JPH0327034B2 - - Google Patents

Info

Publication number
JPH0327034B2
JPH0327034B2 JP59167113A JP16711384A JPH0327034B2 JP H0327034 B2 JPH0327034 B2 JP H0327034B2 JP 59167113 A JP59167113 A JP 59167113A JP 16711384 A JP16711384 A JP 16711384A JP H0327034 B2 JPH0327034 B2 JP H0327034B2
Authority
JP
Japan
Prior art keywords
amorphous
recording medium
thin film
mmon
information recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59167113A
Other languages
Japanese (ja)
Other versions
JPS6144695A (en
Inventor
Takeshi Masumoto
Kenji Suzuki
Mika Ookubo
Yukihiro Oota
Akira Matsumoto
Shuji Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Nikon Corp
Original Assignee
Otsuka Chemical Co Ltd
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd, Nikon Corp filed Critical Otsuka Chemical Co Ltd
Priority to JP59167113A priority Critical patent/JPS6144695A/en
Priority to GB08519806A priority patent/GB2164462B/en
Priority to US06/763,368 priority patent/US4865948A/en
Priority to DE19853528670 priority patent/DE3528670A1/en
Priority to FR8512247A priority patent/FR2569032B1/en
Publication of JPS6144695A publication Critical patent/JPS6144695A/en
Publication of JPH0327034B2 publication Critical patent/JPH0327034B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B7/2437Non-metallic elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B7/2433Metals or elements of Groups 13, 14, 15 or 16 of the Periodic Table, e.g. B, Si, Ge, As, Sb, Bi, Se or Te
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24306Metals or metalloids transition metal elements of groups 3-10
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24318Non-metallic elements
    • G11B2007/2432Oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、光学的情報記録媒体及びその製造方
法に関する。 従来の技術及び問題点 光学的情報記録媒体は、従来の磁気記録媒体よ
りも記録密度が1ケタから2ケタ高いために、注
目され磁気光学的記録方式や光熱を利用した光学
的情報記録方式等が研究されている。 光学的情報記録媒体の製造方法としては、基板
上にPVD方式であるスパツタ蒸着、真空蒸着、
イオンビーム蒸着等により薄膜を形成する方法、
CVD方式により薄膜を形成する方法等が研究さ
れ、現在はPVD方式による製造が中心として研
究され一部実用化されている。このPVD方式で
は、真空下で薄膜を形成させることが必要であ
り、そのため記録媒体の連続製造ができず、また
良好な薄膜を形成させるためには、精密に真空条
件をコントロールすることが必要であるという問
題点がある。更に、PVD方式では、磁場コント
ロールやイオンコントロールを行なつても、原料
元素の蒸着膜としての形成収率が非常に悪いとい
う問題点もある。 一方、特開昭50−46318にはテルル酸化物とバ
ナジウム酸化物を含む薄膜を光学記録用部材に用
いる旨の記載がある。しかし、この膜は上記の公
報に記載があるように真空蒸着法で作製している
ため分解が生じ、非酸化物系のガラス材料に比べ
て優れているとはいえ、未だ充分なコントラスト
比が得られない。 このため、光学情報記録方式については、記録
方法、再生方法、消去方法等の原理的機構の研究
が進んでいるにもかかわらず、記録媒体及びその
製造方法について媒体材料、コスト等の面での問
題が解決されていない。 問題点を解決するための手段 本発明者は、上記した点に鑑みて種々研究を重
ねた結果、 一般式(V2O51-x・(MmOn)x (式中、MmOnはLi2O,MgO,TiO2,Ta2O3
Cr2O3,MoO3,MnO2,Co2O3,NiO,ZnO,
B2O3,SiO2,GeO2,Bi2O3,Fe2O3より選ばれ
る一種以上の酸化物を示す。但し、O≦X≦0.85
である。)で示される組成のアモルフアス物質が
結晶物質と比較して非常に大きな溶解度を有し、
該アモルフアス物質の溶液を基板上にコーテイン
グし、溶媒を除去することにより、容易にアモル
フアス薄膜が得られ、該薄膜が真空蒸着法、スパ
ツタ法等により得られるものに比して著しく安定
で分解が生じず、高い透過率を有することを見出
した。本発明は、この知見に基づくものである。 即ち、本発明は、一般式(V2O51-x・
(MmOn)x (式中、MmOn及びXは上記に同じ。)で示され
る組成のアモルフアス物質を水もしくは水系溶媒
に溶解し、これを基板上に塗布した後、乾燥する
ことを特徴とする光学的情報記録媒体の製造方法
及び基板上にコーテイングにより形成させられる
(式中、MmOn及びXは上記に同じ。)で示され
る組成のアモルフアス薄膜よりなる光学的情報記
録媒体に係る。 本発明で使用される上記アモルフアス物質は、
V2O5単独、或いはV2O5とMmOnで示される
Li2O,MgO,TiO2,Ta2O3,Cr2O3,MoO3
MnO2,Co2O3,NiO,ZnO,B2O3,SiO2
GeO2,Bi2O3,Fe2O3より選ばれる一種以上の酸
化物とからなる。後者の場合、MmOnの含量は
85モル%程度以下、好ましくは70モル%程度以下
が適当であり、あまりにV2O5の含量が少なくな
つた場合は良好なアモルフアス膜が基板に形成で
きない。また後者の場合、使用されるMmOnで
示される酸化物としては目的に応じて適宜選択さ
れ、1種又は2種以上組み合わせて効果的に用い
られる。本発明では、V2O5と共に上記金属酸化
物を使用することにより、光学的に感度を高くし
たり、熱的に吸収効果を高くしたり、結晶安定相
への変換を容易にしたり、アモルフアス状態を安
定化したり、溶融状態での界面張力に影響を与え
たり、光学的に反射率を高めたり、光学的吸収率
を大きくしたり、光学的透過率に変化を与えたり
する等の効果が得られ、目的に応じて適当な酸化
物を使用することができる。具体的には、例え
ば、Bi,Ti,Ge,Cr,Feの酸化物は、光学的に
感度を向上させること、Cr,Mo,Fe,Co,Ti,
Ni,Biの酸化物は、光学的な効果を付与するこ
と、Bi,Znの酸化物は、低エネルギーで相変換
を行なわすこと等の効果が挙げられる。 このようなアモルフアス物質を得るための方法
は、公知の方法でよく、目的物質の融液を高速回
転ロール表面上に吹き付けて超急冷することによ
りアモルフアス化する方法が生産コスト的に有利
である。アモルフアス物質の製造方法の具体例と
しては、特願昭55−152562、特願昭55−160193、
特願昭55−142197、特願昭58−211444、特願昭58
−220916、特願昭58−210434、特願昭58−
212061、特願昭58−64273、特願昭58−67463、特
願昭58−65083、特願昭58−65003、特願昭58−
66685、特願昭58−67462、特願昭58−69640、特
願昭58−69641、特願昭58−66684、特願昭58−
65004、特願昭58−68962、特願昭57−169208、特
願昭58−79736、特願昭58−79739等に記載の方法
があげられる。 以下にV2O5及びMmOnで示される金属酸化物
よりなる組成物についてアモルフアス化の方法の
一例を具体的に説明する。まず原料としてV2O5
とMmOnを混合し、融点付近の温度で仮焼して
組成物 (V2O51-x・(MmOn)xを得る。次いでこ
の組成物をルツボに充填し、大気中で融点よりも
の50〜200℃高い温度で加熱溶融し、圧縮空気に
より、その融液を高速回転ロール上へ吹き付け、
104〜107℃/secの冷却速度で超急冷することに
より、リボン状のアモルフアス物質が得られる。 本発明では、次いで得られたアモルフアス物質
を粗粉砕し、水もしくは水系溶媒に溶解させる。
このときのアモルフアス物質の溶解度は結晶性物
質と比較して非常に大きいため高濃度の溶液が得
られる。本発明における水系溶媒とは、水に蒸発
のコントロールや粘度の調節のために水溶性溶媒
や水溶性高分子を添加したもので、使用する基板
材料、目的とする形成薄膜の膜厚等に応じて適宜
使用を決定する。水溶性溶媒の代表例としては、
CH3OH,C2H5OH,C3H7OH,n−C4H9OH,
イソ−C4H9OH等のアルコール類(CH32CO等
のケトン類、DMF,DMSO等の極性溶媒類、エ
チレングリコール、プロピレングリコール等のグ
リコール類等が挙げられる。水溶性高分子として
は、ポリビニルアルコール、ポリアクリルアミ
ド、ポリアクリル酸等が挙げられる。 次いでアモルフアス物質を溶解した溶液を光学
的情報記録用基板に塗布する。この基板は、通
常、ガラス製、合成樹脂製、金属製等であり、さ
らにこの上に光学的に吸収率の高い薄膜または光
学的反射率の高い薄膜等を形成させたものであ
る。 アモルフアス物質溶液を塗布後、これらの基板
を空気中または真空中で50〜300℃で熱処理を行
ない水分を完全に除去することによりアモルフア
ス薄膜層が得られる。このようにして得られた薄
膜は均一な厚さの耐久性に優れた薄膜である。こ
のアモルフアス薄膜上に光学的に透過性がよく屈
折率の小さいガラスまたは合成樹脂板を積層する
ことにより光学的情報記録材料が得られる。この
ような記録材料の一例の断面図を第1図に示す。
図中、1は基板、2は光学的反射層または光学的
吸収層、3はアモルフアス層、4は透明保護層で
ある。また、基板として金属テープ、合成樹脂テ
ープ等を使用することにより、光学的情報テープ
が同様の方法で得られる。 本発明の光学的情報記録媒体に対する記録用、
再生用、消去用光源としては、He−Ne,He−
Cd,Ar,Kr,CO2,N2,HF−DF,CD3OH−
13CH3F,CO,KrF−XeF等のガスレーザー、
YAG、ルビーガラス等の固体レーザー、GaA
As,InGaAsP,PbSnTe−PbSSe,CdSeInSb等
