JPH03274633A - Field emission electron emitter - Google Patents

Field emission electron emitter

Info

Publication number
JPH03274633A
JPH03274633A JP2073468A JP7346890A JPH03274633A JP H03274633 A JPH03274633 A JP H03274633A JP 2073468 A JP2073468 A JP 2073468A JP 7346890 A JP7346890 A JP 7346890A JP H03274633 A JPH03274633 A JP H03274633A
Authority
JP
Japan
Prior art keywords
tip
emitter
electron
field emission
electron emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2073468A
Other languages
Japanese (ja)
Other versions
JP2984308B2 (en
Inventor
Akira Takayama
暁 高山
Chiaki Tanuma
千秋 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7346890A priority Critical patent/JP2984308B2/en
Publication of JPH03274633A publication Critical patent/JPH03274633A/en
Application granted granted Critical
Publication of JP2984308B2 publication Critical patent/JP2984308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain sufficient resistance against fusion destruction at the tip of an emitter while improving the efficiency of electron emission by applying metal only the vicinity of the tip of the electron emitter on the protrusion of a semiconductor. CONSTITUTION:On a silicon substrate 1, a multi-pyramid-shaped gray-type electron emitter 2 is formed. The electron emission portion made of high- melting-point metal 3 is formed thereon so that it may cover the top of the multi-pyramid-shaped gray-type electron emitter 2. So, electric flux 7 is concentrated on the tip under the condition of a field boundary, so that the emitter 2 has high field at the tip to show higher-efficiency electron emission. It is thus possible to obtain sufficient resistance to fusion at the tip of the emitter 2 while improving the efficiency of electron emission.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はSEM、マイクロ電子管やフラットパネルデイ
スプレィなどに用いるマイクロサイズ電界放出電子エミ
ッタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a micro-sized field emission electron emitter used in SEMs, microelectron tubes, flat panel displays, and the like.

(従来の技術) マイクロサイズ電子エミッタは、SEMやマイクロ電子
管やフラットパネルデイスプレィなどに用いる高密度電
子電流源として注目されており、高性能化、高信頼化、
高安定化に向けて開発競争が行われている。熱電子放出
機構を用いないマイクロサイズ電子エミッタには、大別
して、マイクロサイズの円錐もしくは多角錐形状のエミ
ッタ先端から電界放出により電子放出をする電界放出型
と、半導体の接合から電子放出をする半導体型がある。
(Prior art) Micro-sized electron emitters are attracting attention as high-density electron current sources used in SEMs, microelectron tubes, flat panel displays, etc.
There is a competition in development aimed at achieving high stability. Micro-sized electron emitters that do not use a thermionic emission mechanism can be roughly divided into field emission types, which emit electrons by field emission from a micro-sized conical or polygonal pyramidal emitter tip, and semiconductors, which emit electrons from a semiconductor junction. There is a type.

そのなかで、電界放出型電子エミッタは、電子ビームの
微細集束化に利点を持っている。
Among these, field emission type electron emitters have the advantage of fine focusing of electron beams.

マイクロサイズ電界放出型電子エミッタには、大別して
、絶縁体のピンホールに角度を持って回転蒸着してマイ
クロサイズの円錐形状のエミッタを作製する5pind
t型と、半導体の異方性エツチングを用いて多角錐形状
のエミッタを作成するGray型とある。電界放出型電
子エミッタにおいて、最も重要な因子は、エミッタ先端
でいかに均一で高い電界を得る構成とするかであり、そ
のためには均一かつ先端が鋭利な電子エミッタを作成す
る必要があった、そのような観点から、特にGray型
は、最近の半導体加工技術の進展に支えられて、大面積
に均一かつ先端が鋭利な電子エミッタを得られるため、
重要技術として注目されている。
Micro-sized field emission type electron emitters can be roughly divided into 5-pin type, in which micro-sized conical emitters are fabricated by rotary evaporation at an angle into a pinhole in an insulator.
There are two types: the T type, and the Gray type, which uses anisotropic etching of a semiconductor to create a polygonal pyramidal emitter. The most important factor in field emission type electron emitters is how to create a structure that can obtain a uniform and high electric field at the emitter tip. From this point of view, the Gray type in particular is supported by recent advances in semiconductor processing technology, as it is possible to obtain electron emitters that are uniform over a large area and have a sharp tip.
It is attracting attention as an important technology.

