JPH0522592B2 - - Google Patents

Info

Publication number
JPH0522592B2
JPH0522592B2 JP59188920A JP18892084A JPH0522592B2 JP H0522592 B2 JPH0522592 B2 JP H0522592B2 JP 59188920 A JP59188920 A JP 59188920A JP 18892084 A JP18892084 A JP 18892084A JP H0522592 B2 JPH0522592 B2 JP H0522592B2
Authority
JP
Japan
Prior art keywords
layer
recording medium
recording
film
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59188920A
Other languages
Japanese (ja)
Other versions
JPS6166696A (en
Inventor
Reiichi Chiba
Yoshihiro Asano
Susumu Fujimori
Hironori Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59188920A priority Critical patent/JPS6166696A/en
Publication of JPS6166696A publication Critical patent/JPS6166696A/en
Publication of JPH0522592B2 publication Critical patent/JPH0522592B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used

Description

【発明の詳細な説明】 産業上の利用分野 本発明はレーザー記録媒体に関する。更に詳し
くいえば、レーザービームを照射して、その照射
部に光学的変化を起こさせて情報を記録するに適
したレーザー記録媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a laser recording medium. More specifically, the present invention relates to a laser recording medium suitable for recording information by irradiating a laser beam and causing an optical change in the irradiated area.

従来の技術 近年、レーザーに係る技術のめざましい進歩に
より、コヒーレント光を用いた様々の応用の可能
性の追求がなされてきており、その結果、光通
信、光記録・再生、光計測、各種物品の加工への
応用、医療への応用、化学反応への応用等各種の
広範な分野において有用な技術として期待され、
急速な開発・研究がなされ、一部では既に実用化
が図られている。
Conventional technology In recent years, with the remarkable progress in laser technology, the possibility of various applications using coherent light has been pursued. It is expected to be a useful technology in a wide range of fields such as processing, medical, and chemical reaction applications.
Rapid development and research has been carried out, and some have already been put into practical use.

中でも、最近特にレーザー光の集束性の良さを
利用する光記録媒体、例えばレーザーデイスク等
が、高密度情報記録用の媒体として注目されてい
る。このような光記録媒体は、大きく分けて同一
媒体に何度でも異つた情報を書込むことのできる
書換え可能な媒体と情報の書込みが一度しかでき
ない固定記録媒体とに分類され、夫々前者では光
磁気材料、ホトクロミツク材料、非晶質材料、サ
ーモプラスチツク材料、電気光学結晶等が、また
後者ではアブラテイブ材料、ホトポリマー材料、
銀塩材料、ホトレジスト材料等が知られている。
Among these, optical recording media that utilize the good focusing properties of laser light, such as laser disks, have recently attracted attention as media for high-density information recording. Such optical recording media can be broadly divided into rewritable media, which allows different information to be written on the same medium any number of times, and fixed recording media, in which information can be written only once. Magnetic materials, photochromic materials, amorphous materials, thermoplastic materials, electro-optic crystals, etc., and the latter include ablative materials, photopolymer materials,
Silver salt materials, photoresist materials, etc. are known.

従来、レーザービームを利用してこれら材料に
情報を記録する態様としては、金属膜、色素膜な
どに局部適に孔または変形を起こさせて、情報を
記録するものが知られている。しかし、このよう
な態様では、一旦記録した情報の消去は不可能で
あり、いわゆる追記型光記録媒体として用いられ
ている。
Conventionally, as a method of recording information on these materials using a laser beam, a method is known in which information is recorded by causing holes or deformation locally in a metal film, a pigment film, or the like. However, in such an embodiment, once recorded information cannot be erased, it is used as a so-called write-once optical recording medium.

一方、書換型光記録媒体としては、結晶−非晶
質間の相転移を利用するTeまたは、TeとBi、Sb
等との合金を用いたもの、金属−半導体の相転移
を利用するVO2、SmS等が知られている。
On the other hand, as a rewritable optical recording medium, Te, Te and Bi, Sb, which utilize the phase transition between crystal and amorphous, are used.
VO 2 , SmS, etc., which utilize metal-semiconductor phase transition, are known.

このうちTe系およびTeとBi、Sb等との合金を
用いた記録媒体では、繰返し記録・消去を行なう
と、つまり結晶−非晶質間相転移と繰返すと、相
分離を起こし書換性が損われることが知られてい
る。この相分離は、合金中のドープ量を減らし、
Teまたは、Bi、Sbの量を増加させることにより
防ぐことができる。しかし、ドープ量を減らした
場合には、非晶質寿命が短くなり室温で短時間の
うちに非晶質に転移してしまうという問題が生ず
る。
Among these, in recording media using Te-based materials and alloys of Te, Bi, Sb, etc., repeated recording and erasing, that is, repeated crystal-to-amorphous phase transitions, cause phase separation and loss of rewriting performance. It is known that This phase separation reduces the amount of doping in the alloy and
This can be prevented by increasing the amount of Te, Bi, or Sb. However, when the amount of doping is reduced, a problem arises in that the amorphous lifetime is shortened and the material transitions to an amorphous state within a short period of time at room temperature.

他方、VO2、SmSを用いた媒体では、転移に
ともなう体積変化が大きく、膜に変形、キ裂が生
じやすいこと、および記録・消去を繰返すには熱
によるヒステリシス効果を利用するため、媒体を
室温以下に冷却するなどの熱バイアスを加えねば
ならないという欠点を有している。
On the other hand, media using VO 2 or SmS have large volume changes due to transition, which easily causes deformation and cracking of the film, and the hysteresis effect caused by heat is used for repeated recording and erasing. It has the disadvantage that a thermal bias such as cooling to below room temperature must be applied.

発明が解決しようとする問題点 上記の如く、最近のレーザーに関するめざまし
い技術開発に伴つて、光記録媒体も新たな局面を
向えつつある。しかしながら、従来の光記録媒体
では一旦記録された情報の消去が不可能(固定記
録型材料)であつたり、また書換え可能な媒体で
あつても繰返し情報の記録・消去を行なうと相分
離を生じてしまつたり、余分な操作(例えば冷却
処理)が必要であるなど様々な改良すべき問題が
残されていた。
Problems to be Solved by the Invention As mentioned above, along with the recent remarkable technological developments regarding lasers, optical recording media are also facing a new phase. However, with conventional optical recording media, it is impossible to erase information once recorded (fixed recording type materials), and even with rewritable media, phase separation occurs when information is repeatedly recorded and erased. There remained various problems that needed to be improved, such as the drying process and the need for extra operations (for example, cooling treatment).

従つて、これらの諸欠点を示さない新規な記録
媒体を開発することは、該記録媒体の信頼性を高
め、需要の拡大を図る上で極めて重要である。
Therefore, it is extremely important to develop a new recording medium that does not exhibit these drawbacks in order to increase the reliability of the recording medium and increase demand for it.

そこで、本発明の目的は上記の如き従来の光記
録媒体を有する欠点を示さない、繰返し記録・消
去が可能な光記録媒体を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an optical recording medium that does not exhibit the drawbacks of conventional optical recording media as described above and allows repeated recording and erasing.

問題点を解決するための手段 本発明者等はレーザービーム記録媒体の上記の
ような現状に鑑みて、従来製品の呈する各種欠点
を示さず、繰返し記録・消去が可能な光記録媒体
を得るべく種々検討、研究した結果、前記目的を
達成するためには比較的薄いBi層またはSb層を
2層以上設けることが極めて有利であることを見
出し、本発明を完成した。
Means for Solving the Problems In view of the above-mentioned current state of laser beam recording media, the present inventors aimed to obtain an optical recording medium that does not exhibit the various drawbacks of conventional products and can be repeatedly recorded and erased. As a result of various studies and studies, it was found that it is extremely advantageous to provide two or more relatively thin Bi or Sb layers in order to achieve the above object, and the present invention was completed.

即ち、本発明のレーザービーム記録媒体は基板
と、該基板上に設けられた記録媒体層としての少
なくとも2層の誘電体層および少なくとも2層の
Bi層またはSb層とを有し、該Bi層またはSb層の
各々が該誘電体層ではさまれ、該基板上で該誘電
体層と交互に配置された構成を有することを特徴
とする。
That is, the laser beam recording medium of the present invention includes a substrate, at least two dielectric layers as recording medium layers provided on the substrate, and at least two dielectric layers provided on the substrate.
Bi layers or Sb layers, each of the Bi layers or Sb layers is sandwiched between the dielectric layers and alternately arranged with the dielectric layers on the substrate.

Bi層はBiの他、Biを90原子%以上含有するBi
合金を使用することができ、またSb層はSbの他、
Sbを90原子%以上含有するSb合金を使用するこ
とができ、同様な効果を期待することができる。
これらは蒸着あるいはスパツタ法等により形成す
ることができる。
In addition to Bi, the Bi layer contains Bi containing 90 atomic% or more of Bi.
Alloys can be used, and the Sb layer can be made of other than Sb.
An Sb alloy containing 90 atomic % or more of Sb can be used and similar effects can be expected.
These can be formed by vapor deposition, sputtering, or the like.

ここで、基板としては、ポリカーボネイトある
いはアクリル樹脂などのプラスチツクス、Alな
どの金属あるいはガラスが用いられる。
Here, as the substrate, plastics such as polycarbonate or acrylic resin, metals such as Al, or glass are used.

また、誘電体層としては、無機蒸着膜、無機ス
パツタ膜、有機蒸着膜、有機スパツタ膜あるい
は、プラズマ重合膜を用いることができる。この
うち、無機蒸着膜および無機スパツタ膜としては
SiO2、SiO、Al2O3、Y2O3、WO3、Ta2O5
Cr2O3、CeO2、TeO2、MoO3、In2O3、GeO2
TiO2などの酸化物膜、MgF2、PbF2、CeF3など
のフツ化物膜、AlN、Si3N4などの窒化物膜、
ZuSなどの硫化物膜などを適用することができ
る。
Further, as the dielectric layer, an inorganic vapor deposited film, an inorganic sputtered film, an organic vapor deposited film, an organic sputtered film, or a plasma polymerized film can be used. Of these, inorganic vapor deposited films and inorganic sputtered films include
SiO2 , SiO , Al2O3 , Y2O3 , WO3 , Ta2O5 ,
Cr2O3 , CeO2 , TeO2 , MoO3 , In2O3 , GeO2 ,
Oxide films such as TiO2 , fluoride films such as MgF2 , PbF2 , CeF3 , nitride films such as AlN, Si3N4 ,
A sulfide film such as ZuS can be applied.

有機蒸着膜としては、ポリエチレン、ポリフツ
化ビニリデン、ポリフエニレンスルフアイドなど
の高分子蒸着膜、Cuフタロシアニン、フルオレ
セインなどの低分子蒸着膜を適用することができ
る。
As the organic vapor deposited film, a polymer vapor deposited film such as polyethylene, polyvinylidene fluoride, or polyphenylene sulfide, or a low molecular vapor deposited film such as Cu phthalocyanine or fluorescein can be applied.

プラズマ重合膜としては、エチレンなどのオレ
フイン化合物、スチレンなどの芳香族化合物、6
フツ化プロピレンなどの含フツ素化合物、アクリ
ロニトリルなどの含窒素化合物、ヘキサメチルジ
シロキサンなどの含Si化合物、テトラメチルスズ
などの有機金属化合物など各種有機化合物から得
れる重合膜を適用することができる。
As a plasma polymerized film, olefin compounds such as ethylene, aromatic compounds such as styrene, 6
Polymerized films obtained from various organic compounds such as fluorine-containing compounds such as propylene fluoride, nitrogen-containing compounds such as acrylonitrile, Si-containing compounds such as hexamethyldisiloxane, and organometallic compounds such as tetramethyltin can be applied. .

本発明のレーザー記録媒体においては、また該
記録媒体層上に、あるいは基板と記録媒体層との
界面に、即ち例えば基板と誘電体層との間に光反
射層を設けることもできる。
In the laser recording medium of the present invention, a light reflecting layer can also be provided on the recording medium layer or at the interface between the substrate and the recording medium layer, that is, for example, between the substrate and the dielectric layer.

本発明のレーザー記録媒体は例えば第1図およ
び第2図に示すような構成をとることができる。
例えば、第1図の媒体は、基板1と、その上に形
成された誘電体層2と、該誘電体層上に設けられ
たBiまたはSb層もしくはBiまたはSbを90原子%
以上含有する合金層3(以下簡単化のために記録
層という)と、更にこの上に誘電体層、記録層を
この順序で順次形成することにより設けられた誘
電体層4および6並びに記録層5とから構成され
ている。また、第2図の態様は記録媒体上に光反
射層7を設けた例である。この光反射層としては
従来公知の材料並びに形成方法がそのまま利用で
き、特に制限されない。
The laser recording medium of the present invention can have a configuration as shown in FIGS. 1 and 2, for example.
For example, the medium in FIG. 1 includes a substrate 1, a dielectric layer 2 formed thereon, and a Bi or Sb layer provided on the dielectric layer, or a Bi or Sb layer containing 90 atomic percent of Bi or Sb.
Alloy layer 3 containing the above (hereinafter referred to as recording layer for simplicity), dielectric layers 4 and 6, and recording layer provided by sequentially forming a dielectric layer and a recording layer thereon in this order. It consists of 5. Further, the embodiment shown in FIG. 2 is an example in which a light reflecting layer 7 is provided on the recording medium. For this light-reflecting layer, conventionally known materials and forming methods can be used as they are, and there are no particular limitations.

作 用 本発明のレーザー記録媒体は、BiまたはBi合
金もしくはSbまたはSb合金の記録層を使用し、
これと誘電体層とを交互にサンドイツチ型で多層
構造としたことを特徴とするものであり、このよ
うな構成としたことにより、積層しない一層構造
をもつ従来のものと比較して、非晶質寿命が著し
く延長されつので相分離を起こすことのない、か
つ非晶質寿命の長い安定な記録媒体が提供される
ことになる。
Effect The laser recording medium of the present invention uses a recording layer of Bi or Bi alloy, Sb or Sb alloy,
It is characterized by a multi-layered structure in which this and dielectric layers are alternately sandwiched together, and this structure makes it possible to reduce the amount of amorphous compared to the conventional one-layered structure without lamination. Since the quality life is significantly extended, a stable recording medium that does not undergo phase separation and has a long amorphous life can be provided.

一般に、基板1と接する誘電体層2に、基板1
への熱流出を防ぐ断熱層としての機能を与えたい
場合には、50nm程度以上の膜厚とすることが望
ましく、また最上層の誘電体層は、媒体の変形を
抑制するためには、やはり50nm程度以上の膜厚
にして用いることが好ましい。これ以外の誘電体
層は、記録層3,5を分離できればよく、従つて
5nm程度以上の膜厚であれば十分である。
Generally, a dielectric layer 2 in contact with the substrate 1 is provided with a substrate 1
If you want to provide a function as a heat insulating layer to prevent heat leakage to the media, it is desirable to have a film thickness of about 50 nm or more, and the top dielectric layer should also be used to suppress the deformation of the medium. It is preferable to use the film with a thickness of about 50 nm or more. Other dielectric layers may be used as long as they can separate the recording layers 3 and 5.
A film thickness of about 5 nm or more is sufficient.

誘電体層は上記のBi層等の分離を達成する機
能の他に、これ等の変形を防止する機能をも併せ
持ち、その結果、記録・消去サイクルの多数回に
亘る繰返し中に生じる可能性のある、記録媒体粒
子間の凝集・融合等を防止して、該粒子の粒径を
微細な状態に維持する。
In addition to the function of achieving the separation of the Bi layer, etc. mentioned above, the dielectric layer also has the function of preventing these deformations, which may occur during many repetitions of recording/erasing cycles. Certain types of agglomeration and fusion between recording medium particles are prevented to maintain the particle size of the particles in a fine state.

一方、記録層3,5は蒸着あるいは、スパツタ
法により形成されるが、その膜厚は、10nm以下
であることが好ましい。このような比較的薄い膜
厚とすることによりBiまたはSbの非晶質寿命は
室温で充分長くなることを見出した。つまり結晶
化温度は、BiおよびBbの膜厚を薄くするほど高
くなる。従つて、BiおよびSbの膜厚を薄くする
程、室温におけるBiおよびSbの非晶質状態の室
温での寿命は長くなるが、結晶化による記録・消
去の感度が低下するためBiおよびSbの膜厚とし
ては、3〜10nmが適している。
On the other hand, the recording layers 3 and 5 are formed by vapor deposition or sputtering, and their thickness is preferably 10 nm or less. It has been found that by forming such a relatively thin film, the amorphous lifetime of Bi or Sb can be sufficiently long at room temperature. In other words, the crystallization temperature becomes higher as the film thickness of Bi and Bb becomes thinner. Therefore, as the film thickness of Bi and Sb becomes thinner, the lifetime of the amorphous state of Bi and Sb at room temperature becomes longer, but the recording/erasing sensitivity due to crystallization decreases, so the film thickness of Bi and Sb decreases. A suitable film thickness is 3 to 10 nm.

一方、BiおよびSbの代わりにBi合金あるいは
Sb合金を用いた場合には、もともと結晶化温度
がBiおよびSb単体より高いため、30nm以下の膜
厚にすることにより充分長い非晶質寿命が得ら
れ、また下限は上記と同様な理由から5nm以上
であることが必要とされるので膜厚としては、5
〜30nmの範囲内とすることが適している。
On the other hand, instead of Bi and Sb, Bi alloy or
When using an Sb alloy, the crystallization temperature is originally higher than that of Bi and Sb alone, so a sufficiently long amorphous life can be obtained by making the film thickness 30 nm or less, and the lower limit is set for the same reason as above. The film thickness is required to be 5 nm or more.
It is suitable that the wavelength is within the range of ~30 nm.

尚、このBiおよびSb化合物は、相分離を起こ
さないような組成、つまりBiおよびSb原子が90
原子%以上含まれ、Pb、Sn、In、As、Se、Ge、
Si、S、Sb(Biをベースとする場合)からなる群
から選ばれる少なくとも1種の元素を10原子%以
下ドープしたものを例示できる。
Note that this Bi and Sb compound has a composition that does not cause phase separation, that is, Bi and Sb atoms are 90%
Contains atomic% or more, Pb, Sn, In, As, Se, Ge,
Examples include those doped with 10 atomic % or less of at least one element selected from the group consisting of Si, S, and Sb (when Bi is used as the base).

上記合金成分のいくつかの元素、例えばSnと
Ge、InとSeなどを使用することにより、その他
のものと同様に、優れた記録・消去特性を示す
他、消去速度の速い記録媒体を得ることも可能で
ある。従つて、記録・消去の高速化を図ることが
可能となる。
Some elements of the above alloy components, such as Sn and
By using Ge, In, Se, and the like, it is possible to obtain a recording medium that not only exhibits excellent recording and erasing characteristics but also has a high erasing speed, like the other materials. Therefore, it is possible to speed up recording and erasing.

第1図および第2図の例では、記録層を2層だ
け設けた記録媒体を示したが、記録層が1層でも
レーザー記録媒体を構成することは可能である。
しかしながら、1層では、充分なコントラストを
得ることが困難であり、2層以上の記録層を含む
サンドイツチ型構造とすることが適している。
Although the examples in FIGS. 1 and 2 show a recording medium having only two recording layers, it is possible to configure a laser recording medium with only one recording layer.
However, it is difficult to obtain sufficient contrast with one layer, and a sandwich structure including two or more recording layers is suitable.

更に、第2図に示すように誘電体層6の上に光
反射層7を設け、また誘電体層の膜圧を制御し、
記録波長での反射強度を極小となるようにするこ
とにより、記録レーザー光の吸収率を高め、感度
を向上させることができる。この場合の光反射層
としてはAl、Au、Agなどの金属膜のほかBiある
いはSb膜自体を光反射層として用いることもで
きる。
Furthermore, as shown in FIG. 2, a light reflecting layer 7 is provided on the dielectric layer 6, and the film thickness of the dielectric layer is controlled.
By minimizing the reflection intensity at the recording wavelength, it is possible to increase the absorption rate of the recording laser beam and improve the sensitivity. In this case, in addition to a metal film such as Al, Au, or Ag, a Bi or Sb film itself can also be used as the light reflection layer.

次に、このような本発明の記録媒体に、レーザ
ービームを照射することにより情報を記録・消去
する方法について述べる。
Next, a method of recording and erasing information by irradiating the recording medium of the present invention with a laser beam will be described.

まず、BiまたはSb層は、付着後は、結晶状態
であるので、パルス巾の短かい強いレーザー光を
照射して、BiあるいはSbの融点以上に加熱、急
冷することにより、BiあるいはSbを結晶質から
非晶質に相転移させ、この非晶質化により情報が
記録される。
First, since the Bi or Sb layer is in a crystalline state after it has been deposited, Bi or Sb is crystallized by irradiating it with a strong laser beam with a short pulse width and heating it above the melting point of Bi or Sb, followed by rapid cooling. A phase transition occurs from a crystalline state to an amorphous state, and information is recorded through this amorphous state.

一方、非晶質化および結晶化を起こさないほど
に弱いレーザー光を照射し、その反射強度あるい
は、透過強度を検出することにより上記の如くし
て記録した情報を再生することができる。
On the other hand, the information recorded as described above can be reproduced by irradiating a laser beam weak enough not to cause amorphization or crystallization and detecting its reflected intensity or transmitted intensity.

また、この非晶化した部分に記録に用いたレー
ザー光より弱く、かつ再生光よりは強いパワーの
レーザー光を比較的長時間照射することにより非
晶質から結晶質に相転移を起こさせ、情報の消去
を行なうことができる。
In addition, by irradiating this amorphous part with a laser beam that is weaker than the laser beam used for recording but stronger than the reproduction beam for a relatively long period of time, a phase transition from amorphous to crystalline is caused. Information can be deleted.

Bi系合金または、Sb系合金層を用いた場合は、
付着後は非晶質状態である。従つて、結晶化によ
つて記録し、非晶質化によつて消去するか、ある
いはあらかじめ熱処理などにより結晶化させてお
き、非晶質化によつて記録し、結晶化によつて消
去することもできる。
When using Bi-based alloy or Sb-based alloy layer,
After deposition, it is in an amorphous state. Therefore, it is possible to record by crystallization and erase by amorphization, or to crystallize in advance by heat treatment, record by amorphization, and erase by crystallization. You can also do that.

また、一般に以上述べた例では記録は基板側か
らのレーザー照射により行われるが、基板1と誘
電体層2との間に光反射層を設けて、記録媒体側
からレーザー光の照射を行なうようにすることも
できる。
Furthermore, in the examples described above, recording is generally performed by laser irradiation from the substrate side, but it is also possible to provide a light reflective layer between the substrate 1 and the dielectric layer 2 and irradiate the laser beam from the recording medium side. It can also be done.

実施例 次に、本発明の記録媒体を実施例によつて更に
具体的にのべる。
Examples Next, the recording medium of the present invention will be described in more detail with reference to Examples.

実施例 1 基板としてポリメチルメタクリレートを用い、
この上にSiO2を電子ビーム蒸着法により厚さ20n
mで堆積し、Biを抵抗加熱蒸着法で厚さ5nmに
堆積するといつたように順次積層し、Bi層を4
層設けた本発明の記録媒体を作製した。ただし、
最上層のSiO2誘電体層の膜厚は100nmとした。
この記録媒体に対して、波長850nmの半導体レ
ーザーを用いて、記録・消去実験を行つた。レー
ザービーム径1.6μmで基板をとおしてレーザー照
射を行ない、記録媒体上でのレーザーパワー6m
W、パルス巾80nsで非晶質化が生じ、レーザーパ
ワー4mW、パルス巾400nsで結晶化が生じた。
再生は、レーザーパワー1mW、パルス巾500ns
で行なつたところ記録媒体に変化はみられなかつ
た。しかも、104回以上の記録・再生実験後も初
期値と同じ信号出力を維持していることが確認さ
れた。また、非晶質化したBiは40℃で1カ月以
上保存しても結晶化がみられず安定であることが
わかつた。
Example 1 Using polymethyl methacrylate as the substrate,
On top of this, SiO 2 was deposited to a thickness of 20n by electron beam evaporation.
Bi layers were deposited to a thickness of 5 nm, and Bi was deposited to a thickness of 5 nm using a resistance heating evaporation method.
A recording medium of the present invention provided with layers was produced. however,
The thickness of the uppermost SiO 2 dielectric layer was 100 nm.
Recording and erasing experiments were conducted on this recording medium using a semiconductor laser with a wavelength of 850 nm. Laser irradiation is performed through the substrate with a laser beam diameter of 1.6 μm, and the laser power is 6 m on the recording medium.
Amorphization occurred at W and a pulse width of 80 ns, and crystallization occurred at a laser power of 4 mW and a pulse width of 400 ns.
For reproduction, laser power is 1mW and pulse width is 500ns.
No change was observed in the recording medium. Moreover, it was confirmed that the same signal output as the initial value was maintained even after more than 10 4 recording/playback experiments. Furthermore, it was found that the amorphous Bi remained stable without crystallization even when stored at 40°C for more than one month.

実施例 2 実施例1の操作を繰返し、Bi膜のかわりにSb
蒸着膜を用いて同様な記録媒体を作製したとこ
ろ、このものはレーザーパワー15mW、パルス巾
100nsで非晶質化を生じ、レーザーパワー6mW、
パルス巾500nsで結晶化を生じた。再生を、レー
ザーパワー1mW、パルス巾500nsで行なつたと
ころ、記録状態に変化はみられなかつた。しかも
104回以上の記録・再生実験後も初期値と同じ信
号出力を維持していることが確認された。
Example 2 The operation of Example 1 was repeated, and Sb was used instead of Bi film.
A similar recording medium was fabricated using a vapor-deposited film, and this one had a laser power of 15 mW and a pulse width of 15 mW.
Amorphousization occurs in 100ns, laser power 6mW,
Crystallization occurred with a pulse width of 500 ns. When reproduction was performed with a laser power of 1 mW and a pulse width of 500 ns, no change was observed in the recorded state. Moreover,
10 It was confirmed that the same signal output as the initial value was maintained even after four or more recording/playback experiments.

実施例 3 実施例1の操作を繰返し、Biのかわりに
Bi90Sn5Ge5、Bi90In5Se5、Bi90Pb5As5を夫々用い
た本発明の記録媒体を作製した。このものの記
録・消去特性は、実施例1の記録媒体とほぼ同様
であつたが、消去において、レーザーパワー4m
W、パルス巾300nsで結晶化が生ずるなど、消去
速度の速まる傾向がみられた。また、安定性につ
いても40℃で2カ月以上保存しても結晶化がみら
れず、実施例1のものよりも更に一層安定である
ことがわかつた。
Example 3 Repeat the operation of Example 1 and use Bi instead of
Recording media of the present invention were produced using Bi 90 Sn 5 Ge 5 , Bi 90 In 5 Se 5 , and Bi 90 Pb 5 As 5 , respectively. The recording and erasing characteristics of this material were almost the same as those of the recording medium of Example 1, but in erasing, the laser power was 4 m
W, a tendency for the erasing speed to become faster was observed, with crystallization occurring at a pulse width of 300 ns. Regarding stability, no crystallization was observed even after storage at 40°C for more than 2 months, indicating that the product was even more stable than that of Example 1.

実施例 4 実施例2の操作を繰返して同様の構成の記録媒
体を得た。ただし、SbのかわりにSb90Sn5Ge5
Sb90In5Se5、Sb90Pb5As5を用いたものを作製し
た。このものの記録・消去特性は、実施例2の製
品とほぼ同様であつたが、レーザーパワー6m
W、パルス巾400nsで結晶化が生ずるなど、消去
速度の速まる傾向がみられた。また、非晶質状態
で40℃で2カ月保存しても結晶がみられず、従つ
て、常温では、非晶質として極めて安定であるこ
とが確認された。
Example 4 The operation of Example 2 was repeated to obtain a recording medium having the same structure. However, instead of Sb, Sb 90 Sn 5 Ge 5 ,
One using Sb 90 In 5 Se 5 and Sb 90 Pb 5 As 5 was produced. The recording/erasing characteristics of this product were almost the same as those of Example 2, but the laser power was 6 m.
W, a tendency for the erasing speed to become faster was observed, with crystallization occurring at a pulse width of 400 ns. In addition, no crystals were observed even when the material was stored in an amorphous state at 40° C. for two months, thus confirming that it is extremely stable as an amorphous material at room temperature.

実施例 5 実施例1の操作を繰返した。ただし、SiO2
代わりにY2O3、Ta2O5、Al2O3、SiO、CeF3およ
びCr2O3の電子ビーム蒸着膜を誘電体層として用
いた記録媒体を作製したところ、この製品は記
録・消去特性としては実施例1のものと同様の値
を示した。また、SiO2の代わりにPbF2、GeO2
MoO3、MgF2およびTeO2の蒸着膜を誘電体層と
して用いた場合にも同様であつた。
Example 5 The procedure of Example 1 was repeated. However, when we produced a recording medium using electron beam evaporated films of Y 2 O 3 , Ta 2 O 5 , Al 2 O 3 , SiO, CeF 3 and Cr 2 O 3 as dielectric layers instead of SiO 2 , This product showed the same values as those of Example 1 in terms of recording and erasing characteristics. Also, instead of SiO 2 PbF 2 , GeO 2 ,
The same was true when vapor deposited films of MoO 3 , MgF 2 and TeO 2 were used as dielectric layers.

実施例 6 誘電体膜としてのSiO2のかわりにテトラメチ
ルスズのプラズマ重合膜を用いた他は実施例1と
同様に操作して本発明の記録媒体を作製した。こ
の場合、最上層の重合膜厚は200nmとした。こ
の記録媒体では、レーザーパワー5mW、パルス
巾6nsで非晶質化が生じレーザーパワー3mW、
パルス巾40nsで結晶化が生じた。再生はレーザー
パワー1mW、パルス巾500nsで行なつたが記録
状態に変化はみられなかつた。尚、このものは
104回以上の記録・再生実験後も初期値と同じ信
号出力を維持していることが確認された。
Example 6 A recording medium of the present invention was produced in the same manner as in Example 1 except that a plasma polymerized film of tetramethyltin was used instead of SiO 2 as the dielectric film. In this case, the polymer film thickness of the top layer was 200 nm. In this recording medium, amorphization occurs at a laser power of 5 mW and a pulse width of 6 ns, and the laser power is 3 mW.
Crystallization occurred with a pulse width of 40 ns. Reproduction was performed with a laser power of 1 mW and a pulse width of 500 ns, but no change was observed in the recorded state. Furthermore, this thing
10 It was confirmed that the same signal output as the initial value was maintained even after four or more recording/playback experiments.

実施例 7 実施例6において、誘電体層としてのテトラメ
チルスズ・プラズマ重合膜の代わりにポリイミド
スパツタ膜およびCuフタロシアニン蒸着膜を用
いた他は同様に操作して2種の記録媒体を夫々作
製した。これらは記録・消去特性については、実
施例3と同様の結果を与えたが、103回の記録・
消去実験後において、これらの媒体には不可逆的
変化が生じた。
Example 7 Two types of recording media were manufactured in the same manner as in Example 6 except that a polyimide sputtered film and a Cu phthalocyanine vapor-deposited film were used instead of the tetramethyltin plasma polymerized film as the dielectric layer. did. These gave the same results as Example 3 in terms of recording/erasing characteristics, but after 10 3 times of recording/erasing.
After the extinction experiment, irreversible changes occurred in these media.

実施例 8 実施例1においてBi層を2層設け、また最上
層のSiO2膜厚を150nmとし、この上に光発射膜
として厚さ50nmのAl蒸着膜を設けた記録媒体を
作製した。この媒体ではレーザーパワー6mW、
パルス巾70nsで非晶質化が生じ、レーザーパワー
3mW、パルス巾400nsで結晶化が生じた。
Example 8 A recording medium was produced in which two Bi layers were provided in Example 1, the top layer had a SiO 2 film thickness of 150 nm, and an Al vapor deposited film with a thickness of 50 nm was provided thereon as a light emitting film. In this medium, the laser power is 6 mW,
Amorphization occurred with a pulse width of 70 ns, and crystallization occurred with a laser power of 3 mW and a pulse width of 400 ns.

発明の効果 以上詳しく説明したように、本発明の積層構造
のレーザービーム記録媒体では、BiまたはSbも
しくはBi合金またはSb合金層の膜厚を制御する
ことにより媒体の特性を制御することができ、媒
体特性の再現性が良いという利点を有している。
更にBi、Sbあるいは、BiまたはSbを90原子%以
上含む、Bi合金またはSb合金を用いているため
感度が高くコントラストも優れた媒体を与える。
また本発明の記録媒体は、相分離を起こさず、非
晶質状態の寿命が長いことと、誘電体層が媒体の
変形を防止し、またBi、Sb、Bi化合物、Sb化合
物の粒径を微細のまま変化しないように保つた
め、繰返し記録・消去が可能なレーザー記録媒体
として利用することができる。
Effects of the Invention As explained in detail above, in the laser beam recording medium with the laminated structure of the present invention, the characteristics of the medium can be controlled by controlling the film thickness of the Bi or Sb or Bi alloy or Sb alloy layer. It has the advantage of good reproducibility of media characteristics.
Furthermore, since Bi, Sb, or a Bi alloy or Sb alloy containing 90 atomic percent or more of Bi or Sb is used, a medium with high sensitivity and excellent contrast is provided.
In addition, the recording medium of the present invention does not cause phase separation and has a long life in the amorphous state, and the dielectric layer prevents deformation of the medium, and the particle size of Bi, Sb, Bi compound, and Sb compound is small. Because it remains minute and does not change, it can be used as a laser recording medium that can be repeatedly recorded and erased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の記録媒体の構造を示す模式
的断面図でり、第2図は、本発明の別の態様に係
る記録媒体の構造を示す模式的断面図である。 (主な参照番号)、1……基板、2,4,6…
…誘電体層、3,5……BiまたはSb層あるいは
BiまたはSbを90原子%以上含むBi合金またはSb
合金層、7……光反射層。
FIG. 1 is a schematic cross-sectional view showing the structure of a recording medium according to the present invention, and FIG. 2 is a schematic cross-sectional view showing the structure of a recording medium according to another aspect of the present invention. (Main reference numbers), 1... Board, 2, 4, 6...
...dielectric layer, 3,5...Bi or Sb layer or
Bi alloy or Sb containing 90 atomic% or more of Bi or Sb
Alloy layer, 7... light reflective layer.

Claims (1)

【特許請求の範囲】 1 基板と、該基板上に設けられた記録媒体層と
しての少なくとも2層の誘電体層と少なくとも2
層のBi層またはSb層とを有し、該Bi層またはSb
層の各々が該誘電体層にはさまれ、該基板上で該
誘電体層と交互に設けられた構成とされているこ
とを特徴とするレーザー記録媒体。 2 前記Bi層のかわりにBiを90原子%以上含有
するBi合金層を用いるか、あるいは前記Sb層の
かわりにSbを90原子%以上含有するSb合金層を
用いることを特徴とする特許請求の範囲第1項記
載のレーザー記録媒体。 3 前記記録媒体層上あるいは基板と記録媒体層
との界面に光反射層を設けることを特徴とする特
許請求の範囲第1項または第2項に記載のレーザ
ー記録媒体。
[Claims] 1. A substrate, at least two dielectric layers as recording medium layers provided on the substrate, and at least two
the Bi layer or the Sb layer, and the Bi layer or the Sb layer.
1. A laser recording medium characterized in that each of the layers is sandwiched between the dielectric layers and alternately provided with the dielectric layers on the substrate. 2 A Bi alloy layer containing 90 atomic % or more of Bi is used instead of the Bi layer, or an Sb alloy layer containing 90 atomic % or more of Sb is used instead of the Sb layer. The laser recording medium according to scope 1. 3. The laser recording medium according to claim 1 or 2, characterized in that a light reflective layer is provided on the recording medium layer or at the interface between the substrate and the recording medium layer.
JP59188920A 1984-09-11 1984-09-11 Laser recording medium Granted JPS6166696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59188920A JPS6166696A (en) 1984-09-11 1984-09-11 Laser recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59188920A JPS6166696A (en) 1984-09-11 1984-09-11 Laser recording medium

Publications (2)

Publication Number Publication Date
JPS6166696A JPS6166696A (en) 1986-04-05
JPH0522592B2 true JPH0522592B2 (en) 1993-03-30

Family

ID=16232194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59188920A Granted JPS6166696A (en) 1984-09-11 1984-09-11 Laser recording medium

Country Status (1)

Country Link
JP (1) JPS6166696A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832482B2 (en) * 1986-09-22 1996-03-29 松下電器産業株式会社 Optical information recording medium
JPH0825337B2 (en) * 1988-04-28 1996-03-13 松下電器産業株式会社 Optical information recording / reproducing / erasing member and optical disc
JPH0825338B2 (en) * 1988-06-22 1996-03-13 松下電器産業株式会社 Optical information recording / reproducing / erasing member recording / reproducing / erasing method
JPH0376684A (en) * 1989-08-21 1991-04-02 Hisankabutsu Glass Kenkyu Kaihatsu Kk Rewriting type optical data recording medium
JPH03259437A (en) * 1990-03-08 1991-11-19 Matsushita Electric Ind Co Ltd Optical information recording component
JP2782910B2 (en) * 1990-04-12 1998-08-06 松下電器産業株式会社 Optical information recording method, reproducing method and erasing method
JP2782939B2 (en) * 1990-09-25 1998-08-06 松下電器産業株式会社 Optical information recording medium
JPH04134644A (en) * 1990-09-25 1992-05-08 Matsushita Electric Ind Co Ltd Optical information recording member
JPH04134645A (en) * 1990-09-25 1992-05-08 Matsushita Electric Ind Co Ltd Optical information recording member
JP2979620B2 (en) * 1990-10-09 1999-11-15 松下電器産業株式会社 Optical information recording medium and optical information recording / reproducing method

Also Published As

Publication number Publication date
JPS6166696A (en) 1986-04-05

Similar Documents

Publication Publication Date Title
JP4571238B2 (en) Optical recording medium having phase change recording layer
JP2512087B2 (en) Optical recording medium and optical recording method
TWI221281B (en) Optical recording medium and optical recording method therefor
US5491003A (en) Method for manufacturing an optical recording film composed of a metal and an oxide which can undergo an oxidation-reduction reaction upon exposure to a laser beam
EP0260920B1 (en) Thin film amorphous optical recording films
JP2003532248A (en) Optical recording medium and use thereof
JPH01303643A (en) Laser recording medium
JPH0522592B2 (en)
US6660451B1 (en) Optical information recording medium
JPH01277338A (en) Optical recording medium
JPS62222442A (en) Rewriting type optical recording medium
JP2003051137A (en) Information recording medium
JP2834131B2 (en) Thin film for information recording
JP3810462B2 (en) Optical information recording medium
JP2778237B2 (en) Optical information recording medium and optical recording / erasing method
US5389417A (en) Optical recording medium
JPS6144692A (en) Laser beam recording member
US5055331A (en) Phase-change optical recording media
KR19990078049A (en) Optical recording medium, and method of manufacturing same
JPS62102438A (en) Member for optical recording
JPH07134838A (en) Optical information recording medium and recording method
JP3602589B2 (en) Optical recording medium and optical recording method
JPS6144693A (en) Rewriting type photo-recording medium
JP2962050B2 (en) Optical information recording medium
JP2948899B2 (en) Optical recording medium and optical recording method