JPH03273695A - Multilayer printed-wiring board - Google Patents

Multilayer printed-wiring board

Info

Publication number
JPH03273695A
JPH03273695A JP7498090A JP7498090A JPH03273695A JP H03273695 A JPH03273695 A JP H03273695A JP 7498090 A JP7498090 A JP 7498090A JP 7498090 A JP7498090 A JP 7498090A JP H03273695 A JPH03273695 A JP H03273695A
Authority
JP
Japan
Prior art keywords
layer
fiber
impregnated
wiring board
multilayer printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7498090A
Other languages
Japanese (ja)
Inventor
Naoto Iwasaki
直人 岩崎
Kazuyoshi Shibagaki
柴垣 和芳
Zenichi Ueda
上田 善一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP7498090A priority Critical patent/JPH03273695A/en
Publication of JPH03273695A publication Critical patent/JPH03273695A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a low permittivity to be maintained using fluorine plastic layer and obtain a multilayer printed-wiring board with further reduced dimensions change rate by allowing the fluorine plastic layer as an adhesive for joining a resin-impregnated fiber material and a metal layer or an inner layer material and the metal layer to be reinforced by a fiber base. CONSTITUTION:Metal layers 4 and 6 are joined in one place by an inner layer material which is obtained by joining metal layers 4 and 6 through low melt- point fluorine plastic layers 3 and 5 reinforced by a fiber base on both surfaces of a polytetrafluoroethylene impregnated fiber material 1 or on both surfaces of two or more fiber materials 1 which are joined by the polytetrafluoroethylene layer. Concrete examples of the polytetrafluoroethylene(PTEE) impregnated fiber material 1 to be used are inorganic fiber including glass one, woven cloth and nonwoven cloth of organic fiber including aromatic polyimide one and fiber material including paper which are impregnated with PTFE.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は新規な構造を有する多層プリント配線板に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a multilayer printed wiring board having a novel structure.

(従来の技術) 多層プリント配線板としては、ガラスクロスにエポキシ
樹脂やポリイミドを含浸せしめた基材を所定枚積層した
ものの両面に金属箔を接合して内層材とし、この内層材
の両面に接着剤により金属箔を接合せしめた構造のもの
が知られている。
(Prior art) Multilayer printed wiring boards are made by laminating a predetermined number of base materials made of glass cloth impregnated with epoxy resin or polyimide, bonding metal foil to both sides to form an inner layer material, and adhering to both sides of this inner layer material. A structure in which metal foils are bonded using an agent is known.

しかしながら、この多層プリント配線板はエポキシ樹脂
あるいはポリイミドの使用により誘電率が約4.0以上
と高く、高速演算性の要求されるコンピュータ等には不
向きであった。
However, this multilayer printed wiring board has a high dielectric constant of approximately 4.0 or more due to the use of epoxy resin or polyimide, and is therefore unsuitable for computers and the like that require high-speed calculation performance.

このため、ガラスクロスに含浸する樹脂としてフッ素樹
脂を用いると共に基材と金属箔および内層材と金属箔と
の接着剤としてフッ素樹脂を用いることが提案された(
特開昭64−51937号公報)。
For this reason, it has been proposed to use a fluororesin as a resin to impregnate the glass cloth and to use a fluororesin as an adhesive between the base material and the metal foil, and between the inner layer material and the metal foil (
(Japanese Patent Application Laid-Open No. 64-51937).

かようなフッ素樹脂の使用により多層プリント配線板の
低誘電率化が達成でき、更に、得られるプリント配線板
の寸法変化率も小さくできる。
By using such a fluororesin, it is possible to achieve a low dielectric constant of a multilayer printed wiring board, and furthermore, the rate of dimensional change of the resulting printed wiring board can be reduced.

(発明が解決しようとする課題) ところで、近年のプリント配線板に対する性能向上の要
求は厳しく、例えば、機器の小型化のため配線密度(実
装密度)を高めることもその一つであり、そのためプリ
ント配線板の寸法変化率の一層の低減が求められている
(Problem to be solved by the invention) In recent years, demands for improved performance on printed wiring boards have been severe. For example, increasing wiring density (packing density) in order to miniaturize equipment is one of them. There is a need to further reduce the dimensional change rate of wiring boards.

従って、本発明はフッ素樹脂使用による低誘電率を維持
して、寸法変化率の一層低減された多層プリント配線板
を提供することを目的とする。
Therefore, an object of the present invention is to provide a multilayer printed wiring board that maintains a low dielectric constant by using a fluororesin and further reduces the rate of dimensional change.

(課題を解決するための手段) 本発明者は種々検討の結果、樹脂含浸繊維材と金属層あ
るいは内層材と金属層を接合する接着剤としてのフッ素
樹脂層を繊維基材によって補強することにより、その理
由は必ずしも明らかではないが所期の目的が達成できる
ことを見い出し、本発明を完成するに至った。
(Means for Solving the Problems) As a result of various studies, the present inventor found that by reinforcing the fluororesin layer, which serves as an adhesive for bonding the resin-impregnated fiber material and the metal layer or the inner layer material and the metal layer, with a fiber base material. Although the reason for this is not necessarily clear, they have found that the intended purpose can be achieved, and have completed the present invention.

即ち、本発明に係る多層プリント配線板は、ポリテトラ
フルオロエチレン含浸繊維材の両面または該繊維材の2
枚以上をポリテトラフルオロエチレン層によって接合し
たものの両面に、繊維基材によって補強した低融点フッ
素樹脂層を介して金属層が接合せしめられて成る内層材
と、この内層材の両面に繊維基材によって補強した低融
点フッ素樹脂層によって金属層を接合一体化せしめて成
るものである。
That is, the multilayer printed wiring board according to the present invention can be used on both sides of a polytetrafluoroethylene-impregnated fiber material or on two sides of the fiber material.
An inner layer material is formed by bonding two or more sheets with a polytetrafluoroethylene layer, and a metal layer is bonded to both sides of the material through a low melting point fluororesin layer reinforced with a fiber base material, and a fiber base material is attached to both sides of this inner layer material. The metal layer is bonded and integrated with a low melting point fluororesin layer reinforced with.

本発明において用いられるポリテトラフルオロエチレン
(PTFE)含浸繊維材の具体例としては、ガラス繊維
、アスベスト繊維、アルミナ繊維、ボロン繊維、シリコ
ンカーバイト繊維、チタニア繊維、窒化ホウ素繊維等の
無機繊維、あるいは芳香族ポリアミド繊維等の有機繊維
から成る織布、不織布、ペーパーのような繊維材にPT
FEを含浸したものを挙げることができる。
Specific examples of the polytetrafluoroethylene (PTFE)-impregnated fiber materials used in the present invention include inorganic fibers such as glass fibers, asbestos fibers, alumina fibers, boron fibers, silicon carbide fibers, titania fibers, and boron nitride fibers; PT is applied to fibrous materials such as woven fabrics, non-woven fabrics, and paper made of organic fibers such as aromatic polyamide fibers.
Examples include those impregnated with FE.

繊維材へのPTFE含浸量が多い場合、PTFEは繊維
材内部に浸透すると共に繊維材表面に薄層を形成し、更
に該繊維材が網目を有するときはこの綱目を閉塞するこ
ともある。一方、フッ素樹脂の含浸量が少ない場合、P
TFEは繊維材内部に浸透するものの、繊維材表面に連
続した薄層を形成することなく、繊維材を形成する繊維
表面を覆って存在することが多い。
When the amount of PTFE impregnated into the fibrous material is large, the PTFE penetrates into the inside of the fibrous material and forms a thin layer on the surface of the fibrous material, and furthermore, when the fibrous material has a network, this mesh may be occluded. On the other hand, when the amount of fluororesin impregnated is small, P
Although TFE penetrates into the interior of the fibrous material, it often exists covering the surface of the fibers forming the fibrous material without forming a continuous thin layer on the surface of the fibrous material.

繊維材に対するPTFEO含浸率は特に限定されるもの
ではないが、通常、約50〜70%である。なお、含浸
率は繊維材に含浸せしめられたPTFEの重量を繊維材
の重量で除した値に100を乗じて求められる。
The PTFEO impregnation rate with respect to the fiber material is not particularly limited, but is usually about 50 to 70%. The impregnation rate is determined by dividing the weight of PTFE impregnated into the fibrous material by the weight of the fibrous material and multiplying it by 100.

かようなPTFE含浸繊維材は、例えば(a)繊維材を
PTFEディスバージョン中に浸漬して引上げ、次いで
PTFHの融点以上の温度で加熱する方法(所望により
、浸漬および加熱を繰り返す)、(b)繊維材にPTF
Eディスバージョンをスプレー塗布し、次いでPTFH
の融点以上の温度で加熱する方法(所望により、塗布お
よび加熱を繰り返す)、(c)繊維材とPTFEシート
を重ね合わせ、次いで該シートの融点以上の温度に加熱
する方法、等によって得ることができる。
Such a PTFE-impregnated fibrous material can be obtained by, for example, (a) dipping the fibrous material in PTFE dispersion, pulling it up, and then heating it at a temperature equal to or higher than the melting point of PTFH (dipping and heating are repeated if desired); (b) ) PTF in fiber material
Spray application of E-disversion, then PTFH
It can be obtained by a method of heating at a temperature above the melting point of (c) a method of laminating a fibrous material and a PTFE sheet and then heating it to a temperature above the melting point of the sheet, etc. can.

そして、本発明においては、このPTFE含浸繊維材の
一枚の両面あるいは該含浸繊維材の所定枚をPTFE層
を介して接合一体化したものの両面に、繊維基材によっ
て補強した低融点フッ素樹脂層を接着剤として金属層(
銅、アルミニウム、ステンレス等の金属あるいは合金)
を接着せしめたものを内層材として用いる。PTFE含
浸繊維材相互を接合するには、該繊維材相互を重ね合わ
せ、それらがその表面に有するPTFE層を接着剤とし
て利用して接合する方法、繊維材相互の間にPTFEシ
ートを介在せしめ、このシートを接着剤として利用して
接合する方法、等を採用できる。
In the present invention, a low melting point fluororesin layer reinforced with a fiber base material is provided on both sides of one sheet of this PTFE-impregnated fiber material or on both sides of a predetermined sheet of the impregnated fiber material bonded and integrated via a PTFE layer. the metal layer as an adhesive (
metals or alloys such as copper, aluminum, stainless steel, etc.)
The material bonded with these is used as the inner layer material. In order to bond the PTFE-impregnated fiber materials to each other, the fiber materials are stacked one on top of the other, and the PTFE layer they have on the surface is used as an adhesive to bond them, a PTFE sheet is interposed between the fiber materials, A method of joining using this sheet as an adhesive can be adopted.

また、PTFE含浸繊維材と金属層を接合するために接
着剤として用いる低融点フッ素樹脂層としては、PTF
E以外のフッ素樹脂例えば、テトラフルオロエチレン−
ヘキサフルオロプロピレン共重合体(FEP) 、エチ
レン−テトラフルオロエチレン共重合体(ETFE) 
、テトラフルオロエチレン−パーフルオロアルキルビニ
ルエーテル共重合体(PFA)、ポリクロロトリフルオ
ロエチレン(CTFE)等の熱融着性フッ素樹脂を挙げ
ることができる。
In addition, as the low melting point fluororesin layer used as an adhesive to bond the PTFE-impregnated fiber material and the metal layer, PTF
Fluororesins other than E, such as tetrafluoroethylene-
Hexafluoropropylene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE)
, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and polychlorotrifluoroethylene (CTFE).

そして、本発明においては多層プリント配線板の寸法変
化率低減と言う目的達成のため低融点フッ素樹脂層を繊
維基材によって補強して用いることが重要である。この
繊維基材としては、上記PTFE含浸繊維材に用いたの
と同様な有機繊維あるいは無機繊維から成る織布、不織
布、ペーパーを用いることができる。かような繊維基材
で補強した低融点フッ素樹脂層は上記したPTFE含浸
繊維材と同様な方法で得ることができる。
In the present invention, it is important to use the low melting point fluororesin layer reinforced with a fiber base material in order to achieve the objective of reducing the dimensional change rate of the multilayer printed wiring board. As this fiber base material, woven fabric, nonwoven fabric, or paper made of organic fibers or inorganic fibers similar to those used for the above-mentioned PTFE-impregnated fiber material can be used. The low melting point fluororesin layer reinforced with such a fiber base material can be obtained in the same manner as the PTFE-impregnated fiber material described above.

なお、内層材における金属層は所定パターンとして用い
る。金属層のパターン化は従来からのプリント回路板の
製造と同様に剥離現像型フォトレジストや溶剤現像型フ
ォトレジストまたはアルカリ現像型フォトレジストを用
いる方法で行うことができる。
Note that the metal layer in the inner layer material is used as a predetermined pattern. Patterning of the metal layer can be carried out in the same manner as in conventional printed circuit board manufacturing using a peel-and-develop photoresist, a solvent-developable photoresist, or an alkali-developable photoresist.

例えば、金属層の表面にアルカリ現像型フォトレジスト
層を形成せしめて、その上からフォトマスクを介してパ
ターン状に露光し、次いでフォトレジストの未露光部を
溶解除去して金属層を部分的に露出せしめ、その後金属
層の露出部をエツチングして除去すれば、フォトレジス
トの露光部に対応するパターン状の金属回路が形成でき
る。なお、フォトレジストの露光部は金属回路形成後に
溶解除去する。
For example, an alkali-developable photoresist layer is formed on the surface of a metal layer, exposed in a pattern from above through a photomask, and then the unexposed portions of the photoresist are dissolved and removed to partially remove the metal layer. By exposing and then etching and removing the exposed portion of the metal layer, a patterned metal circuit corresponding to the exposed portion of the photoresist can be formed. Note that the exposed portion of the photoresist is dissolved and removed after the metal circuit is formed.

本発明の多層プリント配線板はかような内層材の両面に
、繊維基材によって補強した低融点フッ素樹脂層を介し
て金属層を接合一体化せしめたものである。
The multilayer printed wiring board of the present invention has metal layers integrally bonded to both surfaces of such an inner layer material via a low melting point fluororesin layer reinforced with a fiber base material.

この接合は加熱加圧法によって行うことができ、その際
の温度は接着剤としての低融点フッ素樹脂の融点以上と
し、圧力は約15〜50kg/c1jとすることができ
る。
This joining can be carried out by a heating and pressing method, at a temperature higher than the melting point of the low melting point fluororesin as the adhesive, and at a pressure of about 15 to 50 kg/c1j.

次に、図面により本発明の詳細な説明する。第2図は本
発明に用いる内層材の例を示し、1.1はいずれも厚さ
約50〜800μmの繊維材にPTFEを含浸せしめた
PTFE含浸繊維材であり、互いにPTFE層2を介し
て加熱加圧法により接合されている。そして、これらの
両面には繊維基材(図示省略)によって補強された厚さ
約50〜800μmの低融点フッ素樹脂層3.3により
、厚さ約10〜100μmの金属層4.4が各々接着さ
れている。
Next, the present invention will be explained in detail with reference to the drawings. FIG. 2 shows examples of inner layer materials used in the present invention, and 1.1 is a PTFE-impregnated fiber material obtained by impregnating a fibrous material with a thickness of about 50 to 800 μm with PTFE. Joined using heat and pressure method. Then, a metal layer 4.4 with a thickness of about 10 to 100 μm is adhered to each of these surfaces by a low melting point fluororesin layer 3.3 with a thickness of about 50 to 800 μm reinforced with a fiber base material (not shown). has been done.

この内層材を用いて多層プリント配線板を得るには、例
えば、第1図に示すように金属層4.4をパターン化し
、これら両金属層4.4上に上記と同様な繊維基材で補
強した低融点フッ素樹脂層5.5により金属層6.6を
接合する。
In order to obtain a multilayer printed wiring board using this inner layer material, for example, the metal layer 4.4 is patterned as shown in FIG. The metal layer 6.6 is joined by the reinforced low melting point fluororesin layer 5.5.

(実施例) 以下、実施例により本発明を更に詳細に説明する。(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例I A、内層材の製造 厚さ50μmのガラスクロスをPTFE粉末濃度60重
量%のディスバージョン中に浸漬して引上げ、次いで温
度380℃で2分間加熱する。
Example I A. Production of inner layer material A glass cloth with a thickness of 50 μm is immersed in a dispersion containing 60% by weight of PTFE powder, pulled up and then heated at a temperature of 380° C. for 2 minutes.

この浸漬および加熱を4回繰り返し、PTFE含浸率6
5%のPTFE含浸繊維材を得る。
This dipping and heating were repeated four times, and the PTFE impregnation rate was 6.
A 5% PTFE impregnated fiber material is obtained.

次に、このPTFE含浸繊維材3枚を一組として3組を
重ね合わせる。なお、重ね合わせに際しては、組相互の
間に厚さ60μmのPTFEシートを介在せしめた。
Next, three sets of the three PTFE-impregnated fiber materials are stacked one on top of the other. In addition, when stacking the sets, a PTFE sheet with a thickness of 60 μm was interposed between the sets.

