JP2984308B2 - Field emission electron emitter - Google Patents

Field emission electron emitter

Info

Publication number
JP2984308B2
JP2984308B2 JP7346890A JP7346890A JP2984308B2 JP 2984308 B2 JP2984308 B2 JP 2984308B2 JP 7346890 A JP7346890 A JP 7346890A JP 7346890 A JP7346890 A JP 7346890A JP 2984308 B2 JP2984308 B2 JP 2984308B2
Authority
JP
Japan
Prior art keywords
tip
electron
emitter
field emission
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7346890A
Other languages
Japanese (ja)
Other versions
JPH03274633A (en
Inventor
暁 高山
千秋 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7346890A priority Critical patent/JP2984308B2/en
Publication of JPH03274633A publication Critical patent/JPH03274633A/en
Application granted granted Critical
Publication of JP2984308B2 publication Critical patent/JP2984308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はSEM、マイクロ電子管やフラットパネルディ
スプレイなどに用いるマイクロサイズ電界放出電子エミ
ッタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a micro-sized field emission electron emitter used for an SEM, a micro electron tube, a flat panel display and the like.

(従来の技術) マイクロサイズ電子エミッタは、SEMやマイクロ電子
管やフラットパネルディスプレイなどに用いる高密度電
子電流源として注目されており、高性能化、高信頼化、
高安定化に向けて開発競争が行われている。熱電子放出
機構を用いないマイクロサイズ電子エミッタには、大別
して、マイクロサイズの円錐若しくは多角錘形状のエミ
ッタ先端から電界放出により電子放出をする電界放出型
と、半導体の接合から電子放出をする半導体型がある。
そのなかで、電界放出電子エミッタは、電子ビームの微
細集束化に利点を持っている。
(Prior art) Micro-sized electron emitters are attracting attention as high-density electron current sources used in SEMs, micro-electron tubes, flat panel displays, etc.
Development competition is taking place for high stability. Micro-sized electron emitters that do not use a thermionic emission mechanism are roughly classified into a field emission type that emits electrons by field emission from the tip of a micro-sized conical or pyramid-shaped emitter, and a semiconductor that emits electrons from a semiconductor junction. There is a type.
Among them, the field emission electron emitter has an advantage in focusing an electron beam finely.

マイクロサイズ電界放出電子エミッタには、大別し
て、絶縁体のピンホールに角度を持って回転蒸着してマ
イクロサイズの円錐形状のエミッタを作成するSpindt型
と、半導体の異方性エッチングを用いて多角錘形状のエ
ミッタを作成するGray型とがある。電界放出電子エミッ
タにおいて、最も重要な因子は、エミッタ先端でいかに
均一で高い電界を得る構成とするかであり、そのために
は均一かつ先端が鋭利な電子エミッタを作成する必要が
あった。そのような観点から、特にGray型は、最近の半
導体加工技術の進展に支えられて、大面積に均一かつ先
端が鋭利な電子エミッタを得られるため、重要技術とし
て注目されている。
Micro-sized field emission electron emitters are roughly classified into Spindt type, which creates a micro-sized cone-shaped emitter by rotating evaporation at a pinhole in an insulator at an angle, and polygonal, using anisotropic etching of semiconductor. There is a Gray type that creates a conical emitter. In the field emission electron emitter, the most important factor is how to obtain a uniform and high electric field at the tip of the emitter. For that purpose, it is necessary to make a uniform and sharp tip electron emitter. From such a viewpoint, in particular, the Gray type is attracting attention as an important technology because it is possible to obtain a uniform and sharp-pointed electron emitter over a large area, supported by recent developments in semiconductor processing technology.

しかしながら、Gray型電界放出電子エミッタには、放
出電子電流の増加にしたがって、材料であるシリコンの
導電率から比較的小さな電流密度で飽和特性を示し、ま
た、エミッタ先端に集中した電子電流の加熱効果による
エミッタ先端の溶融破壊が生じる弱点があった。
However, the gray-type field emission electron emitter shows saturation characteristics at a relatively small current density due to the conductivity of silicon, which is the material as the emission electron current increases, and the heating effect of the electron current concentrated at the tip of the emitter There is a weak point that melting of the tip of the emitter is caused by this.