しかしながら、Gray型電界放電界放電界放出型電子
エミッタ放出電子電流にしたがって、材料であるシリコ
ンの電導率から比較的小さな電流密度で飽和特性を示し
、また、エミッタ先端に集中した電子電流の加熱効果に
よるエミッタ先端の溶融破壊が生じる弱点があった。
However, due to the electrical conductivity of the silicon material, the Gray field discharge field emission type electron emitter exhibits saturation characteristics at a relatively small current density, and the heating effect of the electron current concentrated at the emitter tip There was a weak point where the emitter tip could be melted and destroyed.

これらの弱点を補う改良案として、例えばBustaら
の報告(H,H,Busta et、al、 ”Fie
ldEmission from Tungsten−
C1ad 5ilicon Pyramids’IEE
E  Transaction  on  Elect
ron  Device、Vol、3B。
As an improvement plan to compensate for these weaknesses, for example, the report by Busta et al.
ldEmission from Tungsten-
C1ad 5ilicon Pyramids'IEE
E-Transaction on Elect
ron Device, Vol, 3B.

No、Ll、(L989)pp、26γ9)にあるよう
に、シリコン多角錐表面に高融点金属薄膜形成する方法
があった。第4図に、この方式によるGray型電界放
電界放電界放出型電子エミッタ方法の概略図を示す。
As shown in No. Ll, (L989)pp, 26γ9), there was a method of forming a high melting point metal thin film on the surface of a silicon polygonal pyramid. FIG. 4 shows a schematic diagram of the Gray field discharge field emission type electron emitter method based on this method.

シリコンの異方性エツチングを用いて作製した多角錐形
状のエミッタ2の表面に、L P G V D (Lo
wPressure Chemical Vapor 
Deposition)法によって、高融点金属薄膜5
を形成している。ここでは、高融点金属薄膜5は、5n
■程度のシリサイド化した極薄膜がより良い特性を示す
と報告されている。
L P G V D (Lo
wPressure Chemical Vapor
A high melting point metal thin film 5 is formed by
is formed. Here, the high melting point metal thin film 5 is 5n
It has been reported that ultra-thin silicided films with a thickness of 10% have better characteristics.

この方法によって、飽和電流密度は上昇し、さらに、エ
ミッタ先端の溶融破壊に対する耐性も向上した。しかし
、この方法では、まだエミッタ先端の溶融破壊に対する
耐性は充分ではなく、さらに大きな耐性を得るためには
エミッタ先端の径が大きくする必要があり、電子放出効
率が低下する原因となった。
This method increased the saturation current density and also improved the emitter tip's resistance to melting. However, this method still does not provide sufficient resistance to melting and destruction of the emitter tip, and in order to obtain even greater resistance, it is necessary to increase the diameter of the emitter tip, which causes a decrease in electron emission efficiency.

以上のように、従来のGray型電界放電界放電界放出
型電子エミッタ電子放出効率することなく、先端の溶融
破壊に対する充分な耐性を得ることは困難であった。
As described above, it has been difficult to obtain sufficient resistance to melting and destruction of the tip of the conventional Gray field discharge field emission type electron emitter without improving the electron emission efficiency.

(発明が解決しようとする課題) 本発明はこの様な問題点に鑑みてなされたもので、電子
放出効率を向上しつつ、エミッタ先端の溶融破壊に対す
る充分な耐性を得たcray型電界放電界放電界放出型
電子エミッタとを目的とする。
(Problems to be Solved by the Invention) The present invention has been made in view of the above problems, and it provides a clay-type field discharge field that has sufficient resistance to melting and destruction of the emitter tip while improving electron emission efficiency. The purpose is to use a discharge field emission type electron emitter.