の半導体レーザー等が使用できさらに水銀ラン
プ、キセノンランプ、タングステンランプ等の光
源も使用可能である。 本発明記録材料の記録方式としては、アモルフ
アス物質、即ちV2O5と金属酸化物の組合わせに
よつて、光加熱のエネルギービームの照射によ
り、記録層にピツトを掘るか若しくは凹溝を形成
させる方式、またはエネルギービームにより記録
層にアモルフアス相−結晶相の相転移をおこさせ
る方式等が可能であり、後者の方式の場合は記録
後の消去も可能である。 本発明で得られる記録ピツト形成方式に使用で
きる記録媒体の例としては、V2O5,V2O5
SiO2,V2O5−GeO2,V2O5−Li2O,V2O5
B2O3,V2O5−Fe2O3等があり、相転移方式に使
用できる記録媒体としては、例えばV2O5
MgO,V2O5−ZnO,V2O5−Cr2O3,V2O5
NiO,V2O5−Co2O3,V2O5−Bi2O3,V2O5
TiO2等が挙げられる。 発明の効果 本発明方法によれば、基板の種類を問わず、任
意の厚さの耐久性に優れた光学的記録媒体を容易
に且つ安価に形成することができる。本発明記録
媒体は、酸化物であるため熱伝導率及び膨張係数
が非常に小さいので低いエネルギーのレーザー等
により情報の書き込みを行なうことにより、シヤ
ープなピツトまたはシヤープな相境界を形成する
ことができる。更に、単一面積当りの記録容量
は、現在市販されているPVD方式のものと比較
して120〜200%程度多くなり、そのS/N比も大
きくなる。 また、本発明のコーテイング膜の電気伝導度
は、0.1〜1.0(Ω・cm)-1と非常に良好な値を示し、
デイスク自体の帯電をも防止する効果が備わつて
おり、耐久性及びノイズの低減に効果がある。 実施例 次に実施例を示して本発明を更に詳しく説明す
る。 実施例1〜15 V2O5(純度99.9%)をマトリツクスとして2成
分系組成にて、高速回転ロール超急冷法により、
アモルフアス薄帯材料を得た。組成及び製造条件
を第1表に示す。 得られたアモルフアス材料を粒径30〜40μm、
厚さ5〜10μmに粉砕し、純水10c.c.中に300mgを添
加し30分間揺動後、室温にて3日間静置して溶解
した。 この溶液から未溶解のアモルフアス物質を濾過
分離し、液を光学的情報記録材料基板へ塗布し
た。これを50℃で30分間乾燥した後、50〜300℃
の温度で大気中または2×10-2トール程度の真空
中で吸着水を完全に除去し、記録媒体層を基板上
に設けた。 この基板上に形成された記録媒体層は、X線回
折により構造を解折した結果アモルフアス構造で
あることがわかつた。また走査型電子顕微鏡によ
り、その膜厚及び形成状態を観察した結果1〜
5μmの厚さで平滑な表面状態であつた。X線回折
図の例を第2図に示す。これらの材料について、
He−Neレーザー光を使用した光書込装置によつ
てその記録性を測定した。記録媒体層形成条件及
びレーザー記録性試験結果を第2表に示す。また
レリーザー出力値の変化による記録パターン幅の
変化を測定した結果を第3表に示す。また書き込
みを行なつた記録媒体についての表面状態の顕微
鏡写真を参考図〜に示す。参考図面は
(V2O50.75・(Li2O)0.25の組成のものでピツト形
成方式により記録したもの、参考図面は
(V2O50.25・(GeO20.50の組成でピツト形成方式
によるもの、参考図面は(V2O5−)0.67
(MgO)0.33の組成で相転移方式によるもの、参考
図面は(V2O50.70・(Cr2O30.30の組成で相転
移方式によるものの電子顕微鏡写真であり、参考
図面は、(V2O50.5・(GeO20.5の組成のもので
パルスレーザーにより1KHzにて書き込みを行な
つたピツトパターンの光学顕微鏡写真である。 比較例 1 実施例1〜15と同じ組成の結晶構造物質につい
てその水溶液を基板へコーテイングし乾燥した後
表面観察を行なつた。その結果、表面状態は平滑
性がなく、気泡、ヘアークラツク及び微細な結晶
粒子が混在し、光学的情報記録媒体として使用で
きる薄膜は得られなかつた。
INDUSTRIAL APPLICATION FIELD The present invention relates to an optical information recording medium and a manufacturing method thereof. Conventional technologies and problems Optical information recording media have attracted attention because their recording density is one to two orders of magnitude higher than that of conventional magnetic recording media. is being studied. Manufacturing methods for optical information recording media include PVD sputter deposition, vacuum deposition,
A method of forming a thin film by ion beam evaporation, etc.
Research has been conducted into methods of forming thin films using the CVD method, and currently research is centered on manufacturing using the PVD method, and some of these have been put into practical use. In this PVD method, it is necessary to form a thin film under vacuum, which makes continuous production of recording media impossible, and it is necessary to precisely control vacuum conditions in order to form a good thin film. There is a problem. Furthermore, the PVD method has a problem in that even if magnetic field control and ion control are performed, the yield of forming a vapor-deposited film of raw material elements is very low. On the other hand, JP-A-50-46318 describes the use of a thin film containing tellurium oxide and vanadium oxide for an optical recording member. However, as described in the above-mentioned publication, this film is produced using a vacuum evaporation method, so decomposition occurs, and although it is superior to non-oxide glass materials, it still does not have a sufficient contrast ratio. I can't get it. For this reason, despite progress in research into the fundamental mechanisms of optical information recording systems, such as recording methods, playback methods, erasing methods, etc., there are still problems with recording media and their manufacturing methods in terms of media materials, costs, etc. Problem not resolved. Means for Solving the Problems The inventor of the present invention has conducted various studies in view of the above-mentioned points, and has found that the general formula (V 2 O 5 ) 1- x (MmOn) x (where MmOn is Li 2 O, MgO, TiO 2 , Ta 2 O 3 ,
Cr2O3 , MoO3 , MnO2 , Co2O3 , NiO , ZnO,
Indicates one or more oxides selected from B 2 O 3 , SiO 2 , GeO 2 , Bi 2 O 3 , and Fe 2 O 3 . However, O≦X≦0.85
It is. ) has a very large solubility compared to crystalline substances,
By coating a solution of the amorphous substance on a substrate and removing the solvent, an amorphous thin film can be easily obtained, and the thin film is significantly more stable and less likely to decompose than those obtained by vacuum evaporation, sputtering, etc. It was found that the film did not cause any oxidation and had a high transmittance. The present invention is based on this knowledge. That is, the present invention provides the general formula (V 2 O 5 ) 1- x
(MmOn) x (In the formula, MmOn and The present invention relates to a method for manufacturing an optical information recording medium, and an optical information recording medium comprising an amorphous thin film having a composition represented by (wherein MmOn and X are the same as above) formed by coating on a substrate. The amorphous substance used in the present invention is
Shown as V 2 O 5 alone or V 2 O 5 and MmOn
Li 2 O, MgO, TiO 2 , Ta 2 O 3 , Cr 2 O 3 , MoO 3 ,
MnO 2 , Co 2 O 3 , NiO, ZnO, B 2 O 3 , SiO 2 ,
It consists of one or more oxides selected from GeO 2 , Bi 2 O 3 , and Fe 2 O 3 . In the latter case, the content of MmOn is
Appropriately, it is about 85 mol% or less, preferably about 70 mol% or less, and if the V 2 O 5 content is too low, a good amorphous film cannot be formed on the substrate. In the latter case, the oxide represented by MmOn to be used is appropriately selected depending on the purpose, and can be effectively used singly or in combination of two or more. In the present invention, by using the above metal oxide together with V 2 O 5 , it is possible to increase the optical sensitivity, increase the thermal absorption effect, facilitate the conversion to a crystal stable phase, and improve the amorphous amorphous phase. It has effects such as stabilizing the state, affecting the interfacial tension in the molten state, increasing optical reflectance, increasing optical absorption, and changing optical transmittance. An appropriate oxide can be used depending on the purpose. Specifically, for example, oxides of Bi, Ti, Ge, Cr, and Fe improve optical sensitivity, and oxides of Cr, Mo, Fe, Co, Ti,
Oxides of Ni and Bi provide optical effects, and oxides of Bi and Zn have effects such as phase conversion at low energy. The method for obtaining such an amorphous material may be any known method, and a method in which the melt of the target material is sprayed onto the surface of a high-speed rotating roll and ultra-quenched to form an amorphous material is advantageous in terms of production cost. Specific examples of methods for producing amorphous substances include Japanese Patent Application No. 55-152562, Japanese Patent Application No. 55-160193,
Patent application 1982-142197, Patent application 1982-211444, Patent application 1982
-220916, patent application 1982-210434, patent application 1982-
212061, Japanese Patent Application 1986-64273, Japanese Patent Application 1987-67463, Japanese Patent Application 1986-65083, Japanese Patent Application 1987-65003, Japanese Patent Application 1987-
66685, Japanese Patent Application 1986-67462, Japanese Patent Application 1986-69640, Japanese Patent Application 1987-69641, Japanese Patent Application 1986-66684, Japanese Patent Application 1986-
65004, Japanese Patent Application No. 58-68962, Japanese Patent Application No. 169208-1982, Japanese Patent Application No. 79736-1982, Japanese Patent Application No. 79739-1987, and the like. An example of a method for amorphizing a composition made of a metal oxide represented by V 2 O 5 and MmOn will be specifically explained below. First, V 2 O 5 as raw material
and MmOn are mixed and calcined at a temperature near the melting point to obtain the composition (V 2 O 5 ) 1- x (MmOn) x. Next, this composition is filled into a crucible, heated and melted in the atmosphere at a temperature 50 to 200°C higher than the melting point, and the melt is blown onto a high-speed rotating roll using compressed air.
A ribbon-like amorphous material is obtained by ultra-rapid cooling at a cooling rate of 10 4 to 10 7 °C/sec. In the present invention, the obtained amorphous material is then coarsely ground and dissolved in water or an aqueous solvent.
At this time, the solubility of the amorphous substance is much higher than that of the crystalline substance, so a highly concentrated solution can be obtained. The aqueous solvent used in the present invention refers to water to which a water-soluble solvent or water-soluble polymer is added to control evaporation and adjust viscosity. and determine its use as appropriate. Typical examples of water-soluble solvents include:
CH 3 OH, C 2 H 5 OH, C 3 H 7 OH, n-C 4 H 9 OH,
Examples include alcohols such as iso-C 4 H 9 OH, ketones such as (CH 3 ) 2 CO, polar solvents such as DMF and DMSO, and glycols such as ethylene glycol and propylene glycol. Examples of water-soluble polymers include polyvinyl alcohol, polyacrylamide, polyacrylic acid, and the like. Next, a solution in which the amorphous substance is dissolved is applied to the optical information recording substrate. This substrate is usually made of glass, synthetic resin, metal, or the like, and has a thin film with high optical absorption or a thin film with high optical reflectance formed thereon. After applying the amorphous substance solution, these substrates are heat-treated at 50 to 300°C in air or vacuum to completely remove moisture, thereby obtaining an amorphous thin film layer. The thin film thus obtained is a thin film of uniform thickness and excellent durability. An optical information recording material can be obtained by laminating a glass or synthetic resin plate with good optical transparency and a low refractive index on this amorphous thin film. A cross-sectional view of an example of such a recording material is shown in FIG.
In the figure, 1 is a substrate, 2 is an optical reflection layer or an optical absorption layer, 3 is an amorphous layer, and 4 is a transparent protective layer. Furthermore, by using a metal tape, synthetic resin tape, etc. as the substrate, an optical information tape can be obtained in a similar manner. For recording on the optical information recording medium of the present invention,
As a light source for reproduction and erasing, He−Ne, He−
Cd, Ar, Kr, CO2 , N2 , HF-DF, CD3OH-
Gas lasers such as 13CH 3 F, CO, KrF-XeF,
Solid-state lasers such as YAG and ruby glass, GaA
Semiconductor lasers such as As, InGaAsP, PbSnTe-PbSSe, and CdSeInSb can be used, and light sources such as mercury lamps, xenon lamps, and tungsten lamps can also be used. The recording method of the recording material of the present invention is to use a combination of an amorphous material, that is, V 2 O 5 , and a metal oxide to dig pits or form grooves in the recording layer by irradiation with an energy beam of optical heating. Alternatively, a method of causing a phase transition between an amorphous phase and a crystalline phase in the recording layer using an energy beam is possible, and in the case of the latter method, erasing after recording is also possible. Examples of recording media that can be used in the recording pit forming method obtained in the present invention include V 2 O 5 , V 2 O 5
SiO 2 , V 2 O 5 −GeO 2 , V 2 O 5 −Li 2 O, V 2 O 5
B 2 O 3 , V 2 O 5 −Fe 2 O 3 , etc., and examples of recording media that can be used in the phase change method include V 2 O 5
MgO, V 2 O 5 −ZnO, V 2 O 5 −Cr 2 O 3 , V 2 O 5
NiO, V 2 O 5 −Co 2 O 3 , V 2 O 5 −Bi 2 O 3 , V 2 O 5
Examples include TiO2 . Effects of the Invention According to the method of the present invention, it is possible to easily and inexpensively form an optical recording medium of any thickness and excellent durability, regardless of the type of substrate. Since the recording medium of the present invention is an oxide, its thermal conductivity and expansion coefficient are very small, so by writing information with a low-energy laser, it is possible to form sharp pits or sharp phase boundaries. . Furthermore, the recording capacity per single area is approximately 120 to 200% higher than that of the PVD system currently on the market, and the S/N ratio is also increased. In addition, the electrical conductivity of the coating film of the present invention is 0.1 to 1.0 (Ω cm) -1 , which is a very good value.
It also has the effect of preventing static electricity on the disk itself, improving durability and reducing noise. Examples Next, the present invention will be explained in more detail with reference to Examples. Examples 1 to 15 With a two-component composition using V 2 O 5 (purity 99.9%) as a matrix, by ultra-quenching method using high-speed rotating rolls,
An amorphous ribbon material was obtained. The composition and manufacturing conditions are shown in Table 1. The obtained amorphous material has a particle size of 30 to 40 μm,
It was ground to a thickness of 5 to 10 μm, 300 mg was added to 10 cc of pure water, and after shaking for 30 minutes, it was left standing at room temperature for 3 days to dissolve. Undissolved amorphous substances were separated from this solution by filtration, and the liquid was applied to an optical information recording material substrate. After drying this at 50℃ for 30 minutes, 50-300℃
The adsorbed water was completely removed in the air at a temperature of 2.times.10.sup. -2 Torr or in a vacuum of about 2.times.10.sup.-2 Torr, and a recording medium layer was provided on the substrate. The structure of the recording medium layer formed on this substrate was analyzed by X-ray diffraction, and it was found to have an amorphous structure. In addition, the film thickness and formation state were observed using a scanning electron microscope.
It had a thickness of 5 μm and a smooth surface. An example of an X-ray diffraction diagram is shown in FIG. Regarding these materials,
The recording performance was measured using an optical writing device using a He--Ne laser beam. Table 2 shows the recording medium layer forming conditions and the laser recordability test results. Furthermore, Table 3 shows the results of measuring changes in recording pattern width due to changes in releaser output value. Microscopic photographs of the surface condition of the recording medium on which writing was performed are shown in reference figures. The reference drawing has a composition of (V 2 O 5 ) 0.75・(Li 2 O ) 0.25 and was recorded using the pit formation method. Based on the formation method, the reference drawing is (V 2 O 5 −) 0.67
The reference drawing is an electron micrograph of one with a composition of (V 2 O 5 ) 0.70・(Cr 2 O 3 ) 0.30 and a phase transition method. This is an optical micrograph of a pit pattern with a composition of V 2 O 5 ) 0.5 ·(GeO 2 ) 0.5 written at 1 KHz using a pulsed laser. Comparative Example 1 A substrate was coated with an aqueous solution of a crystalline structure substance having the same composition as in Examples 1 to 15, and after drying, the surface was observed. As a result, the surface state was not smooth, and air bubbles, hair cracks, and fine crystal particles were mixed, and a thin film that could be used as an optical information recording medium could not be obtained.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 ※ 記録可能なものを○で表わす。
[Table] * Items that can be recorded are indicated by a circle.

【表】 比較例 2 特開昭50−46318の実施例に従い、真空蒸着法
によりテルル酸化物とバナジウム酸化物を含む薄
膜の記録媒体を作製した。この記録媒体と実施例
3、6、11及び13で得られた記録媒体との性能を
光学記録特性を測定することにより比較した。測
定は高密度記録が可能な488nmのアルゴンガスレ
ーザーを用いて行なつた。結果を記録前後の透過
率の比によりコントラスト比として第4表に示
す。その結果、本発明品は、短波長でも記録前の
光学密度が小さいため、大きなコントラストが得
られていることがわかる。
[Table] Comparative Example 2 A thin film recording medium containing tellurium oxide and vanadium oxide was produced by a vacuum evaporation method according to the example of JP-A-50-46318. The performance of this recording medium and the recording media obtained in Examples 3, 6, 11, and 13 was compared by measuring optical recording characteristics. The measurements were performed using a 488 nm argon gas laser capable of high-density recording. The results are shown in Table 4 as a contrast ratio based on the ratio of transmittance before and after recording. As a result, it can be seen that the product of the present invention has a low optical density before recording even at short wavelengths, so that a large contrast can be obtained.

【表】 参考例 1 (V2O5)x・(MmOn)1-xで表わされるアモ
ルフアス物質及び結晶質物質を粒径30〜40μm、
厚さ5〜10μmに粉砕し、純水10c.c.中に300mgを添
加し、30分間揺動後、室温にて3日間静置して溶
解させた。溶液中のバナジウム量を原子吸光法に
より分析した結果を第3図に示す。グラフの横軸
は、一般式(V2O5)x・(MmOn)1-xで表わさ
れる物質についてのxの値であり、グラフ中の記
号はMぜ表わされる金属元素の化学式、実線の円
はアモルフアス物質、破線の円は結晶質物質を示
す。 また、x=0.75の場合について、上記した方法
と同様の方法によりV2O5の溶解量の経時的変化
の測定を行なつた結果を第4図に示す。図中の記
号は上記した記号と同じ意味である。第3図及び
第4図からアモルフアス物質が高溶解度を有する
ことが明らかである。 参考例 2 (V2O5)x・(MgO)1-x及び(V2O5)x・
(ZnO)1-xで表わされる物質について参考例1と
同様の方法により溶解量の経時変化を測定した結
果を第5〜8図に示す。図において、○は0.5時
間経過後、△は1時間経過後、□は3時間経過
後、◇は24時間経過後の溶解量をそれぞれ示し、
実線はアモルフアス物質、破線は結晶質物質の溶
解量を示す。グラフの横軸はxの値であり、縦軸
はV2O5、MgOまたはZnOの溶解量である。 また第9図は、上記した方法により溶解量を測
定した(V2O5)x・(MgO)1-xの溶液について、
PH値の変化を記録したグラフである。グラフの横
軸はxの値を示し、○は0.5時間経過後、△は1
時間経過後、□は3時間経過後、◇は24時間経過
後のPH値を示し、実線はアモルフアス物質、破線
は結晶質物質のPH値である。第9図からアモルフ
アス物質溶液のPH値は変化が少なく長時間安定で
あることがわかる。 参考例 3 (V2O50.83・(MgO)0.17のアモルフアス物質の
水溶コロイドを用いて本発明方法により形成させ
た薄膜の室温乾燥後のX線回析図及び450℃で30
分熱処理後のX線回析図を第10図に示す。図中
9は室温乾燥後のX線回析図であり、10は450
℃、30分熱処理後のX線回析図である。第10図
より(V2O50.83・(MgO)0.17のアモルフアス物質
による薄膜は熱処理により結晶化することがわか
る。 また第11図は (V2O50.70・(Cr2O30.30のアモルフアス物質
により形成した薄膜について示差熱分析及び熱重
量分析を行なつた結果を示す。図中11は示差熱
分析の結果、12は熱重量分析の結果である。示
差熱分析の326℃の発熱は結晶化による発熱と考
えられる。 第10図及び第11図より(V2O50.83
(MgO)0.17のアモルフアス物質による薄膜及び
(V2O50.70・(Cr2O30.30のアモルフアス物質によ
る薄膜は加熱により相転移することが明らかであ
り、この性質を利用してレーザービーム等による
情報の書き込みができることがわかる。
[Table] Reference example 1 (V 2 O 5 ) x (MmOn) 1- Amorphous substances and crystalline substances represented by
It was ground to a thickness of 5 to 10 μm, 300 mg was added to 10 cc of pure water, and after shaking for 30 minutes, it was left standing at room temperature for 3 days to dissolve. Figure 3 shows the results of analyzing the amount of vanadium in the solution by atomic absorption spectrometry. The horizontal axis of the graph is the value of x for the substance represented by the general formula (V 2 O 5 ) x (MmOn) 1- x, and the symbols in the graph are the chemical formula of the metal element represented by M, and the solid line Circles indicate amorphous substances, and circles with broken lines indicate crystalline substances. Further, in the case of x=0.75, the change in the amount of dissolved V 2 O 5 over time was measured using a method similar to the method described above, and the results are shown in FIG. The symbols in the figure have the same meanings as those described above. It is clear from FIGS. 3 and 4 that amorphous substances have high solubility. Reference example 2 (V 2 O 5 ) x・(MgO) 1- x and (V 2 O 5 ) x・
(ZnO) The results of measuring the change over time in the amount of dissolution of the substance represented by 1- x in the same manner as in Reference Example 1 are shown in Figures 5 to 8. In the figure, ○ indicates the amount dissolved after 0.5 hours, △ indicates the amount dissolved after 1 hour, □ indicates the amount dissolved after 3 hours, and ◇ indicates the amount dissolved after 24 hours.
The solid line shows the amount of dissolved amorphous material, and the broken line shows the amount of dissolved crystalline material. The horizontal axis of the graph is the value of x, and the vertical axis is the amount of dissolved V 2 O 5 , MgO, or ZnO. In addition, Figure 9 shows the solution of (V 2 O 5 ) x (MgO) 1- x whose dissolved amount was measured by the method described above.
This is a graph recording changes in PH value. The horizontal axis of the graph shows the value of x, ○ means after 0.5 hours, △ means 1
After time, □ indicates the PH value after 3 hours, ◇ indicates the PH value after 24 hours, the solid line is the PH value of the amorphous substance, and the broken line is the PH value of the crystalline substance. From FIG. 9, it can be seen that the pH value of the amorphous substance solution shows little change and is stable for a long time. Reference Example 3 X-ray diffraction diagram of a thin film formed by the method of the present invention using a water-soluble colloid of an amorphous substance with (V 2 O 5 ) 0.83・(MgO) 0.17 after drying at room temperature and 30
The X-ray diffraction diagram after the thermal treatment is shown in FIG. In the figure, 9 is the X-ray diffraction diagram after drying at room temperature, and 10 is the 450
It is an X-ray diffraction diagram after heat treatment at ℃ for 30 minutes. From FIG. 10, it can be seen that a thin film made of an amorphous material with (V 2 O 5 ) 0.83 and (MgO) 0.17 is crystallized by heat treatment. Further, FIG. 11 shows the results of differential thermal analysis and thermogravimetric analysis of a thin film formed from an amorphous material of (V 2 O 5 ) 0.70 ·(Cr 2 O 3 ) 0.30 . In the figure, 11 is the result of differential thermal analysis, and 12 is the result of thermogravimetric analysis. The heat generation of 326°C in the differential thermal analysis is thought to be due to crystallization. From Figures 10 and 11 (V 2 O 5 ) 0.83
It is clear that a thin film made of an amorphous material with (MgO) 0.17 and a thin film made of an amorphous material with (V 2 O 5 ) 0.70 /(Cr 2 O 3 ) 0.30 undergo a phase transition when heated, and this property can be used to create a laser beam. It can be seen that information can be written using the following methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、光学的情報記録材料の一例の断面図
である。第2図は、実施例で作製した記録媒体の
X線回折図である。第3図は組成とV2O5溶解量
との関係を示すグラフである。第4図はV2O5
解量の経時変化を示すグラフである。第5図は
(V2O5)x・(MgO)1-xで表わされる物質につい
ての組成とV2O5の溶解量との関係の経時変化を
示すグラフであり、第6図は(V2O5)x・
(MgO)1-xの組成とMgOの溶解量との関係の経
時変化を示すグラフであり、第7図は(V2O5
x・(ZnO)1-xの組成とV2O5の溶解量との関係の
経時変化を示すグラフであり、第8図は(V2O5
x・(ZnO)1-xの組成とZnOの溶解量との関係と
の経時変化を示すグラフである。第9図は
(V2O5)x・(MgO)1-xの組成とPHとの関係の経
時変化を示すグラフである。第10図は(V2O5
0.83・(MgO)0.17のアモルフアス物質のX線回析図
である。第11図は(V2O50.70・(Cr2O30.30
アモルフアス物質の示差熱分析結果及び熱重量分
析結果を表わすグラフである。 なお、図において、1は基板、2は光学的反射
層または光学的吸収層、3はアモルフアス層、4
は透明保護層である。また5は(V2O50.75
(ZnO)0.25、6は(V2O50.67・(MgO)0.33、7は
(V2O50.50・(Li2O)0.50、8は(V2O50.70
(Cr2O30.30の組成の記録媒体のX線回析図であ
る。9は(V2O50.83・(MgO)0.17のアモルフアス
薄膜の室温乾燥後のX線回析図であり、10は
(V2O50.83(MgO)0.17アモルフアス薄膜の450℃、
30分熱処理後のX線回折図である。11は
(V2O50.70・(Cr2O30.30のアモルフアス薄膜の示
差熱分析結果であり、12は(V2O50.70
(Cr2O30.30のアモルフアス薄膜の熱重量分析結果
である。
FIG. 1 is a cross-sectional view of an example of an optical information recording material. FIG. 2 is an X-ray diffraction diagram of the recording medium produced in the example. FIG. 3 is a graph showing the relationship between composition and amount of V 2 O 5 dissolved. FIG. 4 is a graph showing the change over time in the amount of V 2 O 5 dissolved. Figure 5 is a graph showing the relationship over time between the composition of a substance represented by (V 2 O 5 ) x (MgO) 1- x and the amount of dissolved V 2 O 5 , and Figure 6 is a graph showing ( V 2 O 5 ) x・
(MgO) 1- is a graph showing the relationship between the composition of x and the amount of dissolved MgO over time, and Figure 7 is (V 2 O 5 ).
x・(ZnO) 1- This is a graph showing the relationship over time between the composition of x and the amount of dissolved V 2 O 5 , and FIG.
2 is a graph showing the relationship between the composition of x·(ZnO) 1− x and the amount of dissolved ZnO over time. FIG. 9 is a graph showing the relationship between the composition of (V 2 O 5 ) x (MgO) 1- x and PH over time. Figure 10 is (V 2 O 5 )
It is an X-ray diffraction diagram of an amorphous material of 0.83 ·(MgO) 0.17 . FIG. 11 is a graph showing the results of differential thermal analysis and thermogravimetric analysis of an amorphous material with (V 2 O 5 ) 0.70 ·(Cr 2 O 3 ) 0.30 . In addition, in the figure, 1 is a substrate, 2 is an optical reflection layer or an optical absorption layer, 3 is an amorphous layer, and 4
is a transparent protective layer. Also, 5 is (V 2 O 5 ) 0.75
(ZnO) 0.25 , 6 is (V 2 O 5 ) 0.67・(MgO) 0.33 , 7 is (V 2 O 5 ) 0.50・(Li 2 O) 0.50 , 8 is (V 2 O 5 ) 0.70
(Cr 2 O 3 ) It is an X-ray diffraction diagram of a recording medium having a composition of 0.30 . 9 is the X-ray diffraction diagram of the (V 2 O 5 ) 0.83 (MgO) 0.17 amorphous thin film after drying at room temperature, and 10 is the (V 2 O 5 ) 0.83 (MgO) 0.17 amorphous thin film at 450°C.
It is an X-ray diffraction diagram after heat treatment for 30 minutes. 11 is the differential thermal analysis result of an amorphous thin film of (V 2 O 5 ) 0.70・(Cr 2 O 3 ) 0.30 , and 12 is the result of (V 2 O 5 ) 0.70
(Cr 2 O 3 ) 0.30 amorphous amorphous thin film thermogravimetric analysis results.

Claims (1)

【特許請求の範囲】 1 一般式(V2O51-x・(MmOn)x (式中、MmOnはLi2O,MgO,TiO2,Ta2O3
Cr2O3,MoO3,MnO2,Co2O3,NiO,ZnO,
B2O3,SiO2,GeO2,Bi2O3,Fe2O3より選ばれ
る一種以上の酸化物を示す。但し、O≦X≦0.85
である。)で示される組成のアモルフアス物質を
水もしくは水系溶媒に溶解し、これを基板上に塗
布した後、乾燥することを特徴とする光学的情報
記録媒体の製造方法。 2 アモルフアス物質が、その融液、蒸気または
電価を帯びた蒸気を大気中、真空中または不活性
ガス中で超急冷することにより得られるものであ
る特許請求の範囲第1項記載の光学的情報記録媒
体の製造方法。 3 基板上にコーテイングにより形成させられる
一般式(V2O51-x・(MmOn)x (式中、MmOnはLi2O,MgO,TiO2,Ta2O3
Cr2O3,MoO3,MnO2,Co2O3,NiO,ZnO,
B2O3,SiO2,GeO2,Bi2O3,Fe2O3より選ばれ
る一種以上の酸化物を示す。但し、O≦X≦0.85
である。)で示される組成のアモルフアス薄膜よ
りなる光学的情報記録媒体。 4 光学的に反射率の大きい金属薄膜または光学
的吸収率の大きい黒体薄膜上に形成する特許請求
の範囲第3項記載の光学的情報記録媒体。 5 基板材料がガラス、金属または合成樹脂であ
る特許請求の範囲第3項記載の光学的情報記録媒
体。
[Claims] 1 General formula (V 2 O 5 ) 1- x·(MmOn) x (wherein MmOn is Li 2 O, MgO, TiO 2 , Ta 2 O 3 ,
Cr2O3 , MoO3 , MnO2 , Co2O3 , NiO , ZnO,
Indicates one or more oxides selected from B 2 O 3 , SiO 2 , GeO 2 , Bi 2 O 3 , and Fe 2 O 3 . However, O≦X≦0.85
It is. 1. A method for producing an optical information recording medium, which comprises dissolving an amorphous substance having the composition shown in () in water or an aqueous solvent, coating the solution on a substrate, and then drying the solution. 2. The optical system according to claim 1, wherein the amorphous substance is obtained by ultra-quenching its melt, vapor, or charged vapor in the atmosphere, vacuum, or inert gas. A method for manufacturing an information recording medium. 3 General formula (V 2 O 5 ) 1- x・(MmOn)x formed by coating on the substrate (where MmOn is Li 2 O, MgO, TiO 2 , Ta 2 O 3 ,
Cr2O3 , MoO3 , MnO2 , Co2O3 , NiO , ZnO,
Indicates one or more oxides selected from B 2 O 3 , SiO 2 , GeO 2 , Bi 2 O 3 , and Fe 2 O 3 . However, O≦X≦0.85
It is. ) An optical information recording medium comprising an amorphous thin film having a composition shown in 4. The optical information recording medium according to claim 3, which is formed on a metal thin film with high optical reflectance or a blackbody thin film with high optical absorption. 5. The optical information recording medium according to claim 3, wherein the substrate material is glass, metal, or synthetic resin.
JP59167113A 1984-08-09 1984-08-09 Optical data recording medium and preparation thereof Granted JPS6144695A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59167113A JPS6144695A (en) 1984-08-09 1984-08-09 Optical data recording medium and preparation thereof
GB08519806A GB2164462B (en) 1984-08-09 1985-08-07 Optical recording material, process for preparing the same and optical recording method
US06/763,368 US4865948A (en) 1984-08-09 1985-08-07 Optical recording material, process for preparing the same and optical recording method
DE19853528670 DE3528670A1 (en) 1984-08-09 1985-08-09 OPTICAL RECORDING MATERIAL, METHOD FOR THE PRODUCTION THEREOF AND OPTICAL RECORDING METHOD
FR8512247A FR2569032B1 (en) 1984-08-09 1985-08-09 OPTICAL RECORDING MATERIAL, PROCESS FOR PREPARING THE SAME, AND OPTICAL RECORDING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59167113A JPS6144695A (en) 1984-08-09 1984-08-09 Optical data recording medium and preparation thereof

Publications (2)

Publication Number Publication Date
JPS6144695A JPS6144695A (en) 1986-03-04
JPH0327034B2 true JPH0327034B2 (en) 1991-04-12

Family

ID=15843673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59167113A Granted JPS6144695A (en) 1984-08-09 1984-08-09 Optical data recording medium and preparation thereof

Country Status (1)

Country Link
JP (1) JPS6144695A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046318A (en) * 1973-08-29 1975-04-25
JPS5177325A (en) * 1974-12-27 1976-07-05 Matsushita Electric Ind Co Ltd
JPS51128267A (en) * 1975-04-30 1976-11-09 Fujitsu Ltd Pattern forming system for metal oxide film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046318A (en) * 1973-08-29 1975-04-25
JPS5177325A (en) * 1974-12-27 1976-07-05 Matsushita Electric Ind Co Ltd
JPS51128267A (en) * 1975-04-30 1976-11-09 Fujitsu Ltd Pattern forming system for metal oxide film

Also Published As

Publication number Publication date
JPS6144695A (en) 1986-03-04

Similar Documents

Publication Publication Date Title
US4743526A (en) Alloy having variable spectral reflectance and information recording material making use of the same
JP2990036B2 (en) Optical recording medium and manufacturing method thereof
JPH0660419A (en) Optical recording medium and its production
JPS60177446A (en) Optical disk recording medium
Aoki et al. Write-once optical recording using WO2 films prepared by pulsed laser deposition
JPH0522592B2 (en)
JPH0327034B2 (en)
JP2656296B2 (en) Information recording medium and method of manufacturing the same
JPS6118262B2 (en)
JPS60131650A (en) Optical memory disk and its manufacture
EP0476762A2 (en) Erasable optical recording materials and methods based on tellurium alloys
JPH04232780A (en) Phase change optical recording medium
JPH0356678B2 (en)
JP2937296B2 (en) Method for manufacturing rewritable phase-change optical memory medium
JPS61168145A (en) Optical recording medium
JPS6235888A (en) Optical recording medium
JPS61195943A (en) Alloy having variable spectral reflectance and recording material
JP2867390B2 (en) Optical recording medium
JPH0356679B2 (en)
JPH0444812B2 (en)
JPH02139280A (en) Optical recording medium and manufacture thereof
JPH0560434B2 (en)
JPS61190034A (en) Alloy having variable spectral reflectance and recording material
JPH041935B2 (en)
JPS61190033A (en) Alloy having variable spectral reflectance and recording material