JPH03271496A - Striking type direction correcting method and excavator - Google Patents

Striking type direction correcting method and excavator

Info

Publication number
JPH03271496A
JPH03271496A JP6809990A JP6809990A JPH03271496A JP H03271496 A JPH03271496 A JP H03271496A JP 6809990 A JP6809990 A JP 6809990A JP 6809990 A JP6809990 A JP 6809990A JP H03271496 A JPH03271496 A JP H03271496A
Authority
JP
Japan
Prior art keywords
hammer
compressed air
excavator
bits
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6809990A
Other languages
Japanese (ja)
Other versions
JPH0684717B2 (en
Inventor
Ryoichi Takuri
田栗 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kandenko Co Ltd
Original Assignee
Kandenko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kandenko Co Ltd filed Critical Kandenko Co Ltd
Priority to JP2068099A priority Critical patent/JPH0684717B2/en
Publication of JPH03271496A publication Critical patent/JPH03271496A/en
Publication of JPH0684717B2 publication Critical patent/JPH0684717B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Earth Drilling (AREA)

Abstract

PURPOSE:To correct a direction fine adjusted and further continuously regardless of a pipe diameter by providing a flow divider member, having through holes of different diameters, in a conveying route of compressed air of an excavator, having a plurality of hammers, and changing a number of times of striking each bit. CONSTITUTION:An excavator is propelled by a jack from behind while feeding compressed air to a hammer part of a center hammer 2 and each hammer 3 to 8. Next, compressed air of amount in accordance with bore size of each flow divider hole is fed to each hammer when a flow divider member 28 is pressed to a feed-in adapter 27, and the largest amount of compressed air is fed to the center hammer 2 and the hammer 3. A number of times of striking bits 52, 53 of the hammers 2, 3 per unit time is increased, hereinafter a number of times of striking bits is decreased successively by the order of bits 54, 58, bits 55, 57 and a bit 56. Further a direction of advancing is corrected by crushing the natural ground corresponding to the respective bits. In this way, the direction can be easily and promptly corrected.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は掘進機を用いて地中に管を敷設する際の推進
方向の修正方法、並びにその装置に関するものであって
、特に砂礫層を掘進させるのに適したハンマーによる所
謂打撃式の掘進機を使用する際の方向修正方法及び当該
方向修正機能有する打撃式方向修正掘進機を提供するこ
とを目的とするものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for correcting the direction of propulsion when laying a pipe underground using an excavator, and an apparatus thereof, and particularly relates to a method for correcting the direction of propulsion when laying a pipe underground using an excavator, and particularly to a device for the same. The object of the present invention is to provide a direction correction method when using a so-called impact-type excavator using a hammer suitable for digging, and a percussion-type direction-correcting excavator having the direction correction function.

(従来の技術) 従来この種の打撃式の掘進機等において、方向修正がで
きるものは特開昭63−70797号において開示され
た「掘進装置」並びに特開昭63−70799号におい
て開示された「衝撃掘進機」がある。
(Prior Art) Conventionally, among this type of impact-type excavators, etc., those capable of direction correction are disclosed in the "excavating device" disclosed in Japanese Patent Application Laid-Open No. 63-70797 and the Japanese Patent Application Laid-Open No. 63-70799. There is a "shock tunneling machine".

前者の「掘進装置」はハンマー及びビットを有する先導
管と後続管の間に適宜の方向修正ジヤツキを複数介し、
各ジヤツキの伸縮度合いを変えて方向修正を行うように
なっている。
The former "excavation device" uses a plurality of appropriate direction adjustment jacks between the leading pipe and the trailing pipe, each having a hammer and a bit.
The direction is corrected by changing the degree of expansion and contraction of each jack.

一方後者の「衝撃掘進機」によれば、ハンマ一部を内蔵
した内筒及びチジエルを予め軸線に対して微小角度傾斜
させ、内筒及びチジエルの傾斜を連続的に変化させれば
スパイラル状に直進し、傾斜方向を固定させると円弧状
に曲進するようにしているものであった。
On the other hand, according to the latter "impulse excavator," the inner cylinder and chisel in which a part of the hammer is built are tilted at a small angle with respect to the axis in advance, and by continuously changing the inclination of the inner cylinder and chisel, a spiral shape can be created. It was designed to travel straight, and if the direction of inclination was fixed, it would curve in an arc.

(発明が解決しようとする課題) しかし上記従来技術はいずれも基本的には先導管自身を
強制的に傾斜させたり、回動させたりして当該傾斜方向
に曲進させることによって必要な方向修正を行うもので
ある。従って管の径が大きくなったり硬い地盤に当たっ
たりした場合には、当該先導管やジヤツキ、モータなど
に対する負担が大きくなって好ましくない。そのため管
の径が大きい場合には適応できないという面があった。
(Problem to be Solved by the Invention) However, in all of the above-mentioned conventional techniques, the necessary direction correction is basically made by forcibly inclining or rotating the leading pipe itself and making it curve in the direction of the inclination. This is what we do. Therefore, if the diameter of the pipe becomes large or if the pipe hits hard ground, the load on the lead pipe, jack, motor, etc. will increase, which is undesirable. Therefore, there was an aspect that it could not be applied when the diameter of the pipe was large.

またスパイラル状に直進させるのは効率が悪く。Also, it is inefficient to move straight in a spiral pattern.

しかも時間がかかってしまう。Moreover, it takes time.

(課題を解決するための手段) この発明はかかる点に鑑みてなされたものであり、管径
の大小に拘らず適応できる方向修正方法及び当該機能を
有する掘進機を提供して問題の解決を図るものである。
(Means for Solving the Problems) This invention has been made in view of the above points, and aims to solve the problems by providing a direction correction method that can be applied regardless of the size of the pipe diameter, and an excavator having the function. This is what we aim to do.

そのためこの発明では、複数のハンマーを有する掘進機
を用いて地中を掘進させる工法において、当該掘進機の
各ビットの単位時間当たりの打撃回数を夫々変えて方向
修正を行うようにしたものである。
Therefore, in this invention, in a method of digging underground using an excavator having a plurality of hammers, the direction is corrected by changing the number of strikes per unit time of each bit of the excavator. .

二二で各ビットの単位時間当たりの打撃回数を夫々変え
るとは、各ビットの打撃回数が全て相互に異なるものだ
けをいうのではなく、例えば軸方向からみて線対称の位
置にあるビットは同一の打撃回数であってもよいもので
ある。
In 22, changing the number of strikes per unit time for each bit does not only mean that the number of strikes for each bit is different from each other; for example, bits at symmetrical positions when viewed from the axis are the same. The number of hits may be as follows.

そして各ビットの単位時間当たりの打撃回数を変えるに
は、例えば各ハンマーへ送る圧搾空気の量を夫々変えれ
ばよい。
In order to change the number of blows per unit time for each bit, for example, the amount of compressed air sent to each hammer may be changed.

またこれを具体化した装置として、複数のハンマーを有
する掘進機において、ビットを作動させる圧搾空気の経
路に、径の異なる貫通孔が複数穿設された分流部材を回
転自在に設け、かつ当該貫通孔は夫々各ハンマーへの圧
搾空気の各送風口の配列に対応させた、請求項第(2)
項に記載の打撃式方向修正掘進機も提供できる。
In addition, as a device that embodies this, in an excavator having multiple hammers, a flow dividing member with multiple through holes of different diameters is rotatably provided in the path of compressed air that operates the bit, and the Claim (2), wherein each hole corresponds to the arrangement of each air outlet for compressed air to each hammer.
It is also possible to provide the percussion-type direction-correcting excavator described in 2.

なおここで言う圧搾空気の経路とは、圧搾空気が各ハン
マーへ分けて送られる以前の経路、例えば−括して後方
から1本の適宜の搬送管によって送られる場合の当該搬
送管などをいう。
Note that the compressed air path referred to here refers to the path before the compressed air is sent separately to each hammer, for example, the conveyance pipe when the compressed air is collectively sent through one appropriate conveyance pipe from the rear. .

(作 用) 各ビットの単位時間当たりの打撃回数を各々変えてやれ
ば、各々前方の土砂、礫を砕くその度合いが異なってく
る。従って打撃回数が多く、土砂、礫がより粉砕された
部分は、その方向へと前進しやすくなる。その結果掘進
機全体としては当該打撃回数が多く、土砂、礫がより進
むのに適した性状となった地山の方へと進むものである
(Function) By changing the number of times each bit is struck per unit time, the degree of crushing the dirt and gravel in front of each bit will differ. Therefore, the part where the number of hits is large and the earth, sand, and gravel are more pulverized becomes easier to move forward in that direction. As a result, the excavator as a whole advances toward the ground where the number of hits is large and the properties are more suitable for the advancement of earth, sand, and gravel.

なお直進させる場合には通常のこの種の掘進機と同様、
各ビットの単位時間当たりの打撃回数を各々同一にすれ
ばよい。
In addition, when moving in a straight line, as with normal excavators of this type,
The number of hits per unit time for each bit may be the same.

また請求項第(2)項に記載の打撃式方向修正掘進機に
よれば、分流部材を適宜回転させて貫通孔をハンマーへ
の圧搾空気の各送入口に対応させれば、当該貫通孔の径
の大きさに応じた量の圧搾空気が各ハンマーへと送られ
る。その結果各ハンマーの各ビットの単位時間当たりの
打撃回数はそれに対応して夫々異なる。従って請求項第
(])項の場合と同様、掘進機の方向修正が行える。即
ち分流部材を回転させるだけで、掘進機の方向修正が行
えるのである。
Further, according to the impact type direction-correcting excavator described in claim (2), if the flow dividing member is appropriately rotated to make the through hole correspond to each inlet of compressed air to the hammer, the through hole can be opened. An amount of compressed air is sent to each hammer depending on its diameter. As a result, the number of strikes per unit time for each bit of each hammer is correspondingly different. Therefore, the direction of the excavator can be corrected as in the case of claim No. ( ). In other words, the direction of the excavator can be corrected simply by rotating the diversion member.

(実施例) 以下、この発明の1実施例を図面に基づき説明する。第
1図は実施例にかかる掘進機の先導管となる部分の側面
断面を示しており、■は管体であって、この管体1の前
方内部にはハンマーが複数設けられている。具体的には
、センターハンマー2を中心として6本のハンマー3.
4.5.6.7.8が、第2図、第3図に示すようにそ
の周囲に等間隔で配置されている2各ハンマー2.3.
4.5.6.7.8の前方端部には夫々ビット52.5
3.54.55.56.57.58が設けられ、また各
ハンマー3.4.5.6.7.8と管体1との空隙部に
は、夫々排出管9.10.11.12.13、I4が夫
々配置されている。なお説明の都合上、第1図の管体l
の前方部は上下非対称にして図示し、排出管IJを露見
させである。
(Example) Hereinafter, one example of the present invention will be described based on the drawings. FIG. 1 shows a side cross-section of a portion that becomes a leading pipe of an excavator according to an embodiment, where ◯ indicates a tube body, and a plurality of hammers are provided inside the front of this tube body 1. Specifically, six hammers 3.
4.5.6.7.8 are arranged at equal intervals around the circumference of each hammer 2.3.8 as shown in FIGS.
4.5.6.7.8 with bits 52.5 at the front end, respectively.
3.54.55.56.57.58 are provided, and a discharge pipe 9.10.11.12 is provided in the gap between each hammer 3.4.5.6.7.8 and the pipe body 1, respectively. .13 and I4 are arranged respectively. For convenience of explanation, the tube l in Figure 1
The front part is shown vertically asymmetrically, and the discharge pipe IJ is exposed.

センターハンマー2及び各ハンマー3.4.5.6.7
.8の後部は管体1内の隔壁部15に支持されている。
Center hammer 2 and each hammer 3.4.5.6.7
.. The rear part of the tube 8 is supported by a partition wall 15 inside the tube body 1.

また排出管9.10.11.12.13、I4はこの隔
壁部15を貫通している。そしてこの隔壁部15と、さ
らに後方に斜めに設けられた隔M16との間は−定の空
間が創出され、この部分で掘削した土砂や排呂空気等が
集められ、管体1の内側下部に設けた排出管17によっ
て後方へと排出される。なお隔壁16は排出管17に近
づくにつれて後方へと傾斜する構成であるから、排出空
気、掘削土砂は効果的に排出管17へと集中するもので
ある。
Further, the discharge pipes 9, 10, 11, 12, 13 and I4 pass through this partition wall portion 15. A certain space is created between this partition wall part 15 and a partition M16 provided diagonally further rearward, and excavated earth and sand, exhaust air, etc. are collected in this part, and the inner lower part of the pipe body 1 is It is discharged to the rear through a discharge pipe 17 provided at. Since the partition wall 16 is configured to slope backward as it approaches the discharge pipe 17, the discharged air and excavated soil are effectively concentrated toward the discharge pipe 17.

センターハンマー2及び各ハンマー3.4.5,6.7
.8のハンマ一部へは、各々に対応して独立した、隔壁
部15内に設けられた圧搾空気送入パイプ18.19.
20.21.22.23.24によって圧搾空気が送ら
れるが、これら各圧搾空気送入パイプ18.19.20
.21.22.23.24の送入口は、第4図に示した
ように隔壁部15の一側(図中の右側)中心に集中して
いる。そして当該隔壁部15の一側には、これら各圧搾
空気送入パイプ18.19.20.21.22.23.
24の送入口を円形に包囲するようにして、その一端部
が隔壁16に支持された密閉筒体25の他端部が気密固
着されている。
Center hammer 2 and each hammer 3.4.5, 6.7
.. 8, there are compressed air supply pipes 18, 19, .
Compressed air is sent by 20.21.22.23.24, each of these compressed air supply pipes 18.19.20
.. The inlet ports 21, 22, 23, and 24 are concentrated at the center of one side (the right side in the figure) of the partition wall portion 15, as shown in FIG. On one side of the partition wall 15, these compressed air supply pipes 18, 19, 20, 21, 22, 23.
A closed cylinder 25 has one end supported by the partition wall 16 and the other end thereof is hermetically fixed so as to surround the inlet port 24 in a circular manner.

隔壁部15の一側表面には、各圧搾空気送入パイプ18
.19.20.21.22.23.24の送入口に対応
して同形同大の貫通孔26(計7カ所)が穿たれた送入
アダプタ27が、密閉筒体25の内周に接して固着され
ている。そしてこの送入アダプタ27と密閉筒体25内
で対向するように分流部材28が、密閉筒体25内を回
転自在かつ軸方向(図中の往復矢印)に摺動自在になる
ように、密閉筒体25内に設けられている。
Each compressed air supply pipe 18 is provided on one side surface of the partition wall 15.
.. 19.20.21.22.23.24 The feed adapter 27, which has through holes 26 of the same shape and size (7 locations in total) corresponding to the feed ports of 24, is in contact with the inner periphery of the sealed cylinder 25. It is fixed. Then, the flow dividing member 28 is sealed so as to be opposed to the feeding adapter 27 in the sealed cylinder 25 so as to be rotatable and slidable in the axial direction (reciprocating arrow in the figure) within the sealed cylinder 25. It is provided inside the cylindrical body 25.

本実施例で用いた分流部材28は略筒型であり、前方部
(図中の左側)は密閉筒体25の内周に設けた環状段部
29によって支持されている。そして前方端部には第5
図に示したように複数の分流孔が穿たれてこれらが環状
に配されている。これら分流孔はその径の大きさが4種
類あり、径の1番大きい第1分流孔31から両側に中心
角60’ずれた位置にその次に径の大きな第2分流孔3
2.33が、さらに夫々中心角60°ずれた位置に3番
目に径の大きな第3分流孔34.35が、そして第1分
流孔31と対向する位置に最も径の小さい第4分流孔3
6が穿たれ、また中心には第1分流孔31と同径の中心
孔37が穿たれている。
The flow dividing member 28 used in this embodiment has a substantially cylindrical shape, and the front portion (left side in the figure) is supported by an annular step portion 29 provided on the inner periphery of the sealed cylinder 25. And at the front end there is a fifth
As shown in the figure, a plurality of flow dividing holes are bored and arranged in a ring shape. These flow dividing holes have four types of diameter sizes, and the second flow dividing holes 3 with the next largest diameter are located at positions shifted by a center angle of 60' on both sides from the first flow dividing hole 31 with the largest diameter.
2.33, a third branching hole 34.35 with the third largest diameter is located at a position shifted by a center angle of 60°, and a fourth branching hole 3 with the smallest diameter is located at a position facing the first branching hole 31.
6 is bored, and a center hole 37 having the same diameter as the first branch hole 31 is bored in the center.

分流部材28には、密閉筒体25の後方端壁と環状段部
30間の外周にフランジ38が固着されており、当該後
方端壁とフランジ38との間に適宜のポンプ(図外)か
らの圧力伝播媒体によって圧力(油圧、空気圧など)を
加えることにより1分流部材28は密閉筒体25内部を
軸方向にスライドし、その前方端壁が送入アダプタ27
表面と密着自在である。即ち密閉筒体251分流部材2
8及びフランジ38でいわばセンターホールジヤツキを
構成する。
A flange 38 is fixed to the flow dividing member 28 on the outer periphery between the rear end wall of the sealed cylinder 25 and the annular step 30, and a suitable pump (not shown) is connected between the rear end wall and the flange 38. By applying pressure (hydraulic pressure, pneumatic pressure, etc.) using a pressure propagation medium, the first flow dividing member 28 slides in the axial direction inside the closed cylinder 25, and its front end wall is connected to the inlet adapter 27.
It can be attached to the surface freely. That is, the closed cylinder body 251 and the flow dividing member 2
8 and the flange 38 constitute a so-called center hole jack.

分流部材28の後方部は収納体39の中に摺動自在に納
められて支持され、この収納体39の中で発進側竪坑か
らの圧搾空気搬送パイプ40と接続されている。またさ
らに当該収納体39の中で、モータ41からの回転が変
速機42を介して伝えられ、分流部材28はモータ41
の回転により密閉筒体25の内部で回転するように構成
されている。
The rear part of the flow dividing member 28 is slidably housed and supported in a housing 39, and is connected within the housing 39 to a compressed air conveying pipe 40 from the starting side shaft. Furthermore, within the storage body 39, the rotation from the motor 41 is transmitted via the transmission 42, and the flow dividing member 28 is connected to the motor 41.
It is configured to rotate inside the closed cylindrical body 25 by the rotation of the cylinder.

本実施例は以上のような構成を有し、地中を掘進させる
際は一般のこの種の掘進機と同様、圧搾空気をセンター
ハンマー2及び各ハンマー3.4.5゜6.7,8のハ
ンマ一部へ送りながら、後方からジヤツキによって推進
させる。而して方向修正する際には、以下の手順によっ
て行われる。
This embodiment has the above-mentioned configuration, and when digging underground, compressed air is supplied to the center hammer 2 and each hammer 3.4.5°6.7. While sending it to a part of the hammer, it is propelled by a jack from behind. Therefore, when correcting the direction, the following procedure is performed.

例えば第1図中の矢印方向へと方向修正するには1分流
部材28を第5図に示した位置のまま送入アダプタ27
へと押しつける。そうするとセンターハンマー2の圧搾
空気送入パイプ18の送入口に中心孔37、ハンマー3
の圧搾空気送入パイプ19の送入口に第1分流孔31、
ハンマー4の圧搾空気送入パイプ20の送入口に第2分
流孔32、ハンマー8の圧搾空気送入パイプ24の送入
口に第2分流孔33、ハンマー5の圧搾空気送入パイプ
21の送入口に第3分流孔34、ハンマー7の圧搾空気
送入パイプ23の送入口に第3分流孔35、ハンマー6
の圧搾空気送入パイプ22の送入口に第4分流孔36が
夫々接続される。
For example, to correct the direction in the direction of the arrow in FIG.
to press against. Then, the center hole 37 and the hammer 3 are connected to the inlet of the compressed air inlet pipe 18 of the center hammer 2.
A first branch hole 31 at the inlet of the compressed air inlet pipe 19,
A second branch hole 32 at the inlet of the compressed air supply pipe 20 of the hammer 4, a second branch hole 33 at the inlet of the compressed air supply pipe 24 of the hammer 8, and an inlet of the compressed air supply pipe 21 of the hammer 5. A third diversion hole 34 is provided at the inlet of the compressed air supply pipe 23 of the hammer 7, a third diversion hole 35 is provided at the inlet of the compressed air supply pipe 23 of the hammer 7, and a third distribution hole 35 is provided at the inlet of the compressed air supply pipe 23 of the hammer 7.
A fourth branch hole 36 is connected to the inlet of the compressed air inlet pipe 22, respectively.