これらの弱点を補う改良案として、例えばBustaらの
報告(H.H.Busta et.al,“Field Emission from Tu
ngsten−Clad Silicon Pyramids"IEEE Transaction
on Electron Device,Vol.36,No.11,(1989)pp.267
9)にあるように、シリコン多角錘表面に高融点金属薄
膜を形成する方法がある。第4図に、この方式によるGr
ay型電界放出電子エミッタの構成と製造方法の概略図を
示す。シリコンの異方性エッチングを用いて作成したシ
リコン多角錘2の表面に、LPCVD(Low Pressure Chem
ical Vapor Deposition)法によって、高融点金属薄
膜5を形成している。ここでは、高融点金属薄膜5は、
5nm程度のシリサイド化した極薄膜がより良い特性を示
すと報告されている。この方法によって、飽和電流密度
は上昇し、さらに、エミッタ先端の溶融破壊に対する耐
性も向上する。しかしながら、エミッタ先端の溶融破壊
に対する耐性はまだ充分ではなく、さらに大きな耐性を
得るためにはエミッタ先端の形を大きくする必要があ
り、これは電子放出効率が低下する原因となってしま
う。
As an improvement to compensate for these weaknesses, for example, a report by Busta et al. (HHBusta et.al, “Field Emission from Tu
ngsten-Clad Silicon Pyramids "IEEE Transaction
on Electron Device, Vol. 36, No. 11, (1989) pp. 267
As described in 9), there is a method of forming a refractory metal thin film on the surface of a silicon pyramid. FIG. 4 shows the Gr by this method.
1 shows a schematic view of a configuration and a manufacturing method of an ay-type field emission electron emitter. LPCVD (Low Pressure Chemistry) is applied to the surface of the silicon pyramid 2 made using anisotropic etching of silicon.
The refractory metal thin film 5 is formed by an ical vapor deposition method. Here, the refractory metal thin film 5 is
It has been reported that silicified ultrathin films of about 5 nm show better properties. By this method, the saturation current density is increased, and furthermore, the resistance of the emitter tip to fusion destruction is improved. However, the resistance of the tip of the emitter to melting destruction is not yet sufficient, and it is necessary to enlarge the shape of the tip of the emitter in order to obtain greater resistance, which causes a reduction in electron emission efficiency.

以上のように、従来のGray型電界放出電子エミッタで
は、電子放出効率を低下することなく、先端の溶融破壊
に対する充分な耐性を得ることが困難であった。
As described above, it has been difficult for the conventional gray-type field emission electron emitter to have sufficient resistance to the melt fracture at the tip without lowering the electron emission efficiency.

(発明が解決しようとする課題) 本発明はこの様な問題点に鑑みてなされたもので、電
子放出効率を向上しつつ、エミッタ先端の溶融破壊に対
する充分な耐性を得た電界放出電子エミッタを提供する
ことを目的とする。
(Problems to be Solved by the Invention) The present invention has been made in view of such problems, and a field emission electron emitter which has improved electron emission efficiency and obtained sufficient resistance to melting breakdown at the tip of the emitter. The purpose is to provide.

(課題を解決するための手段) 本発明に係る電界放出電子エミッタは、半導体基板
と、前記半導体基板上に設けられた錘状の半導体突起
と、前記錘の頂部を覆うように設けられた高融点金属を
設けた電子放出部とを具備してなり、前記電子放出部の
先端径が前記半導体突起の先端形以下であることを特徴
とするものである。
(Means for Solving the Problems) A field emission electron emitter according to the present invention includes a semiconductor substrate, a weight-shaped semiconductor protrusion provided on the semiconductor substrate, and a height provided so as to cover the top of the weight. An electron emitting portion provided with a melting point metal, wherein a tip diameter of the electron emitting portion is equal to or smaller than a tip shape of the semiconductor protrusion.

すなわち、Gray型電界放出電子エミッタの場合には、
多角錘先端近傍に偏在する多角錘先端形より先端の径が
小さい、高融点金属薄膜を用いた電子放出部を具備する
こととなる。
That is, in the case of a gray field emission electron emitter,
An electron emitting portion using a high melting point metal thin film having a smaller tip diameter than the polygonal tip shape unevenly distributed near the tip of the polygonal cone is provided.