[発明の構成コ (課題を解決するための手段) 本発明はこのような課題を解決するべくなされたもので
あり、G ray型電界放出型電子エミッタの多角錐先
端近傍に偏在する、多角錐先端径より先端の径が小さい
、高融点金属薄膜からなる電子電界放出部を具備するこ
とを特徴とする電界放出型電子エミッタである。
[Structure of the Invention (Means for Solving the Problems) The present invention has been made to solve the above problems, and it is a polygonal pyramid that is unevenly distributed near the tip of a gray field emission type electron emitter. The present invention is a field emission type electron emitter characterized by comprising an electron field emission section made of a high melting point metal thin film, the diameter of the tip being smaller than the diameter of the tip.

(作  用) このような本発明の電界放出型電子エミッタは、電子放
出効率を向上しつつ、エミッタ先端の溶融破壊に対する
充分な耐性を得た電界放出型電子エミッタを実現するこ
とができる。
(Function) The field emission type electron emitter of the present invention as described above can realize a field emission type electron emitter that has sufficient resistance to melting and destruction of the emitter tip while improving electron emission efficiency.

まず、電子放出効率の向上に関して説明をする。First, the improvement of electron emission efficiency will be explained.

電界放出型電子エミッタの電子放出効率は先端での電界
強度によって決定される。先端の径とアノードまでの距
離が一定ならば、電界強度は電子エミッタの表面材料に
よる境界条件で決定される。
The electron emission efficiency of a field emission type electron emitter is determined by the electric field strength at the tip. If the diameter of the tip and the distance to the anode are constant, the electric field strength is determined by the boundary conditions determined by the surface material of the electron emitter.

電子エミッタの表面全てが金属で覆われている場合と、
本発明のごとく先端近傍のみ金属で覆われている場合と
を比較すると、後者は電界が先端近傍のみ集中するため
、より高電界となり、従って電子放出効率は向上する。
When the entire surface of the electron emitter is covered with metal,
Compared to the case where only the vicinity of the tip is covered with metal as in the present invention, in the latter case, the electric field is concentrated only in the vicinity of the tip, resulting in a higher electric field, and therefore the electron emission efficiency is improved.

次に、エミッタ先端の溶融破壊に対する耐性に関して説
明をする。電子エミッタの表面全てが金属で覆われてい
る電界放出型電子エミッタでは電流が表面金属を流れて
、そのエミッタ先端で集中し先端の溶融破壊を生じる。
Next, the resistance to melting and destruction of the emitter tip will be explained. In a field emission type electron emitter in which the entire surface of the electron emitter is covered with metal, current flows through the surface metal and concentrates at the tip of the emitter, causing melting and destruction of the tip.

それに対して、本発明のごとく先端近傍のみ金属で覆わ
れている電界放出型電子エミッタの飽和電流はシリコン
の導電率と形状で決定される。電流は、先端近傍の金属
先端の溶融破壊前に飽和するため、先端は保護される。
In contrast, the saturation current of a field emission type electron emitter in which only the vicinity of the tip is covered with metal as in the present invention is determined by the conductivity and shape of silicon. The tip is protected because the current saturates before melting and destroying the metal tip near the tip.

付は加えるならば、飽和電流値はシリコンの先端での抵
抗値に制限されるため、シリコン単−の素材によるGr
ay型電界放出型電子エミ・ツタに比べて、同一の先端
径でもはるかに大きな値となる。
In addition, since the saturation current value is limited to the resistance value at the tip of silicon,
Compared to the ay type field emission type electron emitter vine, the value is much larger even with the same tip diameter.

(実施例) 本発明に係る電界放出型電子エミッタの構造について説
明する。第1図に、概略的断面図を示す。図に示すよう
に、シリコン基板1上には多角錐形状のGray型電子
放電子放電子放出エミッタ2る。その上には、高融点金
属からなる電子放出部3が多角錐形状のGray型電子
放出エミ・ツタ2の頂点を覆うようにして形成される。
(Example) The structure of a field emission type electron emitter according to the present invention will be explained. FIG. 1 shows a schematic cross-sectional view. As shown in the figure, a polygonal pyramid-shaped Gray type electron emission electron emission emitter 2 is disposed on a silicon substrate 1 . Thereon, an electron emitting section 3 made of a high melting point metal is formed so as to cover the apex of the gray type electron emitting emitter vine 2 having a polygonal pyramid shape.

