JPH03269345A - Sample evaluating method using thermal expansion oscillation - Google Patents

Sample evaluating method using thermal expansion oscillation

Info

Publication number
JPH03269345A
JPH03269345A JP7096790A JP7096790A JPH03269345A JP H03269345 A JPH03269345 A JP H03269345A JP 7096790 A JP7096790 A JP 7096790A JP 7096790 A JP7096790 A JP 7096790A JP H03269345 A JPH03269345 A JP H03269345A
Authority
JP
Japan
Prior art keywords
sample
light
thermal expansion
frequency
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7096790A
Other languages
Japanese (ja)
Other versions
JPH0617864B2 (en
Inventor
Hiroyuki Takamatsu
弘行 高松
Yoshiro Nishimoto
善郎 西元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2070967A priority Critical patent/JPH0617864B2/en
Priority to DE4109182A priority patent/DE4109182A1/en
Priority to KR1019910004405A priority patent/KR0168444B1/en
Publication of JPH03269345A publication Critical patent/JPH03269345A/en
Priority to US07/955,241 priority patent/US5298970A/en
Publication of JPH0617864B2 publication Critical patent/JPH0617864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure the real thermal expansion oscillation of a sample without receiving the influence of disturbance by irradiating the surface position of a sample with measuring light having oscillation frequency F1, allowing the reflected light thereof to interfare with reference light having oscillation frequency F2 and extracting a beat wave signal of an electric signal obtained by photoelectrically converting the interference light. CONSTITUTION:The intensity of exciting light is modulated by frequency F in accordance with a change in an injection current to a semiconductor laser 1 and the sample 4 is irradiated with the modulated light. The sample 4 is periodically heated by the periodical light irradiation and generates thermal expansion oscillation. Beams projected from a He-Ne laser 5 are allowed to intersect with each other at right angles by a frequency shifter 6 and measuring beams (1) and reference beams (2) whose frequency difference is Fb are formed. The sample 4 is irradiated with the beams (1) and a mirror 8 is irradiated with the beams (2). An output a beat wave signal E1 in the interference light is extracted. The thermal expansion oscillation of the sample can be measured by measuring the amplitude and phase of the frequency component signal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は試料に周期的に強度変調した励起光を照射し、
これにより生じる試料表面の熱膨張振動を測定して試料
の欠陥等を評価する試料評価方法に関する。
[Detailed description of the invention] [Industrial application field] The present invention irradiates a sample with excitation light whose intensity is modulated periodically,
The present invention relates to a sample evaluation method for evaluating defects in the sample by measuring thermal expansion vibrations on the sample surface caused by this.

〔従来技術〕[Prior art]

試料に周期的に強度変調した励起光を照射すると、試料
はこの光の吸収により発熱し、これにより熱膨張する。
When a sample is irradiated with excitation light whose intensity is modulated periodically, the sample generates heat by absorbing this light, causing thermal expansion.

照射光は周期的に強度変調しているため、発熱による試
料の温度変化は周期的となり、試料は熱膨張振動をおこ
す。これらの熱応答を計測することにより試料を評価す
る手法は光音響計測技術として知られている。
Since the intensity of the irradiated light is periodically modulated, the temperature of the sample changes periodically due to heat generation, causing thermal expansion vibration in the sample. The method of evaluating samples by measuring these thermal responses is known as photoacoustic measurement technology.