(作用) このような本発明の電界放出電子エミッタは、電子放
出効率を向上しつつ、エミッタ先端の溶融破壊に対する
充分な耐性を得た電界放出電子エミッタを実現すること
ができる。
(Function) The field emission electron emitter of the present invention as described above can realize a field emission electron emitter having improved electron emission efficiency and sufficient resistance to melting breakdown at the tip of the emitter.

まず、電子放出効率の向上に関して説明する。電界放
出電子エミッタの電子放出効率は先端での電界強度によ
って決定される。先端の径とアノードまでの距離が一定
ならば、電界強度は電子エミッタの表面材料による境界
条件で決定される。電子エミッタの表面全てが金属で覆
われている場合と、本発明のごとく先端近傍のみ金属で
覆われている場合とを比較すると、後者は電界が先端近
傍のみに集中するため、より高電界となり、従って電子
放出効率は向上する。
First, the improvement of the electron emission efficiency will be described. The electron emission efficiency of a field emission electron emitter is determined by the field strength at the tip. If the diameter of the tip and the distance to the anode are constant, the electric field strength is determined by the boundary conditions based on the surface material of the electron emitter. Comparing the case where the entire surface of the electron emitter is covered with metal and the case where only the vicinity of the tip is covered with metal as in the present invention, the latter has a higher electric field because the electric field is concentrated only near the tip. Therefore, the electron emission efficiency is improved.

次に、エミッタ先端の溶融破壊に対する耐性に関して
説明をする。電子エミッタの表面全てが金属で覆われて
いる電界放出電子エミッタでは、電流が表面金属を流れ
て、そのエミッタ先端で集中し先端の溶融破壊を生じ
る。それに対して、本発明のごとく先端近傍のみ金属で
覆われている電界放出電子エミッタの飽和電流はシリコ
ンの導電率と形状で決定される。電流は先端近傍の金属
先端の溶融破壊前に飽和するため、先端は保護される。
付け加えるならば、飽和電流値はシリコンの先端での抵
抗値に制限されるため、シリコン単一の素材による電界
放出電子エミッタに比べて、同一の先端径でも遥かに大
きな値となる。
Next, the resistance of the emitter tip to the melting destruction will be described. In a field emission electron emitter where the entire surface of the electron emitter is covered with metal, current flows through the surface metal and concentrates at the emitter tip causing meltdown of the tip. On the other hand, the saturation current of the field emission electron emitter in which only the vicinity of the tip is covered with metal as in the present invention is determined by the conductivity and shape of silicon. Since the current saturates before the metal tip near the tip melts, the tip is protected.
In addition, since the saturation current value is limited to the resistance value at the tip of silicon, the value of the saturation current is much larger than that of a field emission electron emitter made of a single material of silicon even with the same tip diameter.

(実施例) 本発明の一実施例に係るGray型電界放出電子エミッタ
の構造について説明する。第1図に、概略的断面図を示
す。図に示すように、シリコン基板1には半導体突起と
してのシリコン多角錘2が形成されている。その上に
は、電子放出部としての高融点金属薄膜3がシリコン多
角錘2の頂点を覆うようにして形成されている。ここ
で、高融点金属薄膜3が必要とする条件は、概して次の
三点である。第一にその融点がシリコンより高いこと、
第二にシリコン多角錘2の先端径(φ1)より高融点金
属薄膜3の先端径(φ2)が小さいこと(φ1>φ
2)、第三にシリコン−高融点金属界面でシリコンの抵
抗値より高融点金属の抵抗値が小さいことである。ここ
でいう抵抗値とは、界面(接触)面積と材料の固有抵抗
率との積を意味する。
(Example) A structure of a gray-type field emission electron emitter according to an example of the present invention will be described. FIG. 1 shows a schematic sectional view. As shown in the drawing, a silicon polygonal pyramid 2 as a semiconductor projection is formed on a silicon substrate 1. A refractory metal thin film 3 as an electron emitting portion is formed thereon so as to cover the apexes of the silicon pyramid 2. Here, the conditions required for the refractory metal thin film 3 are generally the following three points. First, its melting point is higher than silicon,
Second, the tip diameter (φ2) of the refractory metal thin film 3 is smaller than the tip diameter (φ1) of the silicon polygonal cone 2 (φ1> φ).
2) Third, the resistance of the high melting point metal is lower than that of silicon at the silicon-high melting point metal interface. Here, the resistance value means the product of the interface (contact) area and the specific resistivity of the material.