ここで、高融点金属からなる電子放出部3が必要とする
条件は、概して次の3点である。第一にその融点がシリ
コンより高いこと、第二にシリコンの先端径(φ1)よ
り高融点金属膜の先端径(φ2)が小さいこと(φ1〉
φ2)、第三にシリコン−高融点金属界面でシリコンの
抵抗値より高融点金属の抵抗値が小さいことである。こ
こで言う抵抗値とは、界面(接触)面積と材料の固有低
効率との積を意味する。
Here, the following three conditions are generally required for the electron emitting section 3 made of a high melting point metal. Firstly, its melting point is higher than that of silicon, and secondly, the tip diameter (φ2) of the high melting point metal film is smaller than the tip diameter (φ1) of silicon (φ1〉
φ2), and thirdly, the resistance value of the high melting point metal is smaller than the resistance value of silicon at the silicon-high melting point metal interface. The resistance value here means the product of the interface (contact) area and the inherent low efficiency of the material.

本発明の効果について説明する。第2図(A)。The effects of the present invention will be explained. Figure 2 (A).

(B)に、実施例を断面図で示し、同図(A)には、電
子エミッタの表面全てが金属薄膜5で覆われている従来
例を示し、同図(B)には、電子エミッタの先端近傍の
み金属3で覆われている本発明を示す。第2図では、電
子放出エミッタの先端径と対向電極4の相対的な位置は
同一とした。図中には、電流の流れ6と電束7の概略も
示す。電流に関して説明する。(A)においては、電流
の流れ6は金属薄膜5で覆われている電子エミッタの表
面を主として流れる。そのため、飽和電流値は、電子放
出エミッタの先端の溶融破壊に要する値以上になり、条
件によっては溶融破壊を生じる。
(B) shows a cross-sectional view of the embodiment, (A) shows a conventional example in which the entire surface of the electron emitter is covered with a metal thin film 5, and (B) shows the electron emitter. The present invention is shown in which only the vicinity of the tip is covered with metal 3. In FIG. 2, the tip diameter of the electron-emitting emitter and the relative position of the counter electrode 4 are the same. The diagram also schematically shows the current flow 6 and the electric flux 7. Let's explain about current. In (A), the current flow 6 mainly flows through the surface of the electron emitter covered with the metal thin film 5. Therefore, the saturation current value exceeds the value required for melting and breaking the tip of the electron-emitting emitter, and depending on the conditions, melting and breaking may occur.

それに対して、(B)においては、電流の流れ6はシリ
コンの多角錐内部を流れ、さらに先端金属薄膜3内部を
流れる。そのため、飽和電流値はシリコンの導電率と形
状で決定され、エミッタの先端の溶融破壊には至らない
。電束7関して説明する。電界の境界条件から、(B)
においては(A)に比較してより先端近傍に電束7は集
中し、電子放出エミッタの先端は高い電界となる。従っ
て電子放出効率は向上する。
In contrast, in (B), the current flow 6 flows inside the silicon polygonal pyramid and further flows inside the tip metal thin film 3. Therefore, the saturation current value is determined by the conductivity and shape of silicon, and does not lead to melting and destruction of the tip of the emitter. The electric flux 7 will be explained. From the electric field boundary condition, (B)
In this case, compared to (A), the electric flux 7 is concentrated near the tip, and a high electric field is created at the tip of the electron-emitting emitter. Therefore, electron emission efficiency is improved.

