrode plate a5 was produced by performing this process.

3.カドミウム負極板
一方、上述のように作製されたニッケル焼結基板12bを硝酸カドミウム溶液(80℃で、比重が1.70のもの)に浸漬(浸漬工程)した。この後、50℃で30分間乾燥(中間乾燥工程)させた。ついで、濃度が8.0mol/lで温度が80℃の水酸化ナトリウム水溶液(クロムイオン濃度は0ppm)中に30分間浸漬してアルカリ処理(アルカリ処理工程)を行い、ニッケル焼結基板12bの細孔内に析出させた硝酸カドミウムを水酸化カドミウムに置換させた。ついで、イオン交換水中で水洗してアルカリ分を除去(水洗工程)した。この後、50℃で30分間乾燥(乾燥工程)させて、水分を除去した。その後、再び上記の浸漬工程に戻り、上記と同様な浸漬工程、中間乾燥工程、アルカリ処理工程、水洗工程および乾燥工程を5回繰り返して行うことにより、所定の活物質量が充填されたカドミウム負極板12を作製した。
3. Cadmium Negative Electrode Plate On the other hand, the nickel sintered substrate 12b produced as described above was immersed (immersion process) in a cadmium nitrate solution (with a specific gravity of 1.70 at 80 ° C.). Then, it was made to dry at 50 degreeC for 30 minutes (intermediate drying process). Next, it is immersed for 30 minutes in a sodium hydroxide aqueous solution (chromium ion concentration is 0 ppm) at a concentration of 8.0 mol / l and a temperature of 80 ° C. for alkali treatment (alkali treatment step). Cadmium nitrate deposited in the pores was replaced with cadmium hydroxide. Subsequently, it was washed with ion-exchanged water to remove the alkali (water washing step). Then, it was dried at 50 ° C. for 30 minutes (drying process) to remove moisture. Then, the cadmium negative electrode filled with a predetermined amount of active material is obtained by returning to the above immersion process again and repeating the same immersion process, intermediate drying process, alkali treatment process, water washing process and drying process five times. A plate 12 was produced.

4.ニッケル−カドミウム蓄電池
ついで、ポリプロピレン製不織布からなるセパレータ13を用意した。この後、上述のようにして作製したニッケル正極板11(a1,a2,a3,a4,a5)とカドミウム負極板12とを用いて、これらの間にセパレータ13を介在させて、これらを渦巻状に巻回して渦巻状電極群を作製した。この後、得られた渦巻状電極群の下部に負極集電体12cを抵抗溶接するとともに、渦巻状電極群の上部に正極集電体11cを抵抗溶接して渦巻状電極体をそれぞれ作製した。ついで、鉄にニッケルメッキを施した有底円筒形の金属外装缶14内に渦巻状電極体を挿入した後、負極集電体12cと金属外装缶14の底部をスポット溶接した。
4). Nickel-cadmium storage battery Next, a separator 13 made of a nonwoven fabric made of polypropylene was prepared. Thereafter, using the nickel positive electrode plate 11 (a1, a2, a3, a4, a5) and the cadmium negative electrode plate 12 produced as described above, a separator 13 is interposed therebetween, and these are spirally formed. A spiral electrode group was produced by winding the electrode assembly in a spiral shape. Thereafter, the negative electrode current collector 12c was resistance-welded to the lower part of the obtained spiral electrode group, and the positive electrode current collector 11c was resistance-welded to the upper part of the spiral electrode group to produce spiral electrode bodies. Next, after inserting the spiral electrode body into a bottomed cylindrical metal outer can 14 in which nickel was plated on iron, the negative electrode current collector 12c and the bottom of the metal outer can 14 were spot welded.

一方、正極キャップ15aと蓋体15bとからなる封口体15を用意し、正極集電体11cに設けられたリード部11dを蓋体15bの底部に接触させて、蓋体15bの底部とリード部11dとを溶接した。なお、正極キャップ15aと蓋体15bとからなる封口体15において、蓋体15bの中央部にはガス抜き孔15cが形成されてあり、このガス抜き孔15cを塞ぐように円盤状の弁体15dが配置されている。そして、円盤状の弁体15dの上に配置されたばね座15eと正極キャップ15aとの間にコイルスプリング15fが配置されている。   On the other hand, a sealing body 15 comprising a positive electrode cap 15a and a lid body 15b is prepared, and the lead portion 11d provided on the positive electrode current collector 11c is brought into contact with the bottom portion of the lid body 15b so that the bottom portion and the lead portion of the lid body 15b 11d was welded. In the sealing body 15 including the positive electrode cap 15a and the lid body 15b, a gas vent hole 15c is formed at the center of the lid body 15b, and a disc-shaped valve body 15d is formed so as to close the gas vent hole 15c. Is arranged. And the coil spring 15f is arrange | positioned between the spring seat 15e arrange | positioned on the disk shaped valve body 15d, and the positive electrode cap 15a.