一方、これとは別に、FEP粉末濃度60重量%のディ
スバージョン中に厚さ60μmのガラスクロスを浸漬し
て引上げ、次いで300℃で2分間加熱することにより
、厚さ70μmのガラスクロス補強FEPシートを得る
Separately, a 70-μm-thick glass cloth-reinforced FEP sheet was prepared by dipping a 60-μm-thick glass cloth in dispersion with an FEP powder concentration of 60% by weight, pulling it up, and then heating it at 300°C for 2 minutes. get.

そして、上記重ね合わせ体の両面上にガラスクロス補強
FEPシートおよび銅箔(厚さ70μm)を配置し、温
度385°C1圧力50kg/cti(7)条件で30
分間加熱加圧することにより、第2図と同構造の内層材
を得る。
Then, a glass cloth reinforced FEP sheet and copper foil (thickness 70 μm) were arranged on both sides of the above stacked body, and the temperature was 385° C. and the pressure was 50 kg/cti (7).
By heating and pressurizing for a minute, an inner layer material having the same structure as that shown in FIG. 2 is obtained.

B、多層プリント配線板の製造 内層材両面の銅箔をアルカリ現像型フォトレジストを用
いてパターン加工する。
B. Manufacture of multilayer printed wiring board The copper foil on both sides of the inner layer material is patterned using an alkali-developable photoresist.

次に、内層材のパターン状銅箔上にガラスクロス補強F
EPシート(内層材の製造に用いたのと同しもの)およ
び銅箔(厚さ18μm)を各々重ね合わせ、温度300
℃、圧力10kg/cdの条件で10分間加熱加圧する
ことにより、第1図と同構造の多層プリント配線板を得
た。
Next, glass cloth reinforcement F was placed on the patterned copper foil of the inner layer material.
EP sheets (the same ones used for manufacturing the inner layer material) and copper foil (thickness 18 μm) were stacked on top of each other and heated to a temperature of 300 µm.
By heating and pressurizing for 10 minutes at a temperature of 10 kg/cd, a multilayer printed wiring board having the same structure as that shown in FIG. 1 was obtained.

この多層プリント配線板の寸法変化率はo、03%であ
った。
The dimensional change rate of this multilayer printed wiring board was 0.03%.

なお、寸法変化率は内層材両面の銅箔を直径10μmの
円形が2個残るように(円形間の距離A)各々エツチン
グ除去し、この上にガラスクロス補強シートおよび銅箔
(厚さ18μm)を各々重ね合わせ、温度300℃、圧
力10kg/c4の条件で10分間加熱加圧し、その後
ガラスクロス補強シート上の銅箔をエツチング除去し、
次いで内層材表面上に残る銅箔の円形間距離(B)を測
定し、次式によって算出した。
In addition, the dimensional change rate is determined by etching the copper foil on both sides of the inner layer material so that two circles with a diameter of 10 μm remain (distance A between the circles), and then adding a glass cloth reinforcing sheet and copper foil (thickness: 18 μm) on top of this. were stacked on top of each other and heated and pressed for 10 minutes at a temperature of 300°C and a pressure of 10kg/c4, and then the copper foil on the glass cloth reinforcing sheet was etched away.
Next, the distance (B) between the circles of the copper foil remaining on the surface of the inner layer material was measured and calculated using the following formula.

比較例 内層材の製造および多層プリント配線板の製造に際し、
ガラスクロスで補強したFEPシートに代え、厚さ70
μmのPTFEシートを用いること、および多層プリン
ト配線板の製造時の温度を385℃とすること以外は実
施例と同様に作業して、多層プリント配線板を得た。
Comparative Example When manufacturing inner layer materials and multilayer printed wiring boards,
Instead of FEP sheet reinforced with glass cloth, thickness 70
A multilayer printed wiring board was obtained in the same manner as in the example except that a μm PTFE sheet was used and the temperature during production of the multilayer printed wiring board was 385°C.

この多層プリント配線板の寸法変化率は0.05%であ
った。
The dimensional change rate of this multilayer printed wiring board was 0.05%.

(発明の効果) 本発明は上記のように構成されており、接着剤としての
低融点フッ素樹脂層を繊維基材で補強したことにより、
誘電率が低く、しかも寸法変化率の小さな多層プリント
配線板が得られる特徴がある。
(Effects of the Invention) The present invention is configured as described above, and by reinforcing the low melting point fluororesin layer as an adhesive with a fiber base material,
It has the characteristics that a multilayer printed wiring board with a low dielectric constant and a small rate of dimensional change can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る多層プリント配線板の実例を示す
断面図、第2図は本発明に用いる内層材の実例を示す断
面図である。 1・・・PTFE含浸繊維材 3.5・・・低融点フッ素樹脂層 4.6・・・金属層
FIG. 1 is a sectional view showing an example of a multilayer printed wiring board according to the present invention, and FIG. 2 is a sectional view showing an example of an inner layer material used in the invention. 1...PTFE-impregnated fiber material 3.5...Low melting point fluororesin layer 4.6...Metal layer

Claims (1)

【特許請求の範囲】[Claims] ポリテトラフルオロエチレン含浸繊維材の両面または該
含浸繊維材の2枚以上をポリテトラフルオロエチレン層
によって接合せしめたものの両面に、繊維基材によって
補強した低融点フッ素樹脂層を介して金属層が接合せし
められて成る内層材と、この内層材の両面に、繊維基材
によって補強した低融点フッ素樹脂層によって金属層を
接合一体化せしめて成る多層プリント配線板。
A metal layer is bonded to both sides of a polytetrafluoroethylene-impregnated fiber material or to both sides of two or more sheets of the impregnated fiber material joined by a polytetrafluoroethylene layer via a low-melting point fluororesin layer reinforced by a fiber base material. This multilayer printed wiring board is made by integrally bonding an inner layer material and a metal layer on both sides of the inner layer material with a low melting point fluororesin layer reinforced with a fiber base material.
JP7498090A 1990-03-22 1990-03-22 Multilayer printed-wiring board Pending JPH03273695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7498090A JPH03273695A (en) 1990-03-22 1990-03-22 Multilayer printed-wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7498090A JPH03273695A (en) 1990-03-22 1990-03-22 Multilayer printed-wiring board

Publications (1)

Publication Number Publication Date
JPH03273695A true JPH03273695A (en) 1991-12-04

Family

ID=13562946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7498090A Pending JPH03273695A (en) 1990-03-22 1990-03-22 Multilayer printed-wiring board

Country Status (1)

Country Link
JP (1) JPH03273695A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07323501A (en) * 1994-06-01 1995-12-12 Nippon Pillar Packing Co Ltd Prepreg for multilayered plate, laminated sheet, multilayered printed circuit board and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07323501A (en) * 1994-06-01 1995-12-12 Nippon Pillar Packing Co Ltd Prepreg for multilayered plate, laminated sheet, multilayered printed circuit board and production thereof

Similar Documents

Publication Publication Date Title
US4886699A (en) Glass fiber reinforced fluoropolymeric circuit laminate
EP0248617B1 (en) Process for making substrates for printed circuit boards
US8007629B2 (en) Method of manufacturing multi-layer circuit board
US6528733B2 (en) Multi-layer circuit board and method of manufacturing same
JP2007157965A (en) Fluororesin lamination substrate
JPH03273695A (en) Multilayer printed-wiring board
JPH0569442A (en) Prepreg and use thereof
JP2004216784A (en) Method for manufacturing prepreg, prepreg, laminate with built-in inner layer circuit and metal foil-clad laminate
JPH04168127A (en) Prepreg and multi-layer circuit board
JPH04168128A (en) Prepreg and its use
JPH0824011B2 (en) Electric laminated board and printed wiring board using the same
JPH0220337A (en) Preparation of laminated sheet
JPH0538783A (en) Composite body and use therefor
JP3263173B2 (en) Method for producing resin laminate and method for producing metal-clad laminate
JPS6348340A (en) Laminated sheet
JPH03129605A (en) Prepreg and application thereof
JPH0244797A (en) Manufacture of multilayer interconnection board
JPH05259635A (en) Circuit board
JPH05320383A (en) Prepreg and its use
JPH04165690A (en) Manufacture of single-sided copper-clad laminated board
JPH0244798A (en) Manufacture of multilayer interconnection board
JPH0639958A (en) Fluorine resin-laminated sheet, circuit board and multi-layer circuit board
JPH04167311A (en) Prepreg and its application
JPH0459137B2 (en)
JPH0753420B2 (en) Manufacturing method of multilayer printed wiring board