第3図に、本発明に係る電界放出型電子エミ・ツタの製
造方法例を説明する断面図を示す。シリコン基板1上に
は、シリコンの異方性エツチングのマスクとなるS l
 s N 4膜8が所定の大きさにバターニングされる
(A)。シリコンの面は(10,0)面とする。ついで
、エツチング液(例えば、KOH,イソプロピルアルコ
ール、H2Oの混合液)でシリコン基板1をへ角錐台2
状に加工する(B)。ついで、ライトエツチング液(例
えば、希フッ酸、乳酸の混合液)で、へ角錐台2の表面
を滑らかにする(C)。ついで、高真空(1×1O−8
Torr以下)中で熱処理(500℃以上)して表面を
清浄化した後、例えばSiウエーノ\からなる対向電極
4をシリコン基板1と平行かつ僅かな間隔距離(数μm
オーダー)を置いて配置し、反応性ガス(例えば、WF
6)中で電極間に適当な電圧を加える。へ角錐の先端に
電界は集中し、その結果として先端近傍の反応性ガスの
みが励起され、角錐の先端近傍のみに高融点金属膜3が
堆積する(D)。高融点金属の堆積の結果として、先端
近傍の径は徐々に小さくなり、また電極間距離は対向電
極4上の堆積金属層10の発生によって徐々に小さくな
るので、それにしたがって印加電圧を低下させる(E)
。この工程によって、シリコンへ角錐の先端(径φ1)
近傍には高融点金属膜(径φ2)がより先端径が小さい
条件(φ1〉φ2)で形成され(F)、本発明に係る電
界放出型電子エミッタを得ることができる。
FIG. 3 shows a cross-sectional view illustrating an example of a method for manufacturing a field emission type electron emitter according to the present invention. On the silicon substrate 1, there is an S l layer that serves as a mask for anisotropic etching of silicon.
The sN4 film 8 is patterned to a predetermined size (A). The plane of silicon is the (10,0) plane. Next, the silicon substrate 1 is etched with an etching solution (for example, a mixture of KOH, isopropyl alcohol, and H2O) to form a truncated pyramid 2.
(B). Then, the surface of the truncated pyramid 2 is smoothed with a light etching solution (for example, a mixed solution of dilute hydrofluoric acid and lactic acid) (C). Then, high vacuum (1×1O-8
After cleaning the surface by heat treatment (at least 500° C.) in a temperature (below Torr), a counter electrode 4 made of, for example, Si wafer is placed parallel to the silicon substrate 1 at a small distance (a few μm
order) and place a reactive gas (e.g. WF
6) Apply an appropriate voltage between the electrodes inside. The electric field is concentrated at the tip of the pyramid, and as a result, only the reactive gas near the tip is excited, and the high melting point metal film 3 is deposited only near the tip of the pyramid (D). As a result of the deposition of the high melting point metal, the diameter near the tip gradually decreases, and the distance between the electrodes gradually decreases due to the formation of the deposited metal layer 10 on the counter electrode 4, so the applied voltage is reduced accordingly ( E)
. Through this process, the tip of the pyramid (diameter φ1) is transferred to silicon.
Nearby, a high melting point metal film (diameter φ2) is formed under the condition that the tip diameter is smaller (φ1>φ2) (F), and a field emission type electron emitter according to the present invention can be obtained.

本発明の他の実施例として、第3図(F)作製後に、高
融点金属膜3をマスクとしてエツチングして、電子エミ
ッタの形状をより針状に加工し、より電界の集中を図る
例などがある。
As another embodiment of the present invention, after the fabrication shown in FIG. 3(F), etching is performed using the high melting point metal film 3 as a mask to make the shape of the electron emitter more needle-like, thereby further concentrating the electric field. There is.

本発明には、その主旨を逸脱しない範囲で、様々なバリ
エーションがある。
There are various variations to the present invention without departing from the spirit thereof.

[発明の効果] 本発明によれば、電子放出効率を向上しつつ、エミッタ
先端の溶融破壊に対する充分な耐性を得た電界放出型電
子エミッタを提供することができる。
[Effects of the Invention] According to the present invention, it is possible to provide a field emission type electron emitter that has sufficient resistance to melting and destruction of the emitter tip while improving electron emission efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、本発明の第一の実施例を説明する
概略断面図、第3図は、本発明の製造方法例を説明する
概略断面図、第4図は、従来の技術を説明する概略断面
図を示す。 第1図から第4図において、 1・・・シリコン基板、2・・・シリコン多角錐、3・
・・先端高融点金属薄膜、4・・・対向電極、5・・・
高融点金属薄膜、6・・・電流の流れ、7・・・電束、
8・・・Si3N4膜、9・・・ガス励起部、10・・
・堆積金属層。 (a)Thコ ↓
1 and 2 are schematic cross-sectional views explaining a first embodiment of the present invention, FIG. 3 is a schematic cross-sectional view explaining an example of the manufacturing method of the present invention, and FIG. 4 is a conventional technique. A schematic cross-sectional view for explaining. 1 to 4, 1... silicon substrate, 2... silicon polygonal pyramid, 3...
・Top high melting point metal thin film, 4... Counter electrode, 5...
High melting point metal thin film, 6... Current flow, 7... Electric flux,
8...Si3N4 film, 9...Gas excitation part, 10...
- Deposited metal layer. (a) Th ↓