その結果、各分流孔の径の大きさに応じた圧搾空気の量
が各ハンマーに送入され、センターハンマー2及びハン
マー3に最も多くの量の圧搾空気が送られてそのビット
52.53の単位時間当たりの打撃回数が多くなり、以
下ビット54.58、ビット55、57、ビット56の
順に当該打撃回数が減っていく。
As a result, the amount of compressed air corresponding to the diameter of each branch hole is sent to each hammer, and the largest amount of compressed air is sent to the center hammer 2 and hammer 3, and the bits 52 and 53 are fed with the largest amount of compressed air. The number of hits per unit time increases, and the number of hits decreases in the order of bit 54.58, bits 55, 57, and bit 56.

この結果夫々に対応して全体として前方上方の地山がよ
り粉砕されて、管体1としては当該前方へと推進しやす
くなる。従って上方へと進行方向が修正されるのである
As a result, the ground above the front is further crushed as a whole, making it easier for the tube body 1 to be propelled forward. Therefore, the direction of movement is corrected upward.

他の方向へと方向修正する場合には、−見分流部材28
を後方へ引き戻し、その後モータ41によって分流部材
28を適宜回転させ、所望の位置(各分流孔が各ハンマ
ーの圧搾空気送入口に対応する位りにて停止させ、再び
分流部材28を送入アダプタ27に押しつければよい、
具体的には曲げたい方向に第1分流孔31を位置させる
ようにすればよいのである。従って迅速かつ簡単、しか
も連続量的に方向修正ができる。
When correcting the direction in another direction, the -distribution member 28
The flow dividing member 28 is then rotated appropriately by the motor 41, stopped at a desired position (where each flow dividing hole corresponds to the compressed air inlet of each hammer, and the flow dividing member 28 is again rotated by the inlet adapter). All you have to do is press it to 27.
Specifically, the first branching hole 31 may be positioned in the direction in which the bending is desired. Therefore, the direction can be corrected quickly, easily, and continuously.

また直進させる場合は第1図の状態のまま、即ち分流部
材28の前方端部と送入アダプタ27との間に一定の空
間を残したまま圧搾空気を搬送すれば、各分流孔を通過
した空気は当該空間で混合されるので、結局送入アダプ
タ27に穿った同径の貫通孔26を通過することにより
、夫々同量の圧搾空気がセンターハンマー2及び各ハン
マー3.4.5.6.7.8に送られることになる。従
って各ビット52.53.54、55.56.57.5
8の単位時間当たりの打撃回数は同一になって、管体1
は通常の掘進機同様そのまま直進するのである。従って
本実施例では分流部材28の軸方向の移動、回転による
だけで直進、任意方向への曲進が自在であり、しかも直
進、曲進の切替が迅速に行える。
In addition, when moving straight, compressed air can be conveyed while leaving a certain space between the front end of the flow dividing member 28 and the inlet adapter 27 as shown in FIG. Since the air is mixed in this space, it eventually passes through the through hole 26 of the same diameter drilled in the inlet adapter 27, so that the same amount of compressed air is supplied to the center hammer 2 and each hammer 3, 4, 5, 6. .7.8 will be sent. Therefore each bit 52.53.54, 55.56.57.5
8, the number of blows per unit time is the same, and the number of blows per unit time of tube body 1
Just like a normal excavator, it moves straight ahead. Therefore, in this embodiment, it is possible to freely move straight or curve in any direction simply by moving and rotating the flow dividing member 28 in the axial direction, and moreover, switching between straight and curve can be performed quickly.

なお管体の径が大きい場合には、それに応じてハンマー
及びそのビットの数を増やせばよく、その場合分流部材
の分流孔(貫通孔)も対応した数、配置にすればよい。
In addition, when the diameter of the pipe body is large, the number of hammers and their bits may be increased accordingly, and in this case, the number and arrangement of the flow dividing holes (through holes) of the flow dividing member may be adjusted accordingly.

また方向修正自体の確認等は所謂ターゲットを用いる方
法やその他既存のものをそのまま用いることができる。
Further, for checking the direction correction itself, a method using a so-called target or other existing methods can be used as is.

(発明の効果) この発明によれば、各ハンマーのビットの単位時間当た
りの打撃回数を変えることによって掘進機の方向修正を
行えるので、従来のように先導管自身をジヤツキ等で強
制的に傾斜させたりする必要はなく、それゆえ方向修正
の際に先導管の部分にかかる負担が少ない。
(Effects of the Invention) According to this invention, the direction of the excavator can be corrected by changing the number of hits per unit time of each hammer bit. Therefore, there is no need to adjust the direction of the guide pipe, so there is less stress on the leading pipe when changing the direction.

従って管径の大小に拘らず、適応できるものである。ま
たその修正度合いも打撃回数を連続可変とすることによ
り、微調整かつ連続的なものとすることができる。
Therefore, it can be applied regardless of the size of the pipe diameter. Moreover, the degree of correction can be finely adjusted and made continuous by making the number of hits continuously variable.

また請求項第(2)項記載の打撃式方向修正掘進機によ
れば、分流部材を回転させるだけで簡易、迅速に方向修
正ができ、また連続的な修正も可能である。
Further, according to the percussion-type direction-correcting excavator described in claim (2), the direction can be easily and quickly corrected simply by rotating the flow dividing member, and continuous correction is also possible.

【図面の簡単な説明】[Brief explanation of drawings]

各図はいずれもの発明の実施例に関するものであって、
第1図は側面断面図、第2図は正面図。 第3図は第1図におけるA−A線断面図、第4図は第1
図におけるB−B線断面図、第5図は第1図におけるC
−C線端面図である。 なお図中、1は管体、2はセンターハンマー、3.4.
5.6.7.8は夫々ハンマー、9.1O111,12
,13、14,17は夫々排出管、15は隔壁部、16
は隔壁、18.19.20.21.22.23.24は
夫々圧搾空気送入パイプ、25は密閉筒体、26は貫通
孔、27は送入アダプタ、28は分流部材、29は支持
体、30は環状段部、31は第1分流孔、32.33は
夫々第2分流孔、34.35は夫々第3分流孔、36は
第4分流孔36.37は中心孔、38はフランジ、39
は収納体、40は圧搾空気搬送パイプ、41はモータ、
42は変速機、52.53.54.55,56.57.
58は夫々ビットである。
Each figure relates to an embodiment of the invention,
FIG. 1 is a side sectional view, and FIG. 2 is a front view. Figure 3 is a sectional view taken along line A-A in Figure 1, and Figure 4 is a cross-sectional view of Figure 1.
BB line sectional view in the figure, Figure 5 is C in Figure 1.
-C line end view. In the figure, 1 is a tube body, 2 is a center hammer, 3.4.
5.6.7.8 are hammers, 9.1O111 and 12 respectively.
, 13, 14, 17 are discharge pipes, 15 is a partition wall, 16
18, 19, 20, 21, 22, 23, and 24 are respectively compressed air supply pipes, 25 is a sealed cylinder, 26 is a through hole, 27 is a supply adapter, 28 is a flow dividing member, and 29 is a support body. , 30 is an annular step, 31 is a first branch hole, 32.33 is a second branch hole, 34.35 is a third branch hole, 36 is a fourth branch hole, 36.37 is a center hole, and 38 is a flange. , 39
is a storage body, 40 is a compressed air conveying pipe, 41 is a motor,
42 is a transmission, 52.53.54.55, 56.57.
58 are bits.

Claims (2)

【特許請求の範囲】[Claims] (1)複数のハンマーを有する掘進機を用いて地中を掘
進させる工法において、当該掘進機の各ビットの単位時
間当たりの打撃回数を夫々変えて方向修正を行うことを
特徴とする、打撃式方向修正方法。
(1) A method of excavating underground using an excavator having a plurality of hammers, characterized in that the direction is corrected by changing the number of strikes per unit time of each bit of the excavator. Direction correction method.
(2)複数のハンマーを有する掘進機において、各ビッ
トを作動させる圧搾空気の搬送経路に、径の異なる貫通
孔が複数穿設された分流部材を回転自在に設け、かつ当
該貫通孔は夫々各ハンマーへの圧搾空気の各送入口の配
列に対応させたことを特徴とする打撃式方向修正掘進機
(2) In an excavator having a plurality of hammers, a flow dividing member having a plurality of through holes with different diameters is rotatably provided in the conveyance path of the compressed air that operates each bit, and each of the through holes is A percussion-type direction-correcting excavator characterized in that the arrangement corresponds to the arrangement of each inlet for compressed air to the hammer.
JP2068099A 1990-03-20 1990-03-20 Impact type direction correction method and excavator Expired - Fee Related JPH0684717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2068099A JPH0684717B2 (en) 1990-03-20 1990-03-20 Impact type direction correction method and excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2068099A JPH0684717B2 (en) 1990-03-20 1990-03-20 Impact type direction correction method and excavator

Publications (2)

Publication Number Publication Date
JPH03271496A true JPH03271496A (en) 1991-12-03
JPH0684717B2 JPH0684717B2 (en) 1994-10-26

Family

ID=13363956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2068099A Expired - Fee Related JPH0684717B2 (en) 1990-03-20 1990-03-20 Impact type direction correction method and excavator

Country Status (1)

Country Link
JP (1) JPH0684717B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711856A (en) * 1993-06-28 1995-01-13 Tone Corp Air-hammer excavating device and method
JPH07173995A (en) * 1992-12-18 1995-07-11 Kandenko Co Ltd Advance drilling method for conglomerate layer or the like, and advance drilling machine coping with conglomerate layer
JP2006207237A (en) * 2005-01-27 2006-08-10 Raito Kogyo Co Ltd Directional-controlled drilling device
JP2012072567A (en) * 2010-09-28 2012-04-12 Maeda Corp Curved boring method and boring device used therefor
JP2019094708A (en) * 2017-11-24 2019-06-20 大智株式会社 Excavating device, rotary excavator, excavation method and drilling bit
CN113020013A (en) * 2021-03-11 2021-06-25 中铁隧道局集团有限公司 Shield constructs machine knife dish mud cake excitation cleaning device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8141660B2 (en) 2006-12-04 2012-03-27 Kazunori Furuki Excavator apparatus for underground excavation
JP5128999B2 (en) * 2008-04-04 2013-01-23 一功 古木 Drilling method, drilling device and rotary drilling machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173995A (en) * 1992-12-18 1995-07-11 Kandenko Co Ltd Advance drilling method for conglomerate layer or the like, and advance drilling machine coping with conglomerate layer
JPH0711856A (en) * 1993-06-28 1995-01-13 Tone Corp Air-hammer excavating device and method
JP2006207237A (en) * 2005-01-27 2006-08-10 Raito Kogyo Co Ltd Directional-controlled drilling device
JP2012072567A (en) * 2010-09-28 2012-04-12 Maeda Corp Curved boring method and boring device used therefor
JP2019094708A (en) * 2017-11-24 2019-06-20 大智株式会社 Excavating device, rotary excavator, excavation method and drilling bit
CN113020013A (en) * 2021-03-11 2021-06-25 中铁隧道局集团有限公司 Shield constructs machine knife dish mud cake excitation cleaning device

Also Published As

Publication number Publication date
JPH0684717B2 (en) 1994-10-26

Similar Documents

Publication Publication Date Title
JP4495114B2 (en) Tunnel excavator and tunnel excavation method
JPH03271496A (en) Striking type direction correcting method and excavator
KR101650913B1 (en) Tilting type excavation apparatus for propulsion pipes
KR100335245B1 (en) Tunneling machines having a means for removing of a crushed material at lower
JP6624608B2 (en) Excavator
KR100356143B1 (en) Tunneling machines enable for 3rd step crushing
JP3406891B2 (en) Impact-type small-diameter thruster for gravel
JP2928435B2 (en) Excavator
JP2954565B1 (en) Pilot hole drilling rig
KR100355512B1 (en) Tunneling machines having enhanced pipe installation
JPH0893373A (en) Excavation guide pipe device
JP6804067B2 (en) Tunnel boring machine
JPH0781488B2 (en) Shield machine propulsion device
JPH0345195B2 (en)
JP4392637B2 (en) Excavated body
JPH08210084A (en) Small-bore propulsion device
JP2024022355A (en) Tunnel excavator
JPH04272392A (en) Tunnel excavator
JP2021134506A (en) Tunnel excavator
KR20040002061A (en) Tunneling machine of having an eccentricity crusher
JP2001241296A (en) Earth and sand moving tank for tunnel excavator
JPH0359298A (en) Excavator for propelling small-diameter pipe
JPH08210086A (en) Tunnel boring machine
JPH10292782A (en) Rectangular shield machine
JPH06288185A (en) Excavator