この後、金属製外装缶14の上部外周面に溝入れ加工を施して、外装缶14の上部に環状溝部14aを形成した。この後、外装缶14内に電解液(水酸化リチウム(LiOH)と水酸化ナトリウム(NaOH)を含有した7Nの水酸化カリウム(KOH)水溶液でリチウム濃度が0.05mol/lのもの)を注液し、封口体15に装着された封口ガスケット16を外装缶14の環状溝部14aに載置するとともに、外装缶14の先端部14bを封口体15側にカシメて封口して、ニッケル−カドミウム蓄電池10(A1,A2,A3,A4およびA5)をそれぞれ組み立てた。   Thereafter, the upper outer peripheral surface of the metal outer can 14 was grooved to form an annular groove 14 a on the upper portion of the outer can 14. Thereafter, an electrolyte solution (7N potassium hydroxide (KOH) aqueous solution containing lithium hydroxide (LiOH) and sodium hydroxide (NaOH) and having a lithium concentration of 0.05 mol / l) was poured into the outer can 14. The sealing gasket 16 attached to the sealing body 15 is placed in the annular groove portion 14a of the outer can 14, and the front end portion 14b of the outer can 14 is caulked and sealed to the sealing body 15 side to seal the nickel-cadmium storage battery. 10 (A1, A2, A3, A4 and A5) were assembled.

ここで、ニッケル正極板a1を用いたものを電池A1とし、ニッケル正極板a2を用いたものを電池A2とし、ニッケル正極板a3を用いたものを電池A3とし、ニッケル正極板a4を用いたものを電池A4とし、ニッケル正極板a5を用いたものを電池A5とした。この場合、各電池A1,A2,A3,A4およびA5は、公称容量が1900mAhで、SCサイズの電池とした。   Here, a battery using the nickel positive electrode plate a1 is referred to as a battery A1, a battery using the nickel positive electrode plate a2 is referred to as a battery A2, a battery using the nickel positive electrode plate a3 is referred to as a battery A3, and a battery using the nickel positive electrode plate a4. Was made into a battery A4, and a battery using a nickel positive electrode plate a5 was taken as a battery A5. In this case, the batteries A1, A2, A3, A4 and A5 were SC-sized batteries with a nominal capacity of 1900 mAh.

ついで、これらの各電池A1,A2,A3,A4およびA5に対して、190mA(0.1It)の充電々流で16時間充電した後、所定時間休止した。ついで、380mA(0.2It)の放電々流で電池電圧が0.8Vになるまで放電させ、放電時間から放電容量を求めた。ついで、これらの各電池A1,A2,A3,A4およびA5をそれぞれ解体して、ニッケル正極板a1,a2,a3,a4,a5をそれぞれ取り出した。この後、各ニッケル正極板の活物質質量を測定し、下記の(1)式に基づいて正極活物質利用率を算出すると下記の表1に示すような結果が得られた。   Next, the batteries A1, A2, A3, A4 and A5 were charged with a charging current of 190 mA (0.1 It) for 16 hours and then stopped for a predetermined time. Next, the battery was discharged at a discharge current of 380 mA (0.2 It) until the battery voltage reached 0.8 V, and the discharge capacity was determined from the discharge time. Subsequently, the batteries A1, A2, A3, A4 and A5 were disassembled, and the nickel positive plates a1, a2, a3, a4 and a5 were taken out. Then, when the active material mass of each nickel positive electrode plate was measured and the positive electrode active material utilization factor was calculated based on the following formula (1), the results shown in Table 1 below were obtained.

正極活物質利用率(%)
=[電池放電容量(mAh)/〈正極板の活物質質量(g)/289.1(mAh/g)〉]×100・・・(1)
なお、上記(1)式において、289.1とは、水酸化ニッケル1gから計算上取り出せる容量(mAh)を意味する。

Figure 0004842605
Positive electrode active material utilization rate (%)
= [Battery discharge capacity (mAh) / <Active material mass of positive electrode plate (g) /289.1 (mAh / g)>] × 100 (1)
In the above formula (1), 289.1 means a capacity (mAh) that can be calculated from 1 g of nickel hydroxide.
Figure 0004842605

上記表1の結果から明らかなように、アルカリ処理液(水酸化ナトリウム溶液)中のクロムイオンの濃度が50ppmまでは活物質利用率は90%程度であるのに対して、クロムイオンの濃度が50ppmを越えるようになると活物質利用率が低下することが分かる。このことから、アルカリ処理液(水酸化ナトリウム溶液)中のクロムイオンの濃度を50ppmを越えないにようにその濃度を維持できれば、アルカリ処理においてクロムイオンが極板に付着したとしても、その不着量は極めて少量となって、活物質利用率が低下するのが防止できて、充放電特性を向上させることが可能となる。   As is clear from the results in Table 1 above, the active material utilization is about 90% up to 50 ppm of chromium ions in the alkali treatment solution (sodium hydroxide solution), whereas the concentration of chromium ions is low. It can be seen that when it exceeds 50 ppm, the active material utilization rate decreases. Therefore, if the concentration of chromium ions in the alkali treatment liquid (sodium hydroxide solution) can be maintained so as not to exceed 50 ppm, even if chromium ions adhere to the electrode plate in the alkali treatment, the amount of non-adherence Becomes extremely small, and it is possible to prevent the utilization rate of the active material from being lowered and to improve the charge / discharge characteristics.

この場合、アルカリ溶液中のクロムイオン濃度を50ppm以下に規制するためには、アルカリ溶液中のクロムイオン濃度が50ppmを越える濃度になると、当該アルカリ溶液の一部を廃棄し、新たなアルカリ溶液を追加するようにすれば、簡単にアルカリ溶液中のクロムイオン濃度を50ppm以下に規制することが可能となるので望ましい。なお、アルカリ溶液中のクロムイオン濃度は、原子吸光分析法により測定できる。   In this case, in order to regulate the chromium ion concentration in the alkaline solution to 50 ppm or less, when the chromium ion concentration in the alkaline solution exceeds 50 ppm, a part of the alkaline solution is discarded and a new alkaline solution is added. If added, the chromium ion concentration in the alkaline solution can be easily regulated to 50 ppm or less, which is desirable. The chromium ion concentration in the alkaline solution can be measured by atomic absorption analysis.

なお、上述した実施の形態においては、ニッケル焼結基板に水酸化ニッケルを充填する充填サイクルを7回繰り返す例について説明したが、この充填サイクルは7回に限らず、用いる焼結基板の多孔度、用いる硝酸塩溶液などにより適宜選択すればよい。同様に、述した実施の形態においては、ニッケル焼結基板に水酸化カドミウムを充填する充填サイクルを5回繰り返す例について説明したが、この充填サイクルは5回に限らず、用いる焼結基板の多孔度、用いる硝酸カドミウム溶液などにより適宜選択すればよい。   In the above-described embodiment, the example in which the filling cycle for filling the nickel sintered substrate with nickel hydroxide is repeated seven times has been described. However, the filling cycle is not limited to seven times, and the porosity of the sintered substrate to be used. May be selected as appropriate depending on the nitrate solution used. Similarly, in the above-described embodiment, an example in which a filling cycle for filling a nickel sintered substrate with cadmium hydroxide is repeated five times has been described. However, the filling cycle is not limited to five times, and the porosity of the sintered substrate to be used is not limited. What is necessary is just to select suitably according to the cadmium nitrate solution etc. to be used.

本発明の一実施形態に係るニッケル−カドミウム蓄電池を模式的に示す断面図である。It is sectional drawing which shows typically the nickel-cadmium storage battery which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

10…カドミウム蓄電池、11…ニッケル正極板、11a…導電性芯体、11b…ニッケル焼結基板、11c…正極集電体、11d…リード部、12…カドミウム負極板、12b…ニッケル焼結基板、12c…負極集電体、13…セパレータ、14…外装缶、14a…環状溝部、14b…先端部、15…封口体、15a…正極キャップ、15b…蓋体、15c…ガス抜き孔、15d…弁体、15e…ばね座、15f…コイルスプリング、16…封口ガスケット
DESCRIPTION OF SYMBOLS 10 ... Cadmium storage battery, 11 ... Nickel positive electrode plate, 11a ... Conductive core, 11b ... Nickel sintered substrate, 11c ... Positive electrode collector, 11d ... Lead part, 12 ... Cadmium negative electrode plate, 12b ... Nickel sintered substrate, 12c ... negative electrode current collector, 13 ... separator, 14 ... outer can, 14a ... annular groove, 14b ... tip, 15 ... sealing body, 15a ... positive electrode cap, 15b ... lid, 15c ... gas vent, 15d ... valve Body, 15e ... Spring seat, 15f ... Coil spring, 16 ... Sealing gasket

Claims (2)

多孔性焼結基板を硝酸塩を主体とする水溶液に浸漬する浸漬工程と、前記硝酸塩を主体とする水溶液に浸漬された多孔性焼結基板を加熱して乾燥する中間乾燥工程と、前記中間乾燥された多孔性焼結基板をアルカリ溶液中に浸漬するアルカリ浸漬工程と、アルカリ分を除去する水洗工程とからなる充填サイクルを備えたアルカリ蓄電池用極板の製造方法であって、
前記アルカリ浸漬工程における前記アルカリ溶液中のクロムイオン濃度を50ppm以下に規制するようにしたことを特徴とするアルカリ蓄電池用極板の製造方法。
A step of immersing the porous sintered substrate in an aqueous solution mainly containing nitrate; an intermediate drying step of heating and drying the porous sintered substrate immersed in the aqueous solution mainly containing nitrate; and the intermediate drying. A method for producing an alkaline storage battery electrode plate comprising a filling cycle comprising an alkaline immersion step of immersing the porous sintered substrate in an alkaline solution, and a water washing step of removing alkali content,
A method for producing an electrode plate for an alkaline storage battery, characterized in that a chromium ion concentration in the alkaline solution in the alkaline immersion step is regulated to 50 ppm or less.
前記アルカリ溶液中のクロムイオン濃度が50ppmを越える濃度になると、当該アルカリ溶液の一部を廃棄し、新たなアルカリ溶液を追加してクロムイオン濃度を50ppm以下に低下させるようにしたことを特徴とする請求項1に記載のアルカリ蓄電池用極板の製造方法。
When the chromium ion concentration in the alkali solution exceeds 50 ppm, a part of the alkali solution is discarded, and a new alkali solution is added to lower the chromium ion concentration to 50 ppm or less. The manufacturing method of the electrode plate for alkaline storage batteries of Claim 1.
JP2005286359A 2005-09-30 2005-09-30 Method for producing electrode plate for alkaline storage battery Expired - Fee Related JP4842605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005286359A JP4842605B2 (en) 2005-09-30 2005-09-30 Method for producing electrode plate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005286359A JP4842605B2 (en) 2005-09-30 2005-09-30 Method for producing electrode plate for alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2007095602A JP2007095602A (en) 2007-04-12
JP4842605B2 true JP4842605B2 (en) 2011-12-21

Family

ID=37981028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005286359A Expired - Fee Related JP4842605B2 (en) 2005-09-30 2005-09-30 Method for producing electrode plate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP4842605B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353453A (en) * 1989-07-18 1991-03-07 Sanyo Electric Co Ltd Manufacture of nickel positive electrode for alkaline storage battery
JP2002164047A (en) * 2000-11-28 2002-06-07 Sanyo Electric Co Ltd Method of manufacturing nickel electrode for alkali storage battery
JP2002298838A (en) * 2001-03-30 2002-10-11 Sanyo Electric Co Ltd Method of producing nickel positive electrode for alkaline storage battery

Also Published As

Publication number Publication date
JP2007095602A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JPH07326353A (en) Manufacture of hydrogen storage alloy electrode
JPH10255790A (en) Positive active material of nickel electrode for alkaline storage battery
JP4842605B2 (en) Method for producing electrode plate for alkaline storage battery
JP3412451B2 (en) Nickel sintered substrate for positive electrode of alkaline storage battery, method for producing the same, and alkaline storage battery
US6120937A (en) Electrode for alkaline storage battery and method for manufacturing the same
JPH11307116A (en) Cadmium negative electrode for alkaline storage battery
JP4007745B2 (en) Alkaline storage battery
JP2003503821A (en) Nickel positive electrode plate for alkaline storage battery and method for producing the same
JPH09274916A (en) Alkaline storage battery
JP3702107B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JP2000311680A (en) Sintered type positive electrode plate for nickel- hydrogen battery, its manufacture and nickel-hydrogen battery
JP4400044B2 (en) Method for producing nickel positive electrode for alkaline storage battery and alkaline storage battery
JPS5851669B2 (en) Manufacturing method of battery electrode substrate
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JP3691281B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JP3745583B2 (en) Nickel positive electrode plate for alkaline storage battery and manufacturing method thereof
JP2009238447A (en) Cylindrical alkaline storage battery
JP3708350B2 (en) Sintered nickel positive electrode for alkaline storage battery
JP3744677B2 (en) Method for producing sintered cadmium negative electrode
JP3744306B2 (en) Manufacturing method of sintered nickel electrode for alkaline storage battery
JPH05225971A (en) Manufacture of nickel electrode
JP5167681B2 (en) Method for producing nickel positive electrode for alkaline storage battery
JP3097238B2 (en) Anode plate for alkaline storage battery
JP2000133258A (en) Positive plate for alkaline storage battery and its manufacture
JP3685726B2 (en) Method for producing sintered cadmium negative electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111006

R150 Certificate of patent or registration of utility model

Ref document number: 4842605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350