次に第1図によって得られる効果について、第2図を
用いて説明する。同図(A)には、シリコン多角錘2の
表面全てが高融点金属薄膜5で覆われている従来例を示
し、同図(B)には、シリコン多角錘2の先端近傍のみ
高融点金属薄膜3で覆われている本発明の一実施例を示
す。第2図では、電子放出エミッタの先端と対向電極4
との相対的な位置は同一とした。図中には、電流の流れ
6と電束7の概略も示す。
Next, the effect obtained by FIG. 1 will be described with reference to FIG. FIG. 1A shows a conventional example in which the entire surface of a silicon polygon 2 is covered with a high-melting point metal thin film 5, and FIG. 1 shows an embodiment of the invention covered with a thin film 3. In FIG. 2, the tip of the electron emission emitter and the counter electrode 4 are shown.
Relative positions were the same. In the drawing, the outline of the current flow 6 and the electric flux 7 are also shown.

まず電流の流れ6に関して説明する。第2図(A)に
おいては、電流の流れ6は高融点金属薄膜5で覆われて
いる電子放出エミッタの表面を主として流れる。そのた
め、飽和電流値は電子放出エミッタの先端の溶融破壊に
要する値以上になり、条件によっては溶融破壊を生じ
る。それに対して、第2図(B)においては、電流の流
れ6はシリコン多角錘2の内部を流れた後、さらに高融
点金属薄膜3内を流れる。そのため、飽和電流値はシリ
コンの導電率と形状で決定され、エミッタの先端の溶融
破壊には至らない。
First, the current flow 6 will be described. In FIG. 2 (A), the current flow 6 mainly flows on the surface of the electron emission emitter covered with the refractory metal thin film 5. For this reason, the saturation current value is equal to or larger than the value required for melting and breaking at the tip of the electron-emitting emitter, and melting may occur depending on conditions. On the other hand, in FIG. 2 (B), the current flow 6 flows through the inside of the polygonal pyramid 2 and further flows through the refractory metal thin film 3. Therefore, the saturation current value is determined by the conductivity and the shape of silicon, and does not lead to melting breakdown at the tip of the emitter.

次に電束7に関して説明する。電界の境界条件から、
第2図(B)においては同図(A)と比較してより先端
近傍に電束7は集中し、電子放出エミッタの先端は高い
電界となる。従って電子放出効率は向上する。
Next, the electric flux 7 will be described. From the boundary condition of the electric field,
In FIG. 2 (B), the electric flux 7 is more concentrated near the tip than in FIG. 2 (A), and the tip of the electron emission emitter has a higher electric field. Therefore, the electron emission efficiency is improved.

続いて第3図(A)〜(F)に、本発明の一実施例に
係る電界放出電子エミッタの製造方法例を説明する断面
図を示す。
3A to 3F are cross-sectional views illustrating an example of a method for manufacturing a field emission electron emitter according to one embodiment of the present invention.

まず、シリコン基板1上で、シリコンの異方性エッチ
ングのマスクとなるSi3N4膜8を所定の大きさにパター
ニングする(第3図(A))。その際、シリコンの面は
(1,0,0)面となるようにする。
First, an Si 3 N 4 film 8 serving as a mask for anisotropic etching of silicon is patterned to a predetermined size on a silicon substrate 1 (FIG. 3A). At this time, the silicon plane is set to be a (1,0,0) plane.

ついで、エッチング液(例えば、KOH、イソプロピル
アルコール、H2Oの混合液)を用いて、シリコン基板1
に八角錘台形状のシリコン多角錘2を形成する(第3図
(B))。
Then, using an etching solution (for example, a mixed solution of KOH, isopropyl alcohol, and H 2 O), the silicon substrate 1
Then, a silicon polygonal pyramid 2 having a truncated octagonal pyramid shape is formed (FIG. 3B).

続いて、ライトエッチング液(例えば、希フッ酸、乳
酸の混合液)でシリコン多角錘2の表面を滑らかにする
(第3図(C))。
Subsequently, the surface of the silicon polygon 2 is smoothed with a light etching solution (for example, a mixed solution of diluted hydrofluoric acid and lactic acid) (FIG. 3 (C)).

ついで、高真空(1×10-8Torr以下)中で熱処理(50
0℃以上)して表面を清浄化した後、例えばSiウェーハ
からなる対向電極4をシリコン基板1と平行かつ僅かな
間隔距離(数μmオーダー)をおいて配置し、反応性ガ
ス(例えば、WF6)中で電極間に適当な電圧を加える。
八角錘の先端に電界は集中し、その結果として先端近傍
の反応性ガスのみが励起されてガス励起部9が形成さ
れ、八角錘の先端近傍のみに高融点金属薄膜3が堆積さ
れる(第3図(D))。
Next, heat treatment (50 × 10 −8 Torr or less) in a high vacuum (50 × 10 −8 Torr or less)
(0 ° C. or higher) to clean the surface. Then, the counter electrode 4 made of, for example, a Si wafer is arranged in parallel with the silicon substrate 1 at a slight distance (on the order of several μm), and a reactive gas (for example, WF) 6 ) Apply an appropriate voltage between the electrodes during the procedure.
The electric field is concentrated at the tip of the octagonal pyramid, and as a result, only the reactive gas near the tip is excited to form the gas excitation part 9, and the high melting point metal thin film 3 is deposited only near the tip of the octagonal pyramid (No. 3 (D)).

高融点金属薄膜3の堆積の結果として、先端近傍の径
は徐々に小さくなり、また電極間距離は対向電極4上の
堆積金属層10の発生によって徐々に小さくなるので、そ
れにしたがって、印加される電圧は徐々に低下する(第
3図(E))。
As a result of the deposition of the refractory metal thin film 3, the diameter near the tip gradually decreases, and the distance between the electrodes gradually decreases due to the generation of the deposited metal layer 10 on the counter electrode 4. The voltage gradually decreases (FIG. 3 (E)).

この工程によって、シリコン多角錘2の先端(径φ
1)近傍に高融点金属薄膜3(径φ2)がより先端径が
小さい条件(φ1>φ2)で形成され、本発明の一実施
例にかかる電界放出電子エミッタを得ることができる
(第3図(F))。
By this step, the tip (diameter φ) of the silicon polygonal spindle 2
1) The refractory metal thin film 3 (diameter φ2) is formed in the vicinity under the condition that the tip diameter is smaller (φ1> φ2), and the field emission electron emitter according to one embodiment of the present invention can be obtained (FIG. 3). (F)).

本発明の他の実施例として、第3図(F)作製後に高
融点金属薄膜3をマスクにしてエッチングし、電子放出
エミッタの形状をより針状に加工することによって、よ
り電界の集中を図る例などを挙げることができる。
As another embodiment of the present invention, after the preparation of FIG. 3 (F), etching is performed using the refractory metal thin film 3 as a mask, and the shape of the electron emission emitter is processed into a more needle-like shape, thereby further concentrating the electric field. Examples can be given.

以上、本発明の実施例を説明したが、それ以外にも本
発明には、その主旨を逸脱しない範囲で様々なバリエー
ションがある。
The embodiments of the present invention have been described above, but there are various other variations of the present invention without departing from the gist thereof.

[発明の効果] 本発明によれば、電子放出効率を向上しつつ、エミッ
タ先端の溶融破壊に対する充分な耐性を得た電界放出電
子エミッタを提供することができる。
[Effects of the Invention] According to the present invention, it is possible to provide a field emission electron emitter having improved electron emission efficiency and sufficient resistance to melting breakdown at the tip of the emitter.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を説明する概略断面図、第2
図は一実施例の効果を説明するための概略断面図、第3
図は本発明の一実施例の製造方法例を説明する概略断面
図、第4図は従来の技術を説明する概略断面図を示す。 第1図から第4図において各符号は、 1……シリコン基板、2……シリコン多角錘(半導体突
起)、3……高融点金属薄膜(電子放出部)、4……対
向電極、5……高融点金属薄膜、6……電流の流れ、7
……電束、8……Si3N4膜、9……ガス励起部、10……
堆積金属層 を表す。
FIG. 1 is a schematic sectional view for explaining one embodiment of the present invention, and FIG.
FIG. 3 is a schematic sectional view for explaining the effect of the embodiment, and FIG.
FIG. 1 is a schematic sectional view illustrating an example of a manufacturing method according to an embodiment of the present invention, and FIG. 4 is a schematic sectional view illustrating a conventional technique. In FIG. 1 to FIG. 4, reference numerals 1 ... silicon substrate, 2 ... silicon polygonal pyramid (semiconductor projection), 3 ... high melting point metal thin film (electron emitting portion), 4 ... counter electrode, 5 ... ... High melting point metal thin film, 6 ... Current flow, 7
...... electric flux, 8 ...... Si 3 N 4 film, 9 ...... gas pumping unit, 10 ......
Represents the deposited metal layer.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板と、 前記半導体基板上に設けられた錘状の半導体突起と、 前記錘の頂部を覆うように設けられた高融点金属を設け
た電子放出部と を具備してなり、 前記電子放出部の先端径が前記半導体突起の先端径以下
であることを特徴とする電界放出電子エミッタ。
1. A semiconductor substrate, a weight-shaped semiconductor projection provided on the semiconductor substrate, and an electron emission portion provided with a high melting point metal provided to cover a top portion of the weight. A field emission electron emitter, wherein a tip diameter of the electron emission portion is equal to or smaller than a tip diameter of the semiconductor protrusion.
【請求項2】前記電子放出部と前記半導体突起との接合
部において、前記電子放出部の抵抗値が前記半導体突起
の先端での抵抗値より小さいことを特徴とする請求項1
記載の電界放出電子エミッタ。
2. The semiconductor device according to claim 1, wherein a resistance value of said electron emitting portion at a junction between said electron emitting portion and said semiconductor projection is smaller than a resistance value at a tip of said semiconductor projection.
A field emission electron emitter as described.
JP7346890A 1990-03-26 1990-03-26 Field emission electron emitter Expired - Fee Related JP2984308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7346890A JP2984308B2 (en) 1990-03-26 1990-03-26 Field emission electron emitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7346890A JP2984308B2 (en) 1990-03-26 1990-03-26 Field emission electron emitter

Publications (2)

Publication Number Publication Date
JPH03274633A JPH03274633A (en) 1991-12-05
JP2984308B2 true JP2984308B2 (en) 1999-11-29

Family

ID=13519136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7346890A Expired - Fee Related JP2984308B2 (en) 1990-03-26 1990-03-26 Field emission electron emitter

Country Status (1)

Country Link
JP (1) JP2984308B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3546606B2 (en) * 1996-08-05 2004-07-28 双葉電子工業株式会社 Method of manufacturing field emission device

Also Published As

Publication number Publication date
JPH03274633A (en) 1991-12-05

Similar Documents

Publication Publication Date Title
JPH0145694B2 (en)
JPH04328222A (en) Electron emission structure and method of manufacturing
JP3131339B2 (en) Cathode, cathode ray tube and method of operating cathode ray tube
US5969467A (en) Field emission cathode and cleaning method therefor
US7657003B2 (en) X-ray tube with enhanced small spot cathode and methods for manufacture thereof
JP3655447B2 (en) Fluorescent display device and manufacturing method thereof
JP3440448B2 (en) Thermal field emission electron gun
JP2984308B2 (en) Field emission electron emitter
JP3243471B2 (en) Method for manufacturing electron-emitting device
JP2956612B2 (en) Field emitter array, method of manufacturing the same, and method of driving the same
JP2969081B2 (en) Electron emitting device having horizontal field effect and method of manufacturing the same
JP3156903B2 (en) Field emission type electron source
JP3044609B2 (en) Display device
US8246413B2 (en) Method for making field emission device
JPH0612974A (en) Electron emitting element
JP3198362B2 (en) Electron emitting device and image forming apparatus
JPH09204880A (en) Electron gun and cathode ray tube using the same
JP3667965B2 (en) Method for manufacturing fluorescent display device
JPH10223128A (en) Electron emitter
JPH11167886A (en) Fluorescent character display device
JP3207700B2 (en) Method of manufacturing field emission type electron source device
JPH08106846A (en) Field emission type electron emitting element and its manufacture
JP2000090811A (en) Cold electron emitting element and manufacture thereof
KR100434533B1 (en) Method for manufacturing field emitter array
JPH09288962A (en) Electron emitting element, and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees