JPH03271323A - Production of nonoriented silicon steel sheet - Google Patents

Production of nonoriented silicon steel sheet

Info

Publication number
JPH03271323A
JPH03271323A JP6969090A JP6969090A JPH03271323A JP H03271323 A JPH03271323 A JP H03271323A JP 6969090 A JP6969090 A JP 6969090A JP 6969090 A JP6969090 A JP 6969090A JP H03271323 A JPH03271323 A JP H03271323A
Authority
JP
Japan
Prior art keywords
iron loss
steel sheet
tension
longitudinal direction
finish annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6969090A
Other languages
Japanese (ja)
Other versions
JP3236604B2 (en
Inventor
Takehiko Minato
港 武彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP06969090A priority Critical patent/JP3236604B2/en
Publication of JPH03271323A publication Critical patent/JPH03271323A/en
Application granted granted Critical
Publication of JP3236604B2 publication Critical patent/JP3236604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the magnetic properties of a nonoriented silicon steel sheet by measuring the iron loss of a finish-annealed steel sheet with respect to the longitudinal direction and its crossing direction and regulating and controlling the tension of a steel sheet based on the resulting measured values. CONSTITUTION:A hot rolled plate stock for nonoriented silicon steel sheet is cold-rolled once or is cold-rolled twice while process-annealed between the cold rolling stages so as to be worked to the final sheet thickness, and finish annealing is exerted under the tension in the longitudinal direction of the steel sheet. At this time, iron loss is measured with respect to the longitudinal direction and its crossing direction of the finish-annealed steel sheet. The tension of the steel sheet is controlled so that the average value of the resulting measured values is at a minimum. Further, the iron loss ratio C/L is determined from the iron loss data measured with respect to the longitudinal direction L and its crossing direction C, and the tension to be applied in the course of finish annealing is controlled so that the iron loss ratio based on measurement agrees with the iron loss ratio where the average value of the iron losses in respective directions after finish annealing previously determined is at a minimum.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、電動機や、発電機等の回転機器用の鉄心材
料として、特に優れた適性を示す無方向性電磁鋼板の製
造方法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for producing a non-oriented electrical steel sheet that is particularly suitable as a core material for rotating equipment such as electric motors and generators. be.

(従来の技術) 特開平1−92318号公報では、銅帯の長さ方向と巾
方向の冷間圧延を行なうことにより、磁気異方性を低減
する無方向性電磁鋼板の製造方向が開示されているが、
巾方向圧延を行なうことは実用的でなく、工業生産への
応用は難しい。
(Prior Art) JP-A-1-92318 discloses a method for producing a non-oriented electrical steel sheet in which magnetic anisotropy is reduced by cold rolling a copper strip in the longitudinal and width directions. Although,
Rolling in the width direction is impractical and difficult to apply to industrial production.

また、特開昭62−102507号公報では、仕上焼鈍
時の通板張力の適性範囲を仕上焼鈍温度と均熱時間の関
数で規定して、圧延方向とそれに直角な方向での磁性方
向比が小さな磁気特性の優れた無方向性けい素鋼板を短
時間焼鈍により得る方法が開示されている。しかしなが
らこの方法は、通板張力の範囲を規定したものであって
、更に適格な最適通板張力を求めることは不可能であり
、その上、素材のS等不純物の変動などによっても焼鈍
時の粒成長が異ることなどあり、成分組成によって最適
通板張力が変動するが、この現象に対する考慮がなされ
ていないなどの問題点がある。
Furthermore, in JP-A-62-102507, the appropriate range of threading tension during finish annealing is defined as a function of finish annealing temperature and soaking time, and the magnetic direction ratio in the rolling direction and the direction perpendicular thereto is A method of obtaining a non-oriented silicon steel sheet with small and excellent magnetic properties by short-time annealing is disclosed. However, this method stipulates the range of threading tension, and it is impossible to determine a more suitable optimum threading tension.Furthermore, due to fluctuations in impurities such as S in the material, The optimal threading tension varies depending on the component composition due to differences in grain growth, but there are problems such as no consideration is given to this phenomenon.

(発明が解決しようとする課題) この発明は、無方向性電磁鋼板の製造方法において、最
終の仕上焼鈍を適切に行なうことにより磁気特性の改善
を計ることを目的とするもので、鉄損値に大きく影響す
る仕上焼鈍時の長手方向鋼板張力を最適化すること、さ
らには、成分組成、製造条件によって変動する最適鋼板
張力に対応可能とすることにある。
(Problems to be Solved by the Invention) The purpose of the present invention is to improve the magnetic properties by appropriately performing final finish annealing in a method for manufacturing non-oriented electrical steel sheets, and to improve the iron loss value. The objective is to optimize the longitudinal steel plate tension during final annealing, which greatly affects the process, and to be able to respond to the optimum steel plate tension, which varies depending on the component composition and manufacturing conditions.

(課題を解決するための手段) この発明は、鋼板の長手方向とその横断方向との鉄損の
平均値が最小となるように、最終の仕上は焼鈍における
長手方向の鋼板張力を、成分組成および製造条件により
変動する最適鋼板張力に適合するよう調整制御するもの
で、その要旨は、1、 無方向性電磁鋼板用熱延板を素
材として、1回又は中間焼鈍を挟む2回の冷間圧延を施
して最終板厚に加工した後に、仕上げ焼鈍を鋼板の長手
方向の張力下で施すにあたって、仕上げ焼鈍を経た鋼板
の鉄損を、該鋼板の長手方向とその横断方向について計
測し、その平均値が最低となる様に上記張力を制御する
ことを特徴とする無方向性電磁鋼板の製造方法。
(Means for Solving the Problems) This invention provides a final finish that reduces the tension of the steel plate in the longitudinal direction during annealing and changes the composition of the steel plate so that the average value of iron loss in the longitudinal direction and the transverse direction of the steel plate is minimized The system adjusts and controls the tension to suit the optimum steel plate tension, which varies depending on the manufacturing conditions. After rolling to the final thickness, finish annealing is performed under tension in the longitudinal direction of the steel plate.The iron loss of the steel plate that has undergone finish annealing is measured in the longitudinal direction and the transverse direction of the steel plate. A method for producing a non-oriented electrical steel sheet, characterized in that the tension is controlled so that the average value is the lowest.

2、 無方向性電磁鋼板用熱延板を素材として、1回又
は中間焼鈍を挟む2回の冷間圧延を施して最終板厚に加
工した後に、仕上げ焼鈍を鋼板の長手方向の張力下で施
すにあたって、仕上焼鈍を経た鋼板の鉄損を、該鋼板の
長手方向(L)とその横断方向(C)について計測した
データーから鉄損比C/Lを求めること、仕上げ焼鈍中
鋼板に作用する張力を、成分組成および製造条件により
、あらかじめ求められている該鋼板の仕上焼鈍後の各方
向鉄損の平均値が最小となる鉄損比C/Lに、上記計測
に基く鉄損比C/Lを一致させるように上記張力を制御
することからなる無方向性電磁鋼板の製造方法。
2. Using hot rolled sheets for non-oriented electrical steel sheets as raw materials, cold rolling is performed once or twice with intermediate annealing to achieve the final thickness, and then finish annealing is performed under tension in the longitudinal direction of the steel sheet. In applying this method, the iron loss ratio C/L is determined from the data measured in the longitudinal direction (L) and the transverse direction (C) of the steel plate that has undergone finish annealing, and the iron loss ratio C/L is determined by the iron loss ratio C/L that acts on the steel plate during finish annealing. The tension is adjusted to the iron loss ratio C/L that minimizes the average value of the iron loss in each direction after final annealing of the steel sheet, which is determined in advance according to the component composition and manufacturing conditions, and the iron loss ratio C/L based on the above measurement. A method for manufacturing a non-oriented electrical steel sheet, which comprises controlling the tension so that L is made to match.

である。It is.