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板と、前記半導体基板上に設けられた錘
状の半導体突起と、前記半導体突起上に少なくとも錘の
頂点を覆うように設けられた高融点金属からなる電子放
出部を具備することを特徴とする電界放出電子エミッタ
(1) A semiconductor substrate, a weight-shaped semiconductor protrusion provided on the semiconductor substrate, and an electron emitting section made of a high-melting point metal provided on the semiconductor protrusion so as to cover at least the top of the weight. A field emission electron emitter featuring:
(2)前記高融点金属電子放出部の先端径が、前記半導
体突起の先端径以下であることを特徴とする請求項1記
載の電界放出電子エミッ タ。
(2) The field emission electron emitter according to claim 1, wherein the tip diameter of the high melting point metal electron emitting portion is equal to or less than the tip diameter of the semiconductor protrusion.
(3)前記高融点金属電子放出部と前記半導体突起の接
合部において、前記高融点金属電子放出部の抵抗値が前
記半導体突起間の先端での抵抗値より小さいことを特徴
とする請求項1記載 の電界放出電子エミッタ。
(3) In a joint portion between the high melting point metal electron emitting portion and the semiconductor protrusion, a resistance value of the high melting point metal electron emitting portion is smaller than a resistance value at a tip between the semiconductor protrusions. A field emission electron emitter as described.
JP7346890A 1990-03-26 1990-03-26 Field emission electron emitter Expired - Fee Related JP2984308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7346890A JP2984308B2 (en) 1990-03-26 1990-03-26 Field emission electron emitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7346890A JP2984308B2 (en) 1990-03-26 1990-03-26 Field emission electron emitter

Publications (2)

Publication Number Publication Date
JPH03274633A true JPH03274633A (en) 1991-12-05
JP2984308B2 JP2984308B2 (en) 1999-11-29

Family

ID=13519136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7346890A Expired - Fee Related JP2984308B2 (en) 1990-03-26 1990-03-26 Field emission electron emitter

Country Status (1)

Country Link
JP (1) JP2984308B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050206A (en) * 1996-08-05 1998-02-20 Futaba Corp Manufacture of field emission element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050206A (en) * 1996-08-05 1998-02-20 Futaba Corp Manufacture of field emission element

Also Published As

Publication number Publication date
JP2984308B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
JPH0636680A (en) Electronic element using diamond film electron source
JPH0145694B2 (en)
JPH10289650A (en) Field electron emission element, manufacture thereof, and field electron emission type display device
JPH04328222A (en) Electron emission structure and method of manufacturing
JP2763248B2 (en) Method for manufacturing silicon electron-emitting device
JPH05190080A (en) Manufacture of field emission array and field emission device
JPH0887956A (en) Electron emitting element, its manufacture, crt and plane display
JPH03274633A (en) Field emission electron emitter
US6777169B2 (en) Method of forming emitter tips for use in a field emission display
JPH09270229A (en) Field emission electron source
JPH03295131A (en) Electric field emission element and manufacture thereof
JPH1196893A (en) Electron-emitting element, its manufacture, and image display device and its manufacture
JPH0612974A (en) Electron emitting element
JP3502883B2 (en) Cold electron-emitting device and method of manufacturing the same
JP3086445B2 (en) Method of forming field emission device
JP3622406B2 (en) Cold electron-emitting device and manufacturing method thereof
JPH09288962A (en) Electron emitting element, and its manufacture
JP3826539B2 (en) Method for manufacturing cold electron-emitting device
JP3460376B2 (en) Manufacturing method of micro cold electron source
JP3945049B2 (en) Method for manufacturing cold electron-emitting device
KR100260259B1 (en) Method of manufacturing fed
JP3207700B2 (en) Method of manufacturing field emission type electron source device
JP2000090811A (en) Cold electron emitting element and manufacture thereof
JP2800706B2 (en) Method of manufacturing field emission cold cathode
KR100266224B1 (en) Field emission device and the manufacturing method thereof and field emission display using it

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees