JPS61168145A - Optical recording medium - Google Patents
Optical recording mediumInfo
- Publication number
- JPS61168145A JPS61168145A JP60006671A JP667185A JPS61168145A JP S61168145 A JPS61168145 A JP S61168145A JP 60006671 A JP60006671 A JP 60006671A JP 667185 A JP667185 A JP 667185A JP S61168145 A JPS61168145 A JP S61168145A
- Authority
- JP
- Japan
- Prior art keywords
- optical recording
- recording medium
- recording layer
- layer
- reflectance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Thermal Transfer Or Thermal Recording In General (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光記録技術に関する。本発明は、さらに詳しく
述べると、例えばレーザ光のような光パルスをパワー及
び照射時間を異にする2条件の下で光記録層に照射して
その層の照射部分において反射率又は透過率の変化をひ
きおこし、この光学的な性質の変化を利用して情報の記
録、再生、消去、そして再記録を行なうタイプの光記録
媒体、例えば光ディスクに関する。このようなタイプの
光記録媒体は、一般に、情報の書き換えが可能な、換言
すると、繰り返し使用が可能な、光記録媒体と呼ばれて
いる。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to optical recording technology. More specifically, the present invention aims to irradiate an optical recording layer with a light pulse, such as a laser beam, under two conditions of different power and irradiation time to change the reflectance or transmittance in the irradiated portion of the layer. The present invention relates to a type of optical recording medium, such as an optical disk, that causes a change in optical properties and uses this change in optical properties to record, reproduce, erase, and re-record information. This type of optical recording medium is generally called an optical recording medium in which information can be rewritten, in other words, it can be used repeatedly.
従来広く用いられている書き換え可能な光記録媒体は、
例えば、ガラスやプラスチック材料(例えばポリメチル
メタクリレートのようなアクリル樹脂)からなる基板と
、該基板上に蒸着等によって被覆された、例えばTe、
Se、Qe、3b。The conventionally widely used rewritable optical recording media are
For example, a substrate made of glass or a plastic material (for example, an acrylic resin such as polymethyl methacrylate) and a material such as Te, which is coated on the substrate by vapor deposition or the like, can be used.
Se, Qe, 3b.
Sn、Sなどの金属又は半金属あるいはその合金の薄膜
、たとえばGel5Tea+5zPzからなる光記録層
とから構成されており、また、光記録層を酸化などから
保護するため、例えばSiO□、Al2O3などの金属
酸化物からなる保護膜を上方に有している。It is composed of an optical recording layer made of a thin film of a metal such as Sn or S, or a metalloid or an alloy thereof, such as Gel5Tea+5zPz.In order to protect the optical recording layer from oxidation, it is made of a thin film of a metal such as SiO□, Al2O3, etc. It has a protective film made of oxide above.
このような光記録媒体を使用して、例えば次のように情
報の書き込みや消去を行なうことができる。Using such an optical recording medium, information can be written or erased in the following manner, for example.
最初、光記録媒体に光ビームを全面照射して加熱し、光
記録層を結晶性の高い状態(結晶が規則正しく配列され
た状態/安定な低抵抗状態;以下、この状態を“結晶状
態”と呼ぶ)にする。次いで、情報の書き込みのため、
短い強パルス光を照射して加熱急冷する。すると、パレ
ス光の照射部分の結晶性が低下し、結晶性の低い状態(
結晶構造の乱れた状態/安定な高抵抗状態;以下、この
状態を“非晶質状態”と呼ぶ)となる。この状態では、
反射率が低く (また、透過率が高<)、シたがって、
情報が書き込まれたことになる。このようにして書き込
まれた情報は、次いで、情報記録部分に長い弱パルス光
を照射して加熱徐冷することによって消去することがで
きる。すなわち、かかる弱パルス光の照射の結果、非晶
質状態にあった光記録層がもとの状態である結晶状態に
戻るからである。要するに、この光記録媒体では、光記
録層の相変態(結晶状態〜非晶質状態の可逆的変化)を
利用して情報の書き込みや消去を行なうことができる。First, the entire surface of the optical recording medium is irradiated with a light beam to heat it, and the optical recording layer is brought into a highly crystalline state (a state in which crystals are regularly arranged/a stable low resistance state; hereinafter, this state is referred to as a "crystalline state"). call). Next, to write information,
It is heated and rapidly cooled by irradiation with short, strong pulsed light. As a result, the crystallinity of the area irradiated with the palace light decreases, resulting in a state of low crystallinity (
A state in which the crystal structure is disordered/a stable high-resistance state; hereinafter, this state will be referred to as an "amorphous state"). In this state,
The reflectance is low (and the transmittance is high), so
The information will be written. The information written in this manner can then be erased by irradiating the information recording portion with long weak pulsed light and heating and slowly cooling it. That is, as a result of the irradiation with such weak pulsed light, the optical recording layer, which was in an amorphous state, returns to its original state, which is a crystalline state. In short, in this optical recording medium, information can be written or erased using phase transformation (reversible change from crystalline state to amorphous state) of the optical recording layer.
しかしながら、上記したタイプの光記録媒体では、情報
の書き込み時に結晶構造(配列)の乱れた状態を使用し
ているので、情報保持に本質的な不安定性がつきまとう
という欠点がある。なぜならば、非晶質状態は結晶状態
に至る準安定状態だからであり、熱エネルギーや化学エ
ネルギーの印加の結果として容易に結晶状態へと遷移可
能であるからである。実際、このような情報保持の不安
定性に原因して一旦書き込まれた情報が失われやすいこ
とが広く認識されている。本発明は、したがって、この
ような従来の技術の問題点を解決して、安定に情報保持
が可能である改良された光記録媒体を提供しようとする
ものである。However, since the above-mentioned type of optical recording medium uses a disordered crystal structure (orientation) when writing information, it has the disadvantage that information retention is inherently unstable. This is because the amorphous state is a metastable state leading to the crystalline state, and can easily transition to the crystalline state as a result of application of thermal energy or chemical energy. In fact, it is widely recognized that information once written is likely to be lost due to such instability in information retention. The present invention, therefore, aims to solve the problems of the conventional techniques and provide an improved optical recording medium that is capable of stably retaining information.
本発明者らは、このたび、光パルスをパワー及び照射時
間を異にする2条件の下で照射することによって結晶U
、−g〜結晶状態間で惹起される照射部分の反則率又は
透過率の変化から情報の記録、再生、消去、そして再記
録が可能である薄膜状の光記録層を有する光記録媒体で
あって、前記光記録層がガリウムとアンチモンの合金か
らなりかつ、その際、該合金の組成が、原子比で、
ガリウム 10〜60%、
及び
アンチモン 40〜90%、
であるような光記録媒体によって、上述の問題点を解決
し得るということを見い出した。The present inventors have recently discovered that crystal U
, -g ~ An optical recording medium having a thin film-like optical recording layer that allows information to be recorded, reproduced, erased, and re-recorded from changes in the fouling rate or transmittance of the irradiated part caused between crystal states. By an optical recording medium, the optical recording layer is made of an alloy of gallium and antimony, and the composition of the alloy is 10 to 60% gallium and 40 to 90% antimony in atomic ratio. It has been found that the above-mentioned problems can be solved.
本発明の光記録層は、1つの好ましい面において、前記
合金全体に対する原子比で0〜20%の、アルミニウム
、シリコン、燐、硫黄、亜鉛、ゲルマニウム、ヒ素、セ
レン、インジウム、錫、テルル、ビスマス及び鉛からな
る群から選ばれた1種類以上の金属をさらに有していて
もよい。このような金属を添加剤として使用すると、以
下に詳細に述べる通りに、ガリウムの占める割合が大で
ある場合に発生するガリウムの偏析を防止したり、コン
トラストを増大させたり、感度を増大させたりすること
ができる。In one preferred aspect, the optical recording layer of the present invention comprises aluminum, silicon, phosphorus, sulfur, zinc, germanium, arsenic, selenium, indium, tin, tellurium, bismuth in an atomic ratio of 0 to 20% with respect to the entire alloy. It may further contain one or more metals selected from the group consisting of lead and lead. The use of such metals as additives can prevent gallium segregation that occurs when gallium is present in large proportions, increase contrast, and increase sensitivity, as detailed below. can do.
本発明の光記録媒体は、例えば、第1図に断面で示され
るような構造を有することができる。The optical recording medium of the present invention can have a structure as shown in cross section in FIG. 1, for example.
図中の1は基板であり、この基板上に順次光記録層2及
び保護膜3が被覆されている。なお、図示の膜厚は便宜
的なものであって、正確な比率を示すものではないこと
を予め理解されたい。1 in the figure is a substrate, and an optical recording layer 2 and a protective film 3 are sequentially coated on this substrate. Note that it should be understood in advance that the illustrated film thicknesses are for convenience and do not represent accurate ratios.
基板1は、この技術分野において一般的に用いられてい
る材料、例えばポリメチルメタクリレートのようなアク
リル樹脂やガラスなどからなることができる。The substrate 1 can be made of a material commonly used in this technical field, such as acrylic resin such as polymethyl methacrylate, glass, or the like.
基板1上の光記録層2は、蒸着源であるガリウムとアン
チモンを別々に独立させて配置するかもしくは所定の組
成比をもった合金の形で配置して、真空蒸着法、スパッ
タ法等によって有利に形成することができる。なお、蒸
着源としてガリウム−アンチモン合金を使用する場合、
蒸着源と蒸着膜の組成に差がでてくることを予め注意し
なげればならない。この光記録層2の膜厚は、一般に、
約300〜200人であるのが有利である。The optical recording layer 2 on the substrate 1 is formed by a vacuum evaporation method, a sputtering method, etc. by arranging gallium and antimony, which are vapor deposition sources, separately or in the form of an alloy with a predetermined composition ratio. can be advantageously formed. In addition, when using gallium-antimony alloy as a vapor deposition source,
Care must be taken in advance that there will be a difference in composition between the deposition source and the deposited film. The thickness of this optical recording layer 2 is generally as follows:
Advantageously, there are about 300 to 200 people.
形成された光記録層2上には、この技術分野において広
く行われているように保護膜3をスピンコード法、蒸着
法、スパッタ法等によって被覆することができる。この
ような保護膜の例として、有機高分子材料、例えばポリ
メチルメタクリレート、ポリスチレン等の熱可塑性樹脂
や紫外線硬化型の樹脂(いわゆる2P樹脂)、金属酸化
物、例えばSiO□、A7!203など、場合により金
属窒化物などをあげることができる。通常、保護膜3の
膜厚は約500〜300人であるのが望ましい。The formed optical recording layer 2 can be coated with a protective film 3 by a spin coating method, a vapor deposition method, a sputtering method, etc., as is widely practiced in this technical field. Examples of such protective films include organic polymer materials such as thermoplastic resins such as polymethyl methacrylate and polystyrene, ultraviolet curing resins (so-called 2P resins), metal oxides such as SiO□, A7!203, etc. Depending on the case, metal nitrides can be used. Normally, the thickness of the protective film 3 is preferably about 500 to 300.
本発明の光記録媒体は、また、第2図に示されるような
構造を有することもできる。この媒体の構造は、光記録
層2をはさんで新たに薄い無機物質層4及び5が設けら
れた点を除いて前記第1図の構造に同じである。光記録
層2を層4及び5でザンドイソチしたことの結果、例え
ばアクリル基板を使用した場合に光記録層2が空気中の
水分の影響を受けるなどの不都合を未然に防止すること
ができる。これらの層を形成する無機物質の例としては
、SiO□、 SnO□などをあげることができる。The optical recording medium of the present invention can also have a structure as shown in FIG. The structure of this medium is the same as that shown in FIG. 1 above, except that thin inorganic material layers 4 and 5 are newly provided between the optical recording layer 2. As a result of sandwiching the optical recording layer 2 with the layers 4 and 5, it is possible to prevent problems such as the optical recording layer 2 being affected by moisture in the air when an acrylic substrate is used, for example. Examples of inorganic materials forming these layers include SiO□, SnO□, and the like.
膜厚は、通常数100人のオーダーである。The film thickness is usually on the order of several hundred layers.
例1:
外径300mm及び厚さ1.2 Inの円板状のアクリ
ル基板(ポリメチルメタクリレート)を用意し、これを
十分に洗浄した。この基板を真空蒸着機にセットし、ガ
リウム及びアンチモンをそれぞれ独立の蒸着源より蒸着
した。この真空蒸着時、基板を回転させることによって
ガリウムとアンチモンを均一に混合し、また、蒸着速度
が一定になるよう制御した。ガリウムとアンチモンの割
合は下記のようにいろいろに変更したが、形成された光
記録層の膜厚はいずれも1800人であった。さらに、
この光記録層上に保護膜としてのポリスチレンを膜厚1
000人でスピンコードした。Example 1: A disc-shaped acrylic substrate (polymethyl methacrylate) with an outer diameter of 300 mm and a thickness of 1.2 In was prepared and thoroughly cleaned. This substrate was set in a vacuum deposition machine, and gallium and antimony were deposited from independent deposition sources. During this vacuum deposition, gallium and antimony were mixed uniformly by rotating the substrate, and the deposition rate was controlled to be constant. Although the ratio of gallium and antimony was varied as shown below, the thickness of the optical recording layer formed was 1800 mm in each case. moreover,
A protective film of polystyrene is placed on this optical recording layer to a thickness of 1
000 people made a spin code.
%]」づ−
前記例1に記載のようにして製作した光記録媒体のサン
プルをスピンドル上に載置し、そして基板を静止した状
態で、半導体レーザー(波長830nm)の光をコリメ
ークレンズ及び対物レンズによりビーム径1μmに絞っ
た光学ヘッドにより照射した。%] - A sample of the optical recording medium produced as described in Example 1 above was placed on a spindle, and with the substrate stationary, light from a semiconductor laser (wavelength 830 nm) was irradiated with a collimating lens. Irradiation was performed using an optical head that focused the beam diameter to 1 μm using an objective lens.
この照射の結果、媒体のうち半導体レーザー光の集束ビ
ームを照射した部分が結晶状態に変化した。As a result of this irradiation, the portion of the medium that was irradiated with the focused beam of semiconductor laser light changed into a crystalline state.
次いで、この媒体の書き換え可能性を評価するため、パ
ワー、パルス幅を異にする2種類のレーザー光パルスを
交互に媒体に照射し、その間0.1〜0.2 m Wの
低パワーのレーザー光で反射率の変化を測定した。先ず
、情報の書き込みのため、パワー10mW、パルス幅1
00nsのパルス光を媒体に照射したところ、その照射
部分が加熱−急冷されたことの結果、照射部分の構造が
変化し、反射率が高い状態となった。この部分にさらに
消去パルス、すなわち、パワー5mW、パルス幅500
nsのパルス光、を照射したところ、その照射部分の構
造が変化し、反射率が低い状態となった。また、この反
射率は可逆的に変化し、大パワー、類パルス幅のレーザ
ー照射後に反射率が上昇し、小パワー、長パルス幅のレ
ーザー照射後に反射率が低下した。Next, in order to evaluate the rewritability of this medium, the medium was alternately irradiated with two types of laser light pulses with different powers and pulse widths. Changes in reflectance were measured using light. First, to write information, the power was 10 mW and the pulse width was 1.
When the medium was irradiated with pulsed light of 00 ns, the irradiated portion was heated and rapidly cooled, and as a result, the structure of the irradiated portion changed and the reflectance became high. Add an erase pulse to this part, i.e., power 5mW, pulse width 500
When irradiated with ns pulsed light, the structure of the irradiated portion changed and the reflectance became low. Moreover, this reflectance changed reversibly; it increased after laser irradiation with high power and similar pulse width, and decreased after laser irradiation with low power and long pulse width.
ところで、上述のような反射率の可逆的な変化、換言す
ると、情報の書き換えはガリウムとアンチモンの割合が
ある範囲にある場合に限って可能であり、その範囲外で
は反射率に差が生じず、書き換え不可能であることが判
明した。実験から、合金中に占めるガリウムの割合が原
子比で10%から70%までの時に可逆的な反射率の変
化がおこり得ることが確認された。但し、ガリウムが6
0%を越えると、媒体上にガリウムの偏析が原因だと思
われる縞模様が生じ、実用的でない。また、ガリウムが
20%未満の領域では、レーザー光照射部に、気泡が生
じたのが原因と思われる膜の盛り上がりが出来るため、
反射率の変化するレベルが不安定になり、やはり実用上
問題がある。したがって、本発明の実施においては、ガ
リウムが原子比で20〜60%であるのが特に適当であ
る。By the way, the above-mentioned reversible change in reflectance, in other words, rewriting of information, is possible only when the ratio of gallium and antimony is within a certain range, and outside that range, there is no difference in reflectance. , it turns out that it cannot be rewritten. Experiments have confirmed that a reversible change in reflectance can occur when the proportion of gallium in the alloy ranges from 10% to 70% in terms of atomic ratio. However, gallium is 6
If it exceeds 0%, a striped pattern appears on the medium, which is thought to be caused by segregation of gallium, which is not practical. In addition, in areas where gallium is less than 20%, the film bulges in the laser beam irradiation area, probably due to the formation of bubbles.
The level at which the reflectance changes becomes unstable, which again poses a practical problem. Therefore, in the practice of the present invention, gallium in an atomic ratio of 20 to 60% is particularly suitable.
次いで、媒体の記録部分及び未記録部分の結晶状態を比
較するため、透過型電子顕微鏡を用いて回折パターンを
観察した。媒体から保護膜を剥離して光記録層の状態を
回折パターンから観察したところ、未記録部分(レーザ
ー光未照射部分)では非晶質膜に特有のハローパターン
が認められた。Next, in order to compare the crystal states of the recorded and unrecorded portions of the medium, the diffraction patterns were observed using a transmission electron microscope. When the protective film was peeled off from the medium and the state of the optical recording layer was observed from a diffraction pattern, a halo pattern characteristic of an amorphous film was observed in the unrecorded portion (the portion not irradiated with laser light).
一方、記録部分(レーザー光照射部分)では、高反射率
状態、低反射率状態ともに結晶により回折されたスポッ
トが出来、いずれの状態も結晶状態にあることが確認さ
れた。On the other hand, in the recorded area (laser beam irradiated area), spots were formed that were diffracted by the crystal in both the high reflectance state and the low reflectance state, and it was confirmed that both states were in the crystal state.
例3:
本例では本発明による光記録媒体の耐久性に関して試験
した。Example 3: In this example, an optical recording medium according to the invention was tested for durability.
前記例1に記載の手法に従い下記の3種類の光記録媒体
を製作した:
サンプル1 (対照)
スライドガラスと同形のアクリル基板にGa655b3
5合金(他の2サンプルも同し)を蒸着した。この層を
熱処理せず、また、保護膜も被覆しなかった。The following three types of optical recording media were manufactured according to the method described in Example 1: Sample 1 (Control) Ga655b3 was placed on an acrylic substrate of the same shape as a slide glass.
5 alloys (same for the other two samples) were deposited. This layer was not heat treated and was not coated with a protective film.
サンプル2(本発明)
スライドガラスと同形のアクリル基板にGab5Sb+
s合金を蒸着し、そしてこの層を80℃で2時間熱処理
して結晶化させた。このサンプルでも保護膜を被覆しな
かった。Sample 2 (present invention) Gab5Sb+ on an acrylic substrate of the same shape as the slide glass
The s-alloy was deposited and the layer was heat treated at 80° C. for 2 hours to crystallize. This sample was also not coated with a protective film.
サンプル3 (本発明)
前記サンプル2を600rpmで回転させながら、この
媒体に半導体レーザ光の集束ビームを同心円状に照射し
て2 M Hzの信号を記録した。Sample 3 (Invention) While rotating Sample 2 at 600 rpm, the medium was irradiated with a concentric beam of semiconductor laser light to record a 2 MHz signal.
このサンプルでも保護膜を被覆しなかった。This sample was also not coated with a protective film.
上記したサンプル1.2及び3のそれぞれを温度70℃
及び相対湿度(RH)85%の雰囲気中で保持して経時
的な反射率変化、そしてC/N比(キャリヤ対ノイズ)
の変化を測定した。第3図及び第4図にプロットしたよ
うな結果が得られた。Each of the above samples 1.2 and 3 was heated at a temperature of 70°C.
Changes in reflectance over time by holding in an atmosphere with a relative humidity (RH) of 85%, and C/N ratio (carrier to noise)
The change in was measured. The results plotted in FIGS. 3 and 4 were obtained.
サンプル1は、第3図に曲線■で示されるように、経時
的に著しい反射率の低下を呈示した。ところが、これと
は対照的に、本発明の媒体の例であるサンプル2は、第
3図に曲線■で示されるように、はとんど経時変化がな
く、非常に安定な反射率を呈示した。実際、サンプル2
の反射率は3ヶ月後でも殆んど変化しなかった。また、
サンプル3の記録部の反射率変化も前記サンプル2のそ
れにほぼ同じであった。Sample 1 exhibited a significant decrease in reflectance over time, as shown by the curve ■ in FIG. However, in contrast to this, Sample 2, which is an example of the medium of the present invention, exhibits very stable reflectance with almost no change over time, as shown by the curve ■ in Figure 3. did. In fact, sample 2
There was almost no change in the reflectance even after 3 months. Also,
The change in reflectance of the recorded portion of Sample 3 was also almost the same as that of Sample 2.
サンプル3の記録部は、第4図に曲線■で示されるよう
なC/N比の変化を示した。すなわち、このサンプルは
、図から明らかなように、3ケ月後においてもわずかに
3dB以下のC/N比の低下を示すにすぎなかった。The recording portion of Sample 3 showed a change in C/N ratio as shown by the curve ■ in FIG. That is, as is clear from the figure, this sample showed only a slight decrease in the C/N ratio of 3 dB or less even after 3 months.
例4:
本例では本発明による光記録媒体の光記録層に金属添加
物を加えた場合の安定性の向上に関して評価した。Example 4: In this example, the improvement in stability when a metal additive was added to the optical recording layer of the optical recording medium according to the present invention was evaluated.
前記例1に記載のようにして本発明の光記録媒体を製作
した。但し、この媒体の光記録層の組成はGabsSb
3sであり、これに合金全体に対して原子比で5%、1
0%及び15%のセレン(Se)をそれぞれ含有させた
。これらの媒体のそれぞれを前記例2に記載の手法によ
り書き換え可能性に関して評価したところ、いずれの場
合にもセレン無添加の場合に較べてガリウムの偏析が起
きにくくなり、安定化に役立っていることが判った。実
際、ガリウムの多い組成であっても偏析を防止すること
ができた。第5図には、ガリウムの偏析の起きない領域
が斜線で示されている。An optical recording medium of the present invention was produced as described in Example 1 above. However, the composition of the optical recording layer of this medium is GabsSb.
3s, and in addition to this, atomic ratio of 5% and 1
It contained 0% and 15% selenium (Se), respectively. When each of these media was evaluated for rewritability using the method described in Example 2 above, it was found that in each case, segregation of gallium was less likely to occur than in the case without selenium addition, and it was useful for stabilization. It turns out. In fact, segregation could be prevented even with a gallium-rich composition. In FIG. 5, regions where gallium segregation does not occur are indicated by diagonal lines.
さらに、Seに代えて他の金属添加物、AA 。Furthermore, other metal additives, AA, in place of Se.
S i、 Zn、 Ge、、 Asを添加しても同様な
効果を得ることができた。A similar effect could be obtained by adding Si, Zn, Ge, and As.
例5:
本例では本発明による光記録媒体の光記録層に金属添加
物を加えた場合のコントラストの増大に関して評価した
。Example 5: In this example, the increase in contrast when metal additives were added to the optical recording layer of the optical recording medium according to the present invention was evaluated.
前記例1に記載のようにして本発明の光記録媒体を製作
した。但し、本例の場合、この媒体の光記録層の組成は
Gab5Sb3Sであり、これに錫(Sn)を含有させ
ないかもしくは合金全体に対して原子比で5%、10%
及び20%の錫をそれぞれ含有させた。これらの媒体の
それぞれを高反射率状態の部分と低反射率状態の部分の
コントラストに関して評価したところ、いずれの場合に
もコントラストの増大したことが判った。結果を次表に
記載する。An optical recording medium of the present invention was produced as described in Example 1 above. However, in the case of this example, the composition of the optical recording layer of this medium is Gab5Sb3S, and it does not contain tin (Sn) or contains 5% or 10% of the atomic ratio of the entire alloy.
and 20% tin, respectively. Each of these media was evaluated for contrast between the high and low reflectance states and was found to have increased contrast in each case. The results are listed in the table below.
一ジ担]O−コントラスト (% )−なお、この表の
コントラスト(%)は、高反射率状態と低反射率状態の
反射率の差を高反射率状態の反射率で割り、これに10
0を掛けたものである。Contrast (%) - The contrast (%) in this table is calculated by dividing the difference in reflectance between the high reflectance state and the low reflectance state by the reflectance of the high reflectance state, and adding 10
It is multiplied by 0.
さらに、Snに代えて他の金属添加物、As。Furthermore, other metal additives, As, may be used instead of Sn.
Pb、Znを添加しても同様な効果を得ることができた
。Similar effects could be obtained by adding Pb and Zn.
例6:
本例では本発明による光記録媒体の光記録層に金属添加
物を加えた場合の感度の増大に関して評価した。Example 6: In this example, the increase in sensitivity when metal additives were added to the optical recording layer of the optical recording medium according to the present invention was evaluated.
前記例1に記載のようにして本発明の光記録媒体を製作
した。但し、本例の場合、この媒体の光記録層の組成は
、Gabs 5b3sであり、これにテルル(Te)を
含有させないかもしくは合金全体に対して原子比で5%
、10%及び20%のテルルをそれぞれ含有させた。こ
れらの媒体のそれぞれを高反射率状態の部分と低反射率
状態の部分のコントラストに関して、但し、高パワー、
短パルス幅のレーザー光の照射パワーを変えて、評価し
たところ、テルルを添加するにつれてコントラストが増
大したことが判った。結果を第6図に示す。An optical recording medium of the present invention was produced as described in Example 1 above. However, in the case of this example, the composition of the optical recording layer of this medium is Gabs 5b3s, which does not contain tellurium (Te) or contains 5% by atomic ratio of the entire alloy.
, 10% and 20% tellurium, respectively. Each of these media is compared with respect to the contrast between parts of the high-reflectance state and parts of the low-reflectance state, with the exception of high power,
When the irradiation power of short pulse width laser light was varied and evaluated, it was found that the contrast increased as tellurium was added. The results are shown in Figure 6.
また、この第6図の結果から、テルルを添加すると感度
が増大することが自明である。なお、第6図において、
曲線aはTe 0%を、曲線すはTe5%を、曲線Cは
TelO%を、そして曲線dはTe20%を、それぞれ
表わす。Furthermore, from the results shown in FIG. 6, it is obvious that the sensitivity increases when tellurium is added. In addition, in Fig. 6,
Curve a represents Te 0%, curve A represents Te 5%, curve C represents TeIO%, and curve d represents Te 20%.
さらに、Teに代えて他の金属添加物、In、P。Furthermore, other metal additives such as In and P may be used instead of Te.
S、Se、Snを添加しても同様な効果を得ることがで
きた。Similar effects could be obtained by adding S, Se, and Sn.
本発明によれば、書き換え可能な光記録媒体の耐久性を
高めることができ、情報保持性も安定に保持することが
できる。さらに、この本発明の媒体では信号品質の劣化
は不存在である。結果として、本発明によれば、光学的
記憶装置の信頼性を著しく向上させることができる。According to the present invention, the durability of a rewritable optical recording medium can be increased, and information retention can be stably maintained. Furthermore, there is no deterioration in signal quality in the medium of the present invention. As a result, according to the present invention, the reliability of the optical storage device can be significantly improved.
第1図及び第2図は、それぞれ、本発明による光記録媒
体の好ましい構成例を示した断面図であり、
第3図は、経過時間と反射率の関係を示したグラフ、
第4図は、経過時間とC/N比の関係を示したグラフ、
第5図は、Ga−3b−Se三元合金膜におけるGa偏
析不発生領域を示した状態図、そして第6図は、照射パ
ワーとコントラストの関係を示したグラフである。
図中、1は基板、2は光記録層、そして3は保護膜であ
る。
弗1図
第20
第3図
経過時間(月)
第40
経過時間(月)
弗5図
e
蔀
第6国
照射パワー (mW)
手続補正書(自発)
昭和60年 8月−ID日
特許庁長官 宇 賀 道 部 殿
1、事件の表示
昭和60年特許願第006,671号
2、発明の名称
光記録媒体
3、補正をする者
事件との関係 特許出願人
名称 (522)富士通株式会社
4、代理人
住所 〒105東京都港区虎ノ門−丁目8番10号5、
補正の対象
明細書の「発明の詳細な説明」の欄
66 補正の内容
(1)明細書、3頁9〜10行の「以下、この状態を“
結晶状態”と呼ぶ」を「いわゆる“結晶状態”」に補正
する。
(2) 明細書、3頁14〜15行の「以下、この状
態を“非晶質状態”と呼ぶJを「いわゆる“非晶質状態
”」に補正する。
(3)明細書、7頁4行(7) r200^」を’20
00AJに補正する。
(4)明細書、7頁14行ノ「3oo久」を’3000
AJに補正する。1 and 2 are cross-sectional views showing preferred configuration examples of the optical recording medium according to the present invention, FIG. 3 is a graph showing the relationship between elapsed time and reflectance, and FIG. 4 is a graph showing the relationship between elapsed time and reflectance. , a graph showing the relationship between elapsed time and C/N ratio, FIG. 5 is a phase diagram showing the region where Ga segregation does not occur in a Ga-3b-Se ternary alloy film, and FIG. 6 is a graph showing the relationship between irradiation power and It is a graph showing the relationship of contrast. In the figure, 1 is a substrate, 2 is an optical recording layer, and 3 is a protective film. Fig. 1 Fig. 20 Fig. 3 Elapsed time (months) Fig. 40 Elapsed time (months) Fig. 5 e. Uga Michibe 1, Indication of the case 1985 Patent Application No. 006,671 2, Name of the invention Optical recording medium 3, Relationship with the person making the amendment Name of the patent applicant (522) Fujitsu Limited 4, Agent address: 5-8-10 Toranomon-chome, Minato-ku, Tokyo 105
“Detailed Description of the Invention” column 66 of the specification subject to amendment Contents of the amendment (1) Specification, page 3, lines 9-10 “Hereinafter, this state will be referred to as “
``Crystalline state'' is corrected to ``So-called ``crystalline state.'' (2) In the specification, page 3, lines 14-15, ``J, hereinafter referred to as ``amorphous state,'' is corrected to ``so-called ``amorphous state.'''' (3) Specification, page 7, line 4 (7) r200^'20
Correct to 00AJ. (4) In the specification, page 7, line 14, "3ookyu" is changed to '3000'.
Correct to AJ.
Claims (1)
率又は透過率の変化から情報の記録、再生、消去、そし
て再記録が可能である薄膜状の光記録層を有する光記録
媒体であって、前記光記録層がガリウムとアンチモンの
合金からなりかつ、その際、該合金の組成が、原子比で ガリウム10〜60%、 及び アンチモン40〜90%、 であることを特徴とする光記録媒体。 2、前記合金全体に対する原子比で0〜20%の、アル
ミニウム、シリコン、燐、硫黄、亜鉛、ゲルマニウム、
ヒ素、セレン、インジウム、錫、テルル、ビスマス及び
鉛からなる群から選ばれた1種類以上の金属をさらに前
記光記録層に有している、特許請求の範囲第1項に記載
の光記録媒体。[Claims] 1. A thin-film optical recording layer capable of recording, reproducing, erasing, and re-recording information from changes in reflectance or transmittance of the irradiated portion caused by irradiation with a light pulse. An optical recording medium, wherein the optical recording layer is made of an alloy of gallium and antimony, and the composition of the alloy is 10 to 60% gallium and 40 to 90% antimony in atomic ratio. Characteristic optical recording media. 2. Aluminum, silicon, phosphorus, sulfur, zinc, germanium in an atomic ratio of 0 to 20% with respect to the entire alloy,
The optical recording medium according to claim 1, wherein the optical recording layer further contains one or more metals selected from the group consisting of arsenic, selenium, indium, tin, tellurium, bismuth, and lead. .
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60006671A JPS61168145A (en) | 1985-01-19 | 1985-01-19 | Optical recording medium |
CN85109508A CN1008845B (en) | 1984-12-05 | 1985-12-04 | The method of optical data recording medium and recording of information and erasing |
EP85308850A EP0184452B1 (en) | 1984-12-05 | 1985-12-05 | Optical information memory medium and methods and apparatus using such a medium |
DE8585308850T DE3586816T2 (en) | 1984-12-05 | 1985-12-05 | MEDIUM FOR OPTICAL INFORMATION STORAGE AND METHOD AND DEVICE FOR THE APPLICATION OF SUCH A MEDIUM. |
KR1019850009133A KR890004263B1 (en) | 1984-12-05 | 1985-12-05 | Optical memory and its recording device and its method |
AU50796/85A AU566999B2 (en) | 1984-12-05 | 1985-12-05 | Optical information memory medium |
US07/401,499 US5058061A (en) | 1984-12-05 | 1989-08-31 | Method for recording information in an optical information memory medium including indium (in) and antimony (sb) |
US07/443,860 US4947372A (en) | 1984-12-05 | 1989-11-30 | Optical information memory medium for recording and erasing information |
US07/657,966 US5138572A (en) | 1984-12-05 | 1991-02-20 | Optical information memory medium including indium (In) and bismuth (Bi) |
US07/681,457 US5072423A (en) | 1984-12-05 | 1991-04-04 | Optical information memory medium recording and erasing information including gallium and antimony |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60006671A JPS61168145A (en) | 1985-01-19 | 1985-01-19 | Optical recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61168145A true JPS61168145A (en) | 1986-07-29 |
JPH0355892B2 JPH0355892B2 (en) | 1991-08-26 |
Family
ID=11644832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60006671A Granted JPS61168145A (en) | 1984-12-05 | 1985-01-19 | Optical recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61168145A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005051672A1 (en) | 2003-11-26 | 2005-06-09 | Ricoh Company, Ltd. | Optical recording medium |
WO2005075212A1 (en) * | 2004-02-05 | 2005-08-18 | Ricoh Company, Ltd. | Phase-change information recording medium and process for producing the same, sputtering target, method for using phase-change information recording medium and optical recorder |
-
1985
- 1985-01-19 JP JP60006671A patent/JPS61168145A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005051672A1 (en) | 2003-11-26 | 2005-06-09 | Ricoh Company, Ltd. | Optical recording medium |
US7485357B2 (en) | 2003-11-26 | 2009-02-03 | Ricoh Company, Ltd. | Optical recording medium |
WO2005075212A1 (en) * | 2004-02-05 | 2005-08-18 | Ricoh Company, Ltd. | Phase-change information recording medium and process for producing the same, sputtering target, method for using phase-change information recording medium and optical recorder |
US7438965B2 (en) | 2004-02-05 | 2008-10-21 | Ricoh Company, Ltd. | Phase-change information recording medium, manufacturing method for the same, sputtering target, method for using the phase-change information recording medium and optical recording apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH0355892B2 (en) | 1991-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2709887B2 (en) | Optical recording medium and manufacturing method thereof | |
US5194363A (en) | Optical recording medium and production process for the medium | |
JP3150267B2 (en) | Optical recording medium | |
US4889746A (en) | Process for manufacturing an optical recording medium | |
JP2999916B2 (en) | Optical recording method and optical recording medium | |
JP3268157B2 (en) | Optical recording medium | |
EP1385160B1 (en) | Phase change optical recording medium | |
JP2000229479A (en) | Optical-recording medium | |
EP0766862A1 (en) | Optical information carrier | |
JPH01277338A (en) | Optical recording medium | |
JPH10199057A (en) | Production of optical recording medium, and optical recording medium | |
JP2827202B2 (en) | Optical recording medium | |
JP2778237B2 (en) | Optical information recording medium and optical recording / erasing method | |
JP2553736B2 (en) | Optical recording medium and method of manufacturing optical recording medium | |
JP2679995B2 (en) | Thin film for information recording | |
JPH10226173A (en) | Optical recording medium and its manufacture | |
JPS61168145A (en) | Optical recording medium | |
JPH041935B2 (en) | ||
JPS61168144A (en) | Optical recording medium | |
JPH02151481A (en) | Membrane for recording data and method for recording and reproducing data | |
JP2903969B2 (en) | Optical recording medium and recording / reproducing method using the same | |
JPS62226438A (en) | Optical recording medium | |
JPS62283431A (en) | Optical recording medium | |
JP2798247B2 (en) | Optical recording medium | |
JPH0829616B2 (en) | Information recording member |