ここに、長手方向とその横断方向の鉄損の平均値、ある
いは各方向鉄損の平均値は、 長手方向鉄損値−−−−IRL 長手方向と直角をなす横断方向−−−−IRCo。
Here, the average value of the iron loss in the longitudinal direction and its transverse direction, or the average value of the iron loss in each direction, is: Longitudinal iron loss value -----IRL Transverse direction perpendicular to the longitudinal direction---IRCo.

長手方向と45°の角をなす横断方向−−−−IRC4
5とする場合、 上記(1)、 (2)式の様に算出してもよく、さらに
は長手方向となす角度を変えた横断方向の鉄損値を用い
ること、角度を変えた横断方向の多くの鉄損値を用いて
もよい。
Transverse direction making an angle of 45° with the longitudinal direction---IRC4
5, it may be calculated as in equations (1) and (2) above, and furthermore, the iron loss value in the transverse direction with different angles to the longitudinal direction may be used, and the iron loss value in the transverse direction with different angles may be used. Many iron loss values may be used.

また、鉄損比C/Lは、 長手方向鉄損÷横断方向鉄損 を表わすもので、横断方向は長手方向となす角が90°
以外でもよい。
In addition, the iron loss ratio C/L represents longitudinal iron loss ÷ transverse iron loss, where the angle between the transverse direction and the longitudinal direction is 90°.
Anything other than that is fine.

この発明の方法は、無方向性電磁鋼板用熱延板の成分組
成に関し、C≦0.05wtX  Si+1≦4.5w
tX、 Mn≦1.5wtXを含み、また場合によって
はP : 0.05〜0.20wtXを含有して、残部
はFe及び不可避不純物よりなるような素材について有
利に適合する。
The method of the present invention relates to the composition of a hot-rolled sheet for non-oriented electrical steel sheets, such that C≦0.05wtX Si+1≦4.5w
tX, Mn≦1.5wtX, and in some cases P: 0.05 to 0.20wtX, with the balance consisting of Fe and unavoidable impurities.

ここにC> 0.05wtXのとき、Cによる磁気時効
を防止するための脱炭処理に長時間を要し、生産コスト
、生産能率等の実用上で不利があり、またSi+1≦4
 >4.5 wtXでは、冷間圧延時の加工性に問題が
あるため不適であり、さらにMn> 1.5 wtXで
は、電磁特性の向上よりも、生産コストの上昇が大きく
、実用上の問題によって適合しない。Pについては最終
成品の硬度を調整する目的のため、0、05〜0.20
wtXが好適である。
Here, when C > 0.05wt
> 4.5 wtX is unsuitable due to problems with workability during cold rolling, and Mn > 1.5 wtX increases production costs more than improving electromagnetic properties, which is a practical problem. Not compatible with P is 0.05 to 0.20 for the purpose of adjusting the hardness of the final product.
wtX is preferred.

(作 用) 無方向性電磁鋼板の製造において、仕上焼鈍時の鋼板張
力は鉄損値に大きく影響し、長手方向に張力が作用する
場合、長手方向の鉄損値は減少し、その横断方向、特に
長手方向に対し直角をなす方向の鉄損値は増加する傾向
を示す。そして長手方向とその横断方向との鉄損の平均
値が最小となる張力すなわち最適張力が存在する。第2
図はこれらの関係を示すもので、長手方向に対し直角を
なす横断方向の場合である。横軸に鋼板張力、縦軸に鉄
損値をとり、長手方向鉄損値(IRL) 、横断をパラ
メーターとして示すもので、鉄損の平均値が最小となる
最適鋼板張力が存在することがわかる。
(Function) In the production of non-oriented electrical steel sheets, the steel sheet tension during finish annealing has a large effect on the iron loss value, and when tension is applied in the longitudinal direction, the longitudinal iron loss value decreases, and the transverse direction , especially the iron loss value in the direction perpendicular to the longitudinal direction shows a tendency to increase. Then, there is a tension at which the average value of iron loss in the longitudinal direction and in the transverse direction is the minimum, that is, an optimum tension. Second
The figure shows these relationships in a transverse direction perpendicular to the longitudinal direction. The horizontal axis shows the steel plate tension and the vertical axis shows the iron loss value, and the longitudinal direction iron loss value (IRL) and the cross section are shown as parameters, and it can be seen that there is an optimal steel plate tension that minimizes the average value of iron loss. .

つぎに、長手方向とその横断方向の鉄損の平均値と、鉄
損比(C/L)の間にも、鉄損の平均値を最小とする鉄
損比(C/L)が存在する。第3図にこれらの関係を、
長手方向と長手方向に対し直角をなす横断方向の場合に
ついて示したものである。横軸に鉄損比: Coo/L
 、縦軸に鉄損の平均を 値が最小となる鉄損比が存在している。
Next, between the average value of iron loss in the longitudinal direction and its transverse direction and the iron loss ratio (C/L), there is also an iron loss ratio (C/L) that minimizes the average value of iron loss. . Figure 3 shows these relationships.
The case of a longitudinal direction and a transverse direction perpendicular to the longitudinal direction are shown. The horizontal axis shows the iron loss ratio: Coo/L
, there is an iron loss ratio that minimizes the average iron loss value on the vertical axis.

一方、前記したように鉄損値を低減するための最適鋼板
張力は、成分組成、製造条件などによって変動する。し
たがって、最適鋼板張力で仕上焼鈍を行うためには、仕
上焼鈍を終えた鋼板の鉄損を測定し、この結果をフィー
ドバックすることが最も確実な方法である。
On the other hand, as described above, the optimum steel plate tension for reducing the iron loss value varies depending on the component composition, manufacturing conditions, etc. Therefore, in order to perform finish annealing with the optimum steel plate tension, the most reliable method is to measure the iron loss of the steel plate after finish annealing and feed back the results.

すなわち、鋼板張力を制御するにあたって、上記第2図
の関係から、仕上焼鈍直後にオンラインで測定した鉄損
の平均値を最低とするように、鋼板張力値をダイナミッ
クにフィードバック制御することによって効果的に達成
される。
In other words, in controlling the steel plate tension, based on the relationship shown in Figure 2 above, it is possible to effectively control the steel plate tension by dynamically feedback controlling the steel plate tension so that the average value of iron loss measured online immediately after finish annealing is the lowest. will be achieved.

また、上記第3図に示した関係から、鉄損の平均値が最
小となる鉄損比を用いて鋼板張力を制御することもでき
る。実際の生産設備におけるオンライン計測においては
、鉄損値の絶対値を求めることはその校正が困難である
ことから、絶対値の校正不要な鉄損比を用いることが有
利である。
Furthermore, from the relationship shown in FIG. 3 above, it is also possible to control the steel plate tension using the iron loss ratio that minimizes the average value of iron loss. In online measurement in actual production equipment, it is difficult to calculate the absolute value of the iron loss value and calibrate it, so it is advantageous to use an iron loss ratio that does not require calibration of the absolute value.

なお、無方向性電磁鋼板の特性として、回転機として使
用される場合が多く、回転むらを小さくするためには鉄
損比(C/L)を小さくすることが望ましいわけである
が、この発明においては鉄損の平均値を最小とする方法
をとっている。これは大型回転機や連続長時間運転する
回転機においては、回転むらもさることながらエネルギ
ーロスが重要である。鉄損比(C/L)最小が必ずしも
エネルギーロス最小でなく、このエネルギーロスを最小
とするためには鉄損の平均値を最小とすれば、達成でき
るためである。
Furthermore, due to the characteristics of non-oriented electrical steel sheets, they are often used in rotating machines, and in order to reduce uneven rotation, it is desirable to reduce the iron loss ratio (C/L). In this method, the average value of iron loss is minimized. This is because, in large rotating machines or rotating machines that operate continuously for long periods of time, not only uneven rotation but also energy loss is important. This is because the minimum iron loss ratio (C/L) does not necessarily mean the minimum energy loss, and the energy loss can be minimized by minimizing the average value of the iron loss.

以下、仕上げ連続焼鈍を、鉄損比を用いて張力制御する
場合について述べる。
Hereinafter, a case will be described in which the tension is controlled in the final continuous annealing using the iron loss ratio.

第1図は、制御系統を示す仕上げ連続焼鈍炉の側面図で
ある。最終板厚に冷延された鋼板は矢印の方向に左から
右に連続的に移動する。鋼板lは、仕上げ連続焼鈍炉2
を通過することにより仕上げ焼鈍が施される。そして、
仕上げ連続焼鈍炉2の出側に設置した長手方向とその横
断方向の鉄損測定器4と5により鉄損が測定される。こ
れらの測定データーは計算器6に送られ、ここで鉄損比
(C/L)が計算され、成分組成、製造条件などによっ
て定まる鉄損平均値が最小となる最適鉄損比(C/L)
との差が検出される。そして、この検出結果をもとに鋼
板張力の増減指示が、張力制御回路7へ出力され、この
張力制御回路7から張力制御用プライドルロール3を介
して鋼板張力が調整され、鉄損の平均値が最小となるよ
うに制御される。
FIG. 1 is a side view of a finishing continuous annealing furnace showing a control system. The steel plate cold-rolled to the final thickness moves continuously from left to right in the direction of the arrow. Steel plate l is finished in continuous annealing furnace 2
Finish annealing is performed by passing through. and,
Iron loss is measured by iron loss measuring devices 4 and 5 in the longitudinal direction and in the transverse direction, which are installed on the exit side of the finishing continuous annealing furnace 2. These measurement data are sent to the calculator 6, where the iron loss ratio (C/L) is calculated, and the optimum iron loss ratio (C/L) that minimizes the average iron loss value determined by the component composition, manufacturing conditions, etc. )
The difference between the two is detected. Then, based on this detection result, an instruction to increase or decrease the steel plate tension is output to the tension control circuit 7, and from this tension control circuit 7, the steel plate tension is adjusted via the tension control priddle roll 3, and the average iron loss is is controlled so that it is minimized.

(実施例) 転炉で溶製した後、RH脱ガス処理を施して化学成分組
成を C: 0.004 wtX Si  :3.1  wtX Mn :0.3  wtX Aj7: 0.4  wtX S  : 0.005 wtX P  :0.05  wtX に調整し、連続鋳造により製造した珪素鋼スラブを、熱
間圧延により板厚2.4mmの熱延板とし、1000℃
の温度で1分間の焼鈍を施した後、最終板厚0.5mm
に冷間圧延を行なった。
(Example) After melting in a converter, RH degassing treatment was performed to change the chemical composition to C: 0.004 wtX Si: 3.1 wtX Mn: 0.3 wtX Aj7: 0.4 wtX S: 0 A silicon steel slab adjusted to .005 wtX P: 0.05 wtX and produced by continuous casting was hot-rolled into a hot-rolled plate with a thickness of 2.4 mm, and heated at 1000°C.
After annealing at a temperature of 1 minute, the final plate thickness was 0.5 mm.
Cold rolling was carried out.

最終仕上焼鈍は、1000℃の温度で30秒間行なった
もので、実際の生産工程に適用する場合に有利な鉄損比
を用いて、鋼板張力を調整制御した。
The final finish annealing was performed at a temperature of 1000° C. for 30 seconds, and the steel plate tension was adjusted and controlled using an iron loss ratio that is advantageous when applied to an actual production process.

第3図は、成分組成、製造条件によって求まる該鋼板の
鉄損比:Cso/Lと、鉄損の平均値(W+5150)
値が最小となる最適鉄損比は1.10となることを示し
ている。
Figure 3 shows the iron loss ratio: Cso/L of the steel sheet determined by the component composition and manufacturing conditions, and the average value of iron loss (W + 5150).
It is shown that the optimum iron loss ratio with the minimum value is 1.10.

この最適鉄損比を用いて、鋼板張力を調整制御した。す
なわち、仕上焼鈍開始当初の鉄損比は1.21であった
ため、最適鉄損比1.10になるように鋼板張力を減少
させ調整制御した。さらに念のため鋼板張力を減少させ
鉄損比を1.06まで減少させた。
Using this optimal iron loss ratio, the steel plate tension was adjusted and controlled. That is, since the iron loss ratio at the beginning of finish annealing was 1.21, the steel plate tension was reduced and adjusted so that the optimum iron loss ratio was 1.10. Furthermore, as a precaution, the steel plate tension was reduced to reduce the iron loss ratio to 1.06.

これらの場合の鉄損の平均値、鋼板張力を表1に示す。Table 1 shows the average value of iron loss and steel plate tension in these cases.

この表から明らかなように、最適鉄損比1゜10で鉄損
の平均値は最小になっており、成分組成、製造条件より
求めた値とよい一致を示している。
As is clear from this table, the average value of iron loss is the minimum at the optimum iron loss ratio of 1°10, showing good agreement with the value determined from the component composition and manufacturing conditions.

表1 (発明の効果) この発明は、鉄損値の優れた無方向性電磁鋼板の製造に
おいて、仕上焼鈍時の鋼板張力を、成分組成と製造条件
により求まる最小の鉄損平均値、あるいは、鉄損の平均
値が最小となる鉄損比を用い、これらを実測しながら上
記張力を調整制御するもので、この技術は、今後の無方
向性電磁鋼板の生産に有利に活用できるものである。
Table 1 (Effects of the invention) In the production of non-oriented electrical steel sheets with excellent iron loss values, the present invention sets the steel sheet tension during final annealing to the minimum iron loss average value determined from the component composition and manufacturing conditions, or The iron loss ratio that minimizes the average value of iron loss is used, and the tension is adjusted and controlled while actually measuring the ratio.This technology can be advantageously used in the production of non-oriented electrical steel sheets in the future. .

【図面の簡単な説明】 第1図は制御系統を示す仕上焼鈍炉側面図、第2図は鋼
板張力と鉄損値の関係を示す。 第3図は互に異なる方向の鉄損比と平均鉄損値の関係を
示す。 1・・・鋼板       2・・・仕上連続焼鈍炉3
・・・張力制御用プライドルロール 4・・・鉄損測定器(長手方向) 5・・・鉄損測定器(横断方向) 6・・・計算機      7・・・張力制御回路第1
[Brief Description of the Drawings] Fig. 1 is a side view of the finish annealing furnace showing the control system, and Fig. 2 shows the relationship between steel plate tension and iron loss value. FIG. 3 shows the relationship between the iron loss ratio in different directions and the average iron loss value. 1... Steel plate 2... Finishing continuous annealing furnace 3
...Pridle roll for tension control 4...Iron loss measuring device (longitudinal direction) 5...Iron loss measuring device (transverse direction) 6...Calculator 7...Tension control circuit 1
figure

Claims (1)

【特許請求の範囲】 1、無方向性電磁鋼板用熱延板を素材として、1回又は
中間焼鈍を挟む2回の冷間圧延を施して最終板厚に加工
した後に、仕上げ焼鈍を鋼板の長手方向の張力下で施す
にあたって、仕上げ焼鈍を経た鋼板の鉄損を、該鋼板の
長手方向とその横断方向について計測し、その平均値が
最低となる様に上記張力を制御することを特徴とする無
方向性電磁鋼板の製造方法。 2、無方向性電磁鋼板用熱延板を素材として、1回又は
中間焼鈍を挟む2回の冷間圧延を施して最終板厚に加工
した後に、仕上げ焼鈍を鋼板の長手方向の張力下で施す
にあたって、仕上げ焼鈍を経た鋼板の鉄損を、該鋼板の
長手方向(L)とその横断方向(C)について計測した
データーから鉄損比C/Lを求めること、仕上げ焼鈍中
鋼板に作用する張力を、成分組成および製造条件により
、あらかじめ求められている該鋼板の仕上げ焼鈍後の各
方向鉄損の平均値が最小となる鉄損比C/Lに、上記計
測に基く鉄損比C/Lを一致させるように上記張力を制
御することからなる無方向性電磁鋼板の製造方法。
[Claims] 1. Using a hot rolled sheet for non-oriented electrical steel sheet as a raw material, cold rolling is performed once or twice with intermediate annealing to obtain the final thickness, and then finish annealing is applied to the steel sheet. When applying under tension in the longitudinal direction, the iron loss of the steel plate that has undergone finish annealing is measured in the longitudinal direction and the transverse direction of the steel plate, and the tension is controlled so that the average value is the lowest. A method for manufacturing non-oriented electrical steel sheets. 2. Using a hot-rolled non-oriented electrical steel sheet as a raw material, cold rolling it once or twice with intermediate annealing to achieve the final thickness, then finish annealing under tension in the longitudinal direction of the steel sheet. In applying this method, the iron loss ratio C/L is calculated from the data measured in the longitudinal direction (L) and the transverse direction (C) of the steel plate that has undergone finish annealing, and the iron loss ratio C/L is determined by the iron loss ratio C/L that acts on the steel plate during finish annealing. The tension is adjusted to the iron loss ratio C/L that minimizes the average value of the iron loss in each direction after finish annealing of the steel sheet, which is determined in advance according to the component composition and manufacturing conditions, and the iron loss ratio C/L based on the above measurement. A method for manufacturing a non-oriented electrical steel sheet, which comprises controlling the tension so that L is made to match.
JP06969090A 1990-03-22 1990-03-22 Manufacturing method of non-oriented electrical steel sheet Expired - Fee Related JP3236604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06969090A JP3236604B2 (en) 1990-03-22 1990-03-22 Manufacturing method of non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06969090A JP3236604B2 (en) 1990-03-22 1990-03-22 Manufacturing method of non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH03271323A true JPH03271323A (en) 1991-12-03
JP3236604B2 JP3236604B2 (en) 2001-12-10

Family

ID=13410117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06969090A Expired - Fee Related JP3236604B2 (en) 1990-03-22 1990-03-22 Manufacturing method of non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3236604B2 (en)

Also Published As

Publication number Publication date
JP3236604B2 (en) 2001-12-10

Similar Documents

Publication Publication Date Title
CN103069032B (en) Grain oriented electrical steel sheet and method for manufacturing the same
KR100702242B1 (en) Method of producing non-grain-oriented electrical sheet
JP2009503264A (en) Method for producing directional electromagnetic steel strip
JP2009503265A (en) Method for producing directional electromagnetic steel strip
JP2009503264A5 (en)
JP2009503265A5 (en)
KR20090115195A (en) Method of continuous annealing for steel strip with curie point and continuous annealing apparatus therefor
JP5265835B2 (en) Method for producing non-oriented electrical steel sheet
EP0723026A1 (en) Method of cold rolling grain-oriented silicon steel sheet having excellent and uniform magnetic characteristics along rolling direction of coil and a roll cooling controller for cold rolling mill using the cold rolling method
JPS62240714A (en) Production of electrical steel sheet having excellent magnetic characteristic
JPWO2020067236A1 (en) Manufacturing method of grain-oriented electrical steel sheet and cold rolling equipment
JPH03271323A (en) Production of nonoriented silicon steel sheet
JP3375998B2 (en) Manufacturing method of non-oriented electrical steel sheet
JPH04325629A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
CN114273422B (en) Control method for reducing head narrow gauge of non-oriented silicon steel W800
KR100226299B1 (en) Cold rolling method of directional properties silicon steel plate and apparatus for control roller cooling of cold roll mill
JP3885264B2 (en) Method for producing grain-oriented electrical steel sheet
RU2252090C2 (en) Method and apparatus for rolling metallic strip in skin pass rolling stand
CN115945515A (en) Method and device for improving head and tail performance of non-oriented electrical steel based on slab thickness
KR100237159B1 (en) The manufacturing method for non orient electric steel sheet
JPH07265905A (en) Production of surface worked stainless steel sheet excellent in uniformity of color tone
JPH01234524A (en) Continuous annealing method for non-oriented silicon steel sheet
JPH06207220A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JPS62278226A (en) Manufacture of silicon steel plate
JPH0978132A (en) Production of low core loss grain oriented silicon steel sheet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees