JPH03269346A - Sample evaluating method by single light source using thermal expansion oscillation - Google Patents

Sample evaluating method by single light source using thermal expansion oscillation

Info

Publication number
JPH03269346A
JPH03269346A JP7096890A JP7096890A JPH03269346A JP H03269346 A JPH03269346 A JP H03269346A JP 7096890 A JP7096890 A JP 7096890A JP 7096890 A JP7096890 A JP 7096890A JP H03269346 A JPH03269346 A JP H03269346A
Authority
JP
Japan
Prior art keywords
sample
light
frequency
thermal expansion
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7096890A
Other languages
Japanese (ja)
Other versions
JP2735348B2 (en
Inventor
Hiroyuki Takamatsu
弘行 高松
Yoshiro Nishimoto
善郎 西元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7096890A priority Critical patent/JP2735348B2/en
Priority to DE4109182A priority patent/DE4109182A1/en
Priority to KR1019910004405A priority patent/KR0168444B1/en
Publication of JPH03269346A publication Critical patent/JPH03269346A/en
Application granted granted Critical
Publication of JP2735348B2 publication Critical patent/JP2735348B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To measure the real thermal expansion oscillation of a sample without receiving the influence of disturbance by irradiating the sample with measuring light modulated at its intensity by frequency F and having oscillation frequency F1, allowing the reflected light having oscillation frequency F2 and extracting a beat wave signal of an electric signal obtained by photoelectrically converting the interference signal. CONSTITUTION:The intensity of beams projected from an argon ion laser 1 are modulated by a light modulator 2 at frequency F and the modulated beams are allowed to intersect with each other at right angles by a frequency shifter 6 to form beams (1), (2) whose frequency difference is Fb. The sample 4 is irradiated with the beams 1 (exciting light) and a mirror 8 is irradiated with the beams 2 (reference light). The reflected light of the beams 1 from the sample 4 is allowed to interfare with the reflected light of the beams 2 from the mirror 8 through a polarizer 10 and the interference light is received by a photoelectric converter 11. An output V from the converter 11 is passed through a filter 12 and a beat wave signal E1 in the interference light is extracted. The thermal expansion oscillation of the sample can be measured by measuring the amplitude and phase of the frequency component signal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は試料に周期的に強度変調した励起光を照射し、
これにより生しる試料表面の熱膨張振動を測定して試料
の欠陥等を評価する試料評価方法に関する。
[Detailed description of the invention] [Industrial application field] The present invention irradiates a sample with excitation light whose intensity is modulated periodically,
This invention relates to a sample evaluation method for measuring the resulting thermal expansion vibrations on the sample surface and evaluating defects in the sample.

〔従来技術〕[Prior art]

試料に周期的に強度変調した励起光を照射すると、試料
はこの光の吸収により発熱し、これにより熱膨張する。
When a sample is irradiated with excitation light whose intensity is modulated periodically, the sample generates heat by absorbing this light, causing thermal expansion.

照射光は周期的に強度変調しているため、発熱による試
料の温度変化は周期的となり、試料は熱膨張振動をおこ
す。これらの熱応答を計測することにより試料を評価す
る手法は光音響計測技術として知られている。
Since the intensity of the irradiated light is periodically modulated, the temperature of the sample changes periodically due to heat generation, causing thermal expansion vibration in the sample. The method of evaluating samples by measuring these thermal responses is known as photoacoustic measurement technology.

第3図はマイケルソン型レーザ光干渉法により試料の熱
膨張振動を計測する手法を示したものである(Mira
nda、^PPLID 0PTIC5Vo122.No
1B、P2882(1983))。ここに61は被測定
試料、62は試料に熱膨張振動を与えるための励起光源
であり、チゴッパ−63により励起光源62からの光を
強度変調し、試料6■に照射する。この熱膨張振動をレ
ーザ光干渉法により計測する。そのために測定用レーザ
64からの光を半透鏡65で二分し、方を、試料の熱膨
張測定点に、他方を空間的に固定した鏡66に照射させ
、これらからの反射光を干渉させ光電変換器67で受光
する。光電変換器67からの電気出力Eは E = C+ + C2cos (P(t)+φ)−(
1)ここで、C,、C,及びφは試料61や干渉計の構
成や光電変換係数等に依存する定数、λは測定用レーザ
の波長である。p (t)は励起光照射による熱膨張振
動による試料の表面変位による位相変化であり、この計
測により試料の熱膨張振動(位相φ及び振幅L)を計測
し、試料の熱弾性的性質を評価する。
Figure 3 shows a method for measuring thermal expansion vibration of a sample using Michelson laser light interferometry (Mira
nda, ^PPLID 0PTIC5Vo122. No
1B, P2882 (1983)). Here, 61 is a sample to be measured, and 62 is an excitation light source for imparting thermal expansion vibration to the sample.The intensity of the light from the excitation light source 62 is modulated by a chigopper 63, and the light is irradiated onto the sample 6. This thermal expansion vibration is measured by laser light interferometry. For this purpose, the light from the measurement laser 64 is divided into two by a semi-transparent mirror 65, one is irradiated onto the thermal expansion measurement point of the sample, and the other is irradiated onto a spatially fixed mirror 66, and the reflected light from these is interfered with to create a photoelectric generator. The light is received by a converter 67. The electrical output E from the photoelectric converter 67 is E = C+ + C2 cos (P(t) + φ) - (
1) Here, C, , C, and φ are constants depending on the sample 61, the configuration of the interferometer, the photoelectric conversion coefficient, etc., and λ is the wavelength of the measurement laser. p (t) is the phase change due to surface displacement of the sample due to thermal expansion vibration caused by excitation light irradiation, and this measurement measures the thermal expansion vibration (phase φ and amplitude L) of the sample and evaluates the thermoelastic properties of the sample. do.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような試料の熱膨張振動を計測する手法では、試
料上における励起光と測定光の位置関係が測定結果に大
きく影響を及ぼすため、各種試料間の結果比較やデータ
の定量化において、この位置合わせを厳密におこなわな
ければならない。この場合これらの光の光軸調整、照射
位置の確認が必要となり、測定前の調整に時間がかかる
。さらに光学系の複雑化、コスト高をもたらすといった
問題がある。
In the method of measuring the thermal expansion vibration of a sample as described above, the positional relationship between the excitation light and measurement light on the sample greatly affects the measurement results, so this is important when comparing results between various samples and quantifying data. Positioning must be performed precisely. In this case, it is necessary to adjust the optical axis of these lights and confirm the irradiation position, which takes time to adjust before measurement. Furthermore, there are problems in that the optical system becomes complicated and costs increase.

また上記マイケルソン型レーザ光干渉により試料の熱膨
張を計測する手法では、前記式(1)における定数C,
,C,の変化が外乱として測定精度を低下させる。
In addition, in the method of measuring the thermal expansion of a sample using the Michelson type laser beam interference, the constant C in the above equation (1),
, C, reduces measurement accuracy as a disturbance.

例えば励起光照射による試料の温度変化およびプラズマ
(電子、ホール)密度の変化(半導体試料の場合)によ
り試料の反射率が変化する場合がある。この場合、干渉
光の信号は、反射率変化に伴う外乱信号を含んでいるこ
とになり、干渉光の信号から真の熱膨張信号を計測でき
ない。
For example, the reflectance of the sample may change due to a change in temperature of the sample due to excitation light irradiation and a change in plasma (electron, hole) density (in the case of a semiconductor sample). In this case, the interference light signal includes a disturbance signal due to a change in reflectance, and the true thermal expansion signal cannot be measured from the interference light signal.

従って本発明が目的とするところは、励起光自身が測定
光を兼ねることにより、両光の光軸合わせ等の手間を不
要として光学系の簡素化、コストの低下を図ると共に、
試料の温度変化、プラズマ密度の変化等による試料の反
射率の変化といった外乱の影響を受けず、試料の真の熱
膨張振動を計測することのできる熱膨張振動による試料
評価方法を提供することである。
Therefore, an object of the present invention is to simplify the optical system and reduce costs by making the excitation light itself double as the measurement light, eliminating the need for aligning the optical axes of both lights, etc.
By providing a sample evaluation method using thermal expansion vibration that can measure the true thermal expansion vibration of a sample without being affected by disturbances such as changes in sample reflectance due to changes in sample temperature or plasma density. be.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明は、試料に周期的(周
波数:F)に強度変調した励起光を照射し、これによっ
て生しる試料表面の熱膨張振動を測定して試料を評価す
る方法において、周波数Fで強度変調した、振動周波数
F1なる測定光(ビーム1)を照射し、その反射光と振
動周波数F2なる参照光(ビーム2)とを干渉させ、上
記干渉光を光電変換した電気信号Eを得た後、上記電気
信号Eのビート波信号El  (ビート周波数’Fb(
Fb =FI −F2 ) )を取り出し、上記ビート
波信号E1を2値化処理して2値信号E2に変換し、上
記2値信号E2から周波数F−FbあるいはF+Fbの
成分を抽出し、この成分の振幅及び位相により試料を評
価することを特徴とする熱膨張振動を用いた単一光源に
よる試料評価方法として構成されている。
In order to achieve the above object, the present invention provides a method for evaluating a sample by irradiating the sample with excitation light whose intensity is modulated periodically (frequency: F) and measuring the resulting thermal expansion vibration on the sample surface. , a measurement light (beam 1) with an oscillation frequency F1 whose intensity is modulated at a frequency F is irradiated, and the reflected light is caused to interfere with a reference light (beam 2) with an oscillation frequency F2, and the interference light is photoelectrically converted to generate electricity. After obtaining the signal E, beat wave signal El (beat frequency 'Fb(
Fb = FI - F2 ) ) is extracted, the beat wave signal E1 is binarized and converted into a binary signal E2, the frequency F-Fb or F+Fb component is extracted from the binary signal E2, and this component is It is configured as a sample evaluation method using a single light source using thermal expansion vibration, which is characterized by evaluating the sample based on the amplitude and phase of the oscillation.

〔実施例〕〔Example〕

続いて第1図、第2図を参照して本発明を具体化した実
施例につき説明する。
Next, an embodiment embodying the present invention will be described with reference to FIGS. 1 and 2.

ここに第1図は一実施例装置のブロック図、第2図は試
料の内部欠陥を検出する手法の概念図である。
Here, FIG. 1 is a block diagram of an embodiment of the apparatus, and FIG. 2 is a conceptual diagram of a method for detecting internal defects in a sample.

尚、以下の実施例は本発明を具体化した一例にすぎず、
本発明の技術的範囲を限定する性格のものではない。
It should be noted that the following examples are merely examples of embodying the present invention.
It is not intended to limit the technical scope of the present invention.

第1図に示すように、試料4に熱膨張振動をあたえると
共にこれを計測するレーザとしてアルゴンイオンレーザ
1を用い、この出射光を光変調器2で周波数Fで強度変
調し、この光を周波数シフクロにより互いに直交し周波
数差がFl、なるビーム1.ビーム2を生成する。これ
らの光を偏光ビームスプリッタ7により2つに分け、ビ
ームl(励起光)をレンズ3で集光し、試料4に照射し
、ビーム2(参照光)をごラー8に照射する、ビーム1
の試料4からの反射光は、2波長板9通過後、偏光面が
90度変化するため、偏光ビームスプリンタ7で、今度
は反射する、同様にビーム2のミラー8からの反射光は
偏光ビームスプリッタ7を透過する。これらのレーザ光
は直交しているため偏光板10を透過さすことにより、
これらのビームを干渉させ、この干渉光を光電変換器1
1で受光する。
As shown in Fig. 1, an argon ion laser 1 is used as a laser to apply and measure thermal expansion vibration to a sample 4, and an optical modulator 2 modulates the intensity of this emitted light at a frequency F. Beams 1. which are orthogonal to each other due to shift rotation and have a frequency difference of Fl. Generate beam 2. These lights are split into two by a polarizing beam splitter 7, beam 1 (excitation light) is focused by a lens 3 and irradiated onto a sample 4, and beam 2 (reference light) is irradiated onto a sample 8.
After passing through the two-wavelength plate 9, the reflected light from the sample 4 changes its polarization plane by 90 degrees, so it is reflected by the polarizing beam splinter 7.Similarly, the reflected light from the mirror 8 of the beam 2 becomes a polarized beam. It passes through the splitter 7. Since these laser beams are perpendicular to each other, by passing through the polarizing plate 10,
These beams are made to interfere, and this interference light is sent to the photoelectric converter 1.
Receives light at 1.

光電変換器11からの出力Vをフィルタ12を通して干
渉光におけるビート波信号E1を取り出す。E、はU(
t)を変調信号として El =AU (t)cos (2πFl、t+P (t)+φ)・・・(2)(U 
(t ) = 1 +m5in(2πFt) m:変調
率)で与えられる。ここでAは試料、干渉光学系等に依
存する値、P(t)は試料の膨張振動によるビーム1の
位相変化、φはP(t)が零のときのビーム1、ビーム
2間の光路長差による位相差である。
The output V from the photoelectric converter 11 is passed through a filter 12 to extract a beat wave signal E1 in interference light. E, is U(
t) as a modulation signal, El = AU (t) cos (2πFl, t+P (t)+φ)...(2)(U
It is given by (t) = 1 + m5in (2πFt) m: modulation rate). Here, A is a value that depends on the sample, interference optical system, etc., P(t) is the phase change of beam 1 due to expansion vibration of the sample, and φ is the optical path between beam 1 and beam 2 when P(t) is zero. This is a phase difference due to the length difference.

試料の振動の振幅をし、位相をPとするとP (t)は 4π P(t)=−Lsin(2πFt+P)−(3)λ で与えられる。ここでL<<λの時E、の周波数FI、
−Fをもつ信号成分は 2π V−−AL(o5(2π(FI、−F)t−P+φ)・
 (4)λ となり、この周波数成分の信号の振幅、位相の計測より
試料の熱膨張振動の計測が可能である。しかし前述のよ
うに試料の温度変化等に伴って試料の反射率が変動する
ことによりAが変動する場合、これがノイズとなり正確
に熱膨張振動を計測できない。そこで本実施例では、E
;の値を零レベル(しきい値)と比較し、Elが零レベ
ル以上ならE、=V、E、が零レベル以下ならE、 −
−Vとなるようにコンパレータ13で2値化による波形
変換を行う。この波形変換後の信号E、はv E2−□ cos(2πFI、t +P(t)+φ)π −F(高調波成分)・・・(5) となり、Aを含まないため、正確に熱膨張振動(振幅り
1位相P)を計測できる。
Letting the amplitude of vibration of the sample be P and the phase P (t), P (t) is given by 4π P(t)=−Lsin(2πFt+P)−(3)λ. Here, when L<<λ, the frequency FI of E,
The signal component with −F is 2π V−−AL(o5(2π(FI,−F)t−P+φ)・
(4) λ, and the thermal expansion vibration of the sample can be measured by measuring the amplitude and phase of the signal of this frequency component. However, as described above, if A changes due to changes in the reflectance of the sample due to changes in the temperature of the sample, etc., this becomes noise, making it impossible to accurately measure thermal expansion vibration. Therefore, in this embodiment, E
Compare the value of ; with the zero level (threshold), and if El is above the zero level, then E, = V, and if E is below the zero level, then E, −
The comparator 13 performs waveform conversion by binarization so that the voltage becomes -V. The signal E after this waveform conversion becomes v E2 - □ cos (2πFI, t + P (t) + φ) π - F (harmonic component)... (5), and does not include A, so it is accurately thermally expanded. Vibration (amplitude - 1 phase P) can be measured.

E2から周波数F+、−Fをもつ信号成分を抽出するた
めに、周波数解析器、FMチューナー等の利用が考えら
れるが、信号レヘルが小さいときには、同期検波方式を
用いるのが適している。この場合、同期検波において、
参照信号として周波数FI、−Fをもつ信号で同期検波
をおこなえばよい。
In order to extract signal components having frequencies F+ and -F from E2, it is possible to use a frequency analyzer, an FM tuner, etc., but when the signal level is small, it is suitable to use a synchronous detection method. In this case, in synchronous detection,
It is sufficient to perform synchronous detection using signals having frequencies FI and -F as reference signals.

しかし、一般に光学干渉形は空気の揺らぎや外乱振動等
の影響を受は易くこれがノイズとなり、(2)式、 (
5)式における位相φに時間的変動をもたらす。φの変
動は、■の変動となり、安定に熱膨張振動を計測できな
い。
However, in general, optical interference types are easily affected by air fluctuations and external vibrations, which result in noise, and the equation (2), (
5) brings about temporal fluctuations in the phase φ in the equation. Fluctuations in φ result in fluctuations in ■, making it impossible to stably measure thermal expansion vibration.

そこで本実施例では、まずE2に変調信号(M−sin
(2φFt+q))を乗算器14で上算する。
Therefore, in this embodiment, first, a modulation signal (M-sin
(2φFt+q)) is multiplied by the multiplier 14.

ここにMおよびqは既知の定数。乗算後の信号V、nは Vm  −Rcos(2’yr  (Fb +F)t+
φ+q)+Rcos(2π(FI、−F) を十φ+q
)−(7)(R=2MV/π) になる。次に■□をフィルター5に通し、上式の右辺に
おける第2項の信号■、を取り出す。このVrを参照信
号として同期検波を行う。Vrには位相φを含んでいる
ため■、を参照信号として同期検波16を行えば、■に
おける位相φの影響は相殺される。同期検査波出力■。
Here M and q are known constants. The signal V, n after multiplication is Vm - Rcos (2'yr (Fb +F)t+
φ+q)+Rcos(2π(FI, -F) as 1φ+q
)−(7)(R=2MV/π). Next, ■□ is passed through the filter 5, and the second term signal ■ on the right side of the above equation is extracted. Synchronous detection is performed using this Vr as a reference signal. Since Vr includes the phase φ, if the synchronous detection 16 is performed using ① as a reference signal, the influence of the phase φ in ① is canceled out. Synchronous test wave output■.

は v Vo−−Lcos(P +q ) −(8)λ となり、位相φはなくなり安定にV。を計測でき、これ
より熱膨張振動を高精度で計測できる。
becomes vVo−−Lcos(P+q)−(8)λ, and the phase φ disappears and V becomes stable. can be measured, and from this it is possible to measure thermal expansion vibration with high precision.

なお上記において、周波数FI、−Fの抽出について記
したが、E2において周波数FI)+Fの成分にも熱膨
張振動の情報が含まれている。従って(7)式の■1の
右辺の第1項の信号を参照信号として用いても熱膨張振
動を計測できる。
In the above, extraction of the frequencies FI and -F has been described, but information on thermal expansion vibration is also included in the component of the frequency FI)+F in E2. Therefore, thermal expansion vibration can also be measured using the signal of the first term on the right side of (1) of equation (7) as a reference signal.

第2図に試料の内部欠陥の検出方法を示す。即ち、同図
は試料の表面に熱膨張信号を誘起するレーザ光を照射さ
せ、熱膨張振動による歪波を試料の背面あるいは照射点
から離れた地点で検出する構成を示している。この場合
、検出される振動には、弾性波伝搬中の情報(弾性的特
性)を含んでおり、試料内部の欠陥、表面クラックの等
が検出できる。
Figure 2 shows a method for detecting internal defects in a sample. That is, the figure shows a configuration in which the surface of the sample is irradiated with a laser beam that induces a thermal expansion signal, and strain waves caused by thermal expansion vibration are detected at the back of the sample or at a point away from the irradiation point. In this case, the detected vibrations include information (elastic characteristics) during the propagation of elastic waves, and defects, surface cracks, etc. inside the sample can be detected.

〔発明の効果〕〔Effect of the invention〕

本発明は以上述べたように、試料に周期的(周波数二F
)に強度変調した励起光を照射し、これによって生しる
試料表面の熱膨張振動を測定して試料を評価する方法に
おいて、周波数Fで強度変調した、振動周波数F、なる
測定光(ビーム1)を照射し、その反射光と振動周波数
F2なる参照光(ビーム2)とを干渉させ、上記干渉光
を光電変換した電気信号Eを得た後、上記電気信号Eの
ビート波信号E菫 (ビート周波数:Fb(FI、=F
I  F2))を取り出し、上記ビート波信号Eを2値
化処理して2値信号E2に変換し、上記2値信号E2か
ら周波数F−FI、あるいはFIFI。
As described above, the present invention periodically (frequency 2F)
) is irradiated with intensity-modulated excitation light and the resulting thermal expansion vibration on the sample surface is measured to evaluate the sample. In this method, the measurement light (beam 1 ), the reflected light interferes with a reference light (beam 2) having a vibration frequency F2, and an electrical signal E is obtained by photoelectrically converting the interference light, and then a beat wave signal E violet of the electrical signal E ( Beat frequency: Fb (FI, = F
IF2)), the beat wave signal E is binarized and converted into a binary signal E2, and the frequency F-FI or FIFI is obtained from the binary signal E2.

の成分を抽出し、この成分の振幅及び位相により試料を
評価することを特徴とする熱膨張振動を用いた単一光源
による試料評価方法であるから、励起光と測定光が同し
であるから従来装置のように両光軸を合わせる手間が省
かれる。また試料の温度変化又はプラズマ密度の変化等
に伴う反射率の変化により生しる測定光の振幅変化の影
響がキャンセルされるので、試料の真の熱膨張振動を計
測することができる。
This is a sample evaluation method using a single light source using thermal expansion vibration, which extracts the component and evaluates the sample based on the amplitude and phase of this component. This eliminates the need to align both optical axes as in conventional devices. Furthermore, since the influence of changes in the amplitude of the measurement light caused by changes in reflectance due to changes in the temperature of the sample or changes in plasma density, etc., is canceled, the true thermal expansion vibration of the sample can be measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る評価方法の実施に使用
する装置を示すブロック図、第2図は試料の内部欠陥の
検出方法を示す概念図、第3図は従来の熱膨張振動を計
測する手法の概念図である。 〔符号の説明〕 1・・・励起レーザ 2・・・ダイクロインク旦う
Fig. 1 is a block diagram showing an apparatus used to implement the evaluation method according to an embodiment of the present invention, Fig. 2 is a conceptual diagram showing a method for detecting internal defects in a sample, and Fig. 3 is a conventional thermal expansion vibration FIG. 2 is a conceptual diagram of a method for measuring . [Explanation of symbols] 1...Excitation laser 2...Dichroic ink pump

Claims (1)

【特許請求の範囲】 1、試料に周期的に強度変調した励起光を照射し、これ
によって生じる試料表面の熱膨張振動を測定して試料を
評価する方法において、 周波数Fで強度変調した、振動周波数F_1なる測定光
(ビーム1)を照射し、その反射光と振動周波数F_2
なる参照光(ビーム2)とを干渉させ上記干渉光を光電
変換した電気信号Eを得た後、上記電気信号Eのビート
波信号E_1(ビート周波数:F_b(F_b=F_1
−F_2))を取り出し、上記ビート波信号E_1を2
値化処理して2値信号E_2に変換し、 上記2値信号E_2から周波数F−F_bあるいはF+
F_bの成分を抽出し、この成分の振幅及び位相により
試料を評価することを特徴とする熱膨張振動を用いた単
一光源による試料評価方法。
[Claims] 1. In a method of evaluating a sample by irradiating the sample with excitation light whose intensity is modulated periodically and measuring the thermal expansion vibration of the sample surface generated thereby, the vibration is intensity-modulated at a frequency F. The measurement light (beam 1) with frequency F_1 is irradiated, and the reflected light and vibration frequency F_2
After obtaining the electrical signal E by photoelectrically converting the interference light by interfering with the reference light (beam 2), the electrical signal E is converted into a beat wave signal E_1 (beat frequency: F_b (F_b=F_1
-F_2)) and convert the beat wave signal E_1 into 2
Value processing is performed to convert it into a binary signal E_2, and the frequency F−F_b or F+ is calculated from the binary signal E_2.
A sample evaluation method using a single light source using thermal expansion vibration, characterized in that a component of F_b is extracted and a sample is evaluated based on the amplitude and phase of this component.
JP7096890A 1990-03-20 1990-03-20 Sample evaluation method with a single light source using thermal expansion vibration Expired - Lifetime JP2735348B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7096890A JP2735348B2 (en) 1990-03-20 1990-03-20 Sample evaluation method with a single light source using thermal expansion vibration
DE4109182A DE4109182A1 (en) 1990-03-20 1991-03-20 Sample evaluation system using thermal expansion deformation - using optical interference between reflected stimulation beam and reference beam with different frequency
KR1019910004405A KR0168444B1 (en) 1990-03-20 1991-03-20 Sample evaluating method by using thermal expansion displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7096890A JP2735348B2 (en) 1990-03-20 1990-03-20 Sample evaluation method with a single light source using thermal expansion vibration

Publications (2)

Publication Number Publication Date
JPH03269346A true JPH03269346A (en) 1991-11-29
JP2735348B2 JP2735348B2 (en) 1998-04-02

Family

ID=13446834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7096890A Expired - Lifetime JP2735348B2 (en) 1990-03-20 1990-03-20 Sample evaluation method with a single light source using thermal expansion vibration

Country Status (1)

Country Link
JP (1) JP2735348B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201619A (en) * 1993-01-08 1994-07-22 Kobe Steel Ltd Method and apparatus for evaluating thermophysical properties of sample
CN104198437A (en) * 2014-08-25 2014-12-10 武汉嘉仪通科技有限公司 Device and method for measuring coefficients of thermal expansion of materials by virtue of laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201619A (en) * 1993-01-08 1994-07-22 Kobe Steel Ltd Method and apparatus for evaluating thermophysical properties of sample
CN104198437A (en) * 2014-08-25 2014-12-10 武汉嘉仪通科技有限公司 Device and method for measuring coefficients of thermal expansion of materials by virtue of laser

Also Published As

Publication number Publication date
JP2735348B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
CA2007190C (en) Laser optical ultrasound detection
KR0163627B1 (en) Evaluation of sample by measurement of thermo-optical displacement
US4480916A (en) Phase-modulated polarizing interferometer
US5298970A (en) Sample evaluating method by using thermal expansion displacement
CN101329162A (en) Difference phase demodulation interference system
JP3029757B2 (en) Sample evaluation method by photothermal displacement measurement
EP1455170A1 (en) Apparatus and method for measuring characteristics of light
JPH03269346A (en) Sample evaluating method by single light source using thermal expansion oscillation
US6295131B1 (en) Interference detecting system for use in interferometer
US6952261B2 (en) System for performing ellipsometry using an auxiliary pump beam to reduce effective measurement spot size
KR0168444B1 (en) Sample evaluating method by using thermal expansion displacement
JP2735368B2 (en) Sample evaluation method using thermal expansion vibration
JPH03269345A (en) Sample evaluating method using thermal expansion oscillation
JP2923779B1 (en) Optical interference device for ultrasonic detection
JPH05288721A (en) Evaluating method of sample by photothermal displacement measurement
JPH04273048A (en) Sample evaluation using thermal expansion vibration
JPH06265496A (en) Defective evaluation method of sample
JP2672758B2 (en) Sample thermoelasticity evaluation device
JPH0451772B2 (en)
JPS60224044A (en) Surface inspecting device by light heterodyne interference method
JPH0625736B2 (en) Electron density measuring device
JP4080840B2 (en) Thin film evaluation equipment
JPH06167304A (en) Displacement sensor
JPH0339563B2 (en)
JP2001343222A (en) Method and apparatus for measuring three-dimensional shape