第3図はマイケルソン型レーザ光干渉法により試料の□
熱膨張振動を計測する手法を示したものである(旧ra
nda、へPPLID 0PTIC3Vo122.No
18.P2882(1983))。ここに61は被測定
試料、62は試料に熱膨張振動を与えるための励起光源
であり、チョッパー63により励起光源62からの光を
強度変調し、試料61に照射する。この熱膨張振動をレ
ーザ光干渉法により計測する。そのために測定用レーザ
64からの光を半透鏡65で二分し、方を、試料の熱膨
張測定点に、他方を空間的に固定した鏡66に照射させ
、これらからの反射光を干渉させ光電変換器67で受光
する。光電変換器67からの電気出力Eは E = C1+C2(1)s(P (t)+φ)・ (
1)ここで、C,、C,及びφは試料61や干渉計の構
成や光電変換係数等に依存する定数、λは測定用レーザ
の波長である。p (t)は励起光照射による熱膨張振
動による試料の表面変位による位相変化であり、この計
測により試料の熱膨張振動(位相φ及び振幅L)を計測
し、試料の熱弾性的性質を評価する。第4図は反射率計
測法に基づく手法である(特開昭6l−2046)。励
起レーザ30からの光を変調器32に周期的に強度変調
し試料22に照射し、試料に周期的温度変化を与える。
Figure 3 shows the □ of the sample using Michelson laser light interferometry.
This shows a method for measuring thermal expansion vibration (formerly RA
nda, to PPLID 0PTIC3Vo122. No
18. P2882 (1983)). Here, 61 is a sample to be measured, 62 is an excitation light source for imparting thermal expansion vibration to the sample, and a chopper 63 modulates the intensity of light from the excitation light source 62, and irradiates the sample 61 with the light. This thermal expansion vibration is measured by laser light interferometry. For this purpose, the light from the measurement laser 64 is divided into two by a semi-transparent mirror 65, one is irradiated onto the thermal expansion measurement point of the sample, and the other is irradiated onto a spatially fixed mirror 66, and the reflected light from these is interfered with to create a photoelectric generator. The light is received by a converter 67. The electrical output E from the photoelectric converter 67 is E=C1+C2(1)s(P(t)+φ)・(
1) Here, C, , C, and φ are constants depending on the sample 61, the configuration of the interferometer, the photoelectric conversion coefficient, etc., and λ is the wavelength of the measurement laser. p (t) is the phase change due to surface displacement of the sample due to thermal expansion vibration caused by excitation light irradiation, and this measurement measures the thermal expansion vibration (phase φ and amplitude L) of the sample and evaluates the thermoelastic properties of the sample. do. FIG. 4 shows a method based on reflectance measurement (Japanese Patent Laid-Open No. 61-2046). The light from the excitation laser 30 is periodically intensity-modulated by a modulator 32 and irradiated onto the sample 22, giving periodic temperature changes to the sample.

この温度変化が試料に光反射率の変化をもたらす。This temperature change causes a change in the light reflectance of the sample.

この反射率の変化を検出するために測定用レーザ50を
、試料の温度変化計測点(本図においては励起レーザ照
射点と同位W)にミラー36を通して照射し、その反射
光を光検出器56で検出する。
In order to detect this change in reflectance, a measuring laser 50 is irradiated through a mirror 36 to a temperature change measurement point of the sample (in this figure, the same position W as the excitation laser irradiation point), and the reflected light is detected by a photodetector 56. Detect with.

この出力から信号処理回路58により、反射率の変化を
求める。
From this output, a change in reflectance is determined by the signal processing circuit 58.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前者のマイケルソン型レーザ光干渉により試料の熱膨張
を計測する手法では、前記式(1)における定数C,,
C,の変化が外乱として測定精度を低下させる。
In the former method of measuring the thermal expansion of a sample using Michelson laser beam interference, the constants C, ,
Changes in C act as disturbances and reduce measurement accuracy.

例えば励起光照射による試料の温度変化およびプラズマ
(電子、ホール)密度の変化(半導体試料の場合)によ
り試料の反射率が変化する場合がある。この場合、干渉
光の信号は、反射率変化に伴う外乱信号を含んでいるこ
とになり、干渉光の信号から真の熱膨張信号を計測でき
ない。
For example, the reflectance of the sample may change due to a change in temperature of the sample due to excitation light irradiation and a change in plasma (electron, hole) density (in the case of a semiconductor sample). In this case, the interference light signal includes a disturbance signal due to a change in reflectance, and the true thermal expansion signal cannot be measured from the interference light signal.

また、後者の反射率計測法に基づく手法は、試料の温度
変化、プラズマ密度変化の計測であるため、試料の熱膨
張率等の熱弾性的性質を得ることができない。また熱拡
散長内の情報しか獲られないため、試料深部を評価でき
ないという欠点がある。更に基本的に温度変化にたいし
て、反射率が変化する試料しか適用できない。
Furthermore, since the latter method based on reflectance measurement measures temperature changes and plasma density changes in a sample, it is not possible to obtain thermoelastic properties such as the coefficient of thermal expansion of the sample. Another disadvantage is that it cannot evaluate the deep part of the sample because it can only capture information within the thermal diffusion length. Furthermore, basically only samples whose reflectance changes in response to temperature changes can be applied.

従って本発明が目的とするところは、試料の温度変化、
プラズマ密度の変化等による試料の反射率の変化といっ
た外乱の影響を受けず、試料の真の熱膨張振動を計測す
ることのできる熱膨張振動による試料評価方法を提供す
ることである。
Therefore, the purpose of the present invention is to reduce the temperature change of the sample.
It is an object of the present invention to provide a sample evaluation method using thermal expansion vibration that can measure the true thermal expansion vibration of a sample without being affected by disturbances such as changes in reflectance of the sample due to changes in plasma density or the like.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明は、試料に周期的(周
波数:F)に強度変調した励起光を照射し、これによっ
て生じる試料表面の熱膨張振動を測定して試料を評価す
る方法において、前記励起光照射によって熱膨張振動を
生じる試料表面位置に、振動周波数F、なる測定光(ビ
ーム1)を照射し、その反射光と振動周波数F2なる参
照光(ビーム2)を干渉させ、上記干渉光を光電変換し
た電気信号Eを得た後、上記電気信号Eのビート波信号
E+  (ビート周波数: Fb  (Fb −F+F
2))を取り出し、上記ビート波信号E、を2値化処理
して2値信号E2に変換し、上記2値信号E2から周波
数F−FI、あるいはF+Fbの成分を抽出し、この成
分の振幅及び位相により試料を評価することを特徴とす
る熱膨張振動を用いた試料評価方法として構成されてい
る。
In order to achieve the above object, the present invention provides a method for evaluating a sample by irradiating the sample with periodically (frequency: F) intensity-modulated excitation light and measuring the thermal expansion vibrations of the sample surface generated thereby. Measurement light (beam 1) with a vibration frequency F is irradiated onto the sample surface position where thermal expansion vibration occurs due to the excitation light irradiation, and the reflected light is caused to interfere with a reference light (beam 2) with a vibration frequency F2. After obtaining the electric signal E obtained by photoelectrically converting light, the beat wave signal E+ (beat frequency: Fb (Fb −F+F
2)), binarize the beat wave signal E, convert it into a binary signal E2, extract the frequency F−FI or F+Fb component from the binary signal E2, and calculate the amplitude of this component. The present invention is configured as a sample evaluation method using thermal expansion vibration, which is characterized by evaluating the sample based on phase and phase.

〔実施例〕〔Example〕

続いて第1図、第2図を参照して本発明を具体化した実
施例につき説明する。
Next, an embodiment embodying the present invention will be described with reference to FIGS. 1 and 2.

ここに第1図は一実施例装置のブロック図、第2図は試
料の内部欠陥を検出する手法の概念図である。
Here, FIG. 1 is a block diagram of an embodiment of the apparatus, and FIG. 2 is a conceptual diagram of a method for detecting internal defects in a sample.

尚、以下の実施例は本発明を具体化した一例にすぎず、
本発明の技術的範囲を限定する性格のものではない。
It should be noted that the following examples are merely examples of embodying the present invention.
It is not intended to limit the technical scope of the present invention.

第1図に示す如く、試料4に熱膨張振動をあたえる励起
レーザとして半導体レーザ1が用いられる。同レーザ1
への注入電流の変化により、励起光を周波数Fで強度変
調し、グイクロイックミラー2で反射させ、レンズ3で
集光し、試料4に照射する。
As shown in FIG. 1, a semiconductor laser 1 is used as an excitation laser that applies thermal expansion vibration to a sample 4. Same laser 1
The intensity of the excitation light is modulated at a frequency F by changing the current injected into the excitation light, reflected by the gicroic mirror 2, focused by the lens 3, and irradiated onto the sample 4.

試料4は、この周期的な光照射により、周期的な加熱を
うけ、熱膨張振動をおこす。この熱膨張振動を次に述べ
るレーザ光干渉法で計測する。
The sample 4 is periodically heated by this periodic light irradiation, causing thermal expansion vibration. This thermal expansion vibration is measured using the laser beam interferometry described below.

測定用レーザとして、He−Neレーザ5が用いられる
。この出射光を周波数シフクーロにより互いに直交し周
波数差がFI、なる測定光(ビーム1)、参照光(ビー
ム2)を生成する。これらの光を偏光ビームスプリッタ
フにより2つに分け、ビーム1をダイクロイックミラー
2を透過させ、レンズ3で集光し、試料4に照射し、ビ
ーム2をミラー8に照射する。ビーム1の試料4からの
反射光は、×波長板9を通過後、偏光面が90度変化す
るため、偏光ビームスプリンタ7で、今度は反射する。
A He-Ne laser 5 is used as the measurement laser. These emitted lights are made orthogonal to each other by a frequency shift coefficient to generate measurement light (beam 1) and reference light (beam 2) with a frequency difference of FI. These lights are split into two by a polarizing beam splitter, beam 1 is transmitted through dichroic mirror 2, focused by lens 3, and irradiated onto sample 4, and beam 2 is irradiated onto mirror 8. After the reflected light from the sample 4 of the beam 1 passes through the × wavelength plate 9, the plane of polarization changes by 90 degrees, so that it is now reflected by the polarizing beam splinter 7.

同様にビーム2のミラー8からの反射光は偏光ビームス
プリッタ7を透過する。これらのレーザ光は直交してい
るため偏光板10を透過さすことにより、これらのビー
ムを干渉させ、この干渉光を光電変換器11で受光する
Similarly, the beam 2 reflected from the mirror 8 passes through the polarizing beam splitter 7. Since these laser beams are perpendicular to each other, they are transmitted through the polarizing plate 10 to interfere with each other, and this interference light is received by the photoelectric converter 11.

光電変換器11からの出力Vをフィルタ12を通し干渉
光におけるビート波信号Elを取り出す。
The output V from the photoelectric converter 11 is passed through a filter 12 to extract a beat wave signal El in interference light.

E、は E+ =ACO9(2πFI、t 十P(t)+φ)・
 (2)で与えられる。ここでAは試料、干渉光学系等
に依存する値((1)式のC2に相当)、P(t)は試
料の熱膨張振動によるビーム1の位相変化、φはp(t
)が零のときのビーム1、ビーム2間の光路長差による
位相差である。試料の振動の振幅をし、位相をPとする
とP(t)は 4π p(t)は−Lsin (2πFt+P)−(3)λ で与えられる。ここでL<<λのときE、の周波数Fb
 −Fをもつ信号成分■は 2π V−−ALcos (2π(Fb−F)t−P+φ) 
−(4)λ となり、この周波数成分の信号の振幅し、位相Pの計測
により試料の熱膨張振動の計測が可能である。しかし前
述のようにAは試料の温度変化、プラズマ密度変化に伴
って変化する試料の反射率に影響されるので、これが変
動する場合、ノイズとなり正確に熱膨張振動を計測でき
ない。
E, is E+ = ACO9 (2πFI, t 1 P(t) + φ)・
It is given by (2). Here, A is a value that depends on the sample, interference optical system, etc. (corresponds to C2 in equation (1)), P(t) is the phase change of beam 1 due to thermal expansion vibration of the sample, and φ is p(t
) is zero, this is the phase difference due to the optical path length difference between beam 1 and beam 2. Letting the amplitude of the sample vibration be P and the phase P(t), p(t) is given by -Lsin (2πFt+P)-(3)λ. Here, when L<<λ, the frequency Fb of E,
The signal component ■ with −F is 2π V−−ALcos (2π(Fb−F)t−P+φ)
-(4)λ, and by measuring the amplitude of the signal of this frequency component and the phase P, it is possible to measure the thermal expansion vibration of the sample. However, as mentioned above, A is affected by the reflectance of the sample which changes with changes in sample temperature and plasma density, so if this changes, noise will occur and thermal expansion vibrations cannot be accurately measured.

そこで、本実施例では、Elの値を零レベル(しきい値
)と比較し、Elが零レベル以上ならE、=V、E、が
零レベル以上ならE、=−Vとなるようにコンパレータ
(13)で2値化による波形変換を行う。この波形変換
後の信号E2はv C2””   C05(2πFI、t+P(t)+φ)
π 1(高周波成分)・・・(5) となる。この場合、C2においてL<<λのときの周波
数Ft+−Fをもつ信号成分 v ■””   I−cos  (2π(Fb  −F)t
  −P + φ)−(6)λ となり、Aを含まないため、正確に熱膨張振動(振幅り
1位相P)を計測できる。
Therefore, in this embodiment, the value of El is compared with the zero level (threshold value), and if El is above the zero level, E, = V, and if E is above the zero level, E, = -V is set. In (13), waveform conversion by binarization is performed. The signal E2 after this waveform conversion is v C2"" C05 (2πFI, t+P(t)+φ)
π 1 (high frequency component)...(5). In this case, the signal component v with frequency Ft+-F when L<<λ in C2 ■"" I-cos (2π(Fb -F)t
-P + φ) - (6) λ, and since A is not included, thermal expansion vibration (amplitude minus one phase P) can be accurately measured.

C2から周波数F、−Fをもつ信号成分を抽出するため
に、周波数解析器、FMチューナー等の利用が考えられ
るが、信号レヘルが小さいときには、同期検波方式を用
いるのが適している。この場合、同期検波において、参
照信号として周波数FI、−Fをもつ信号で同期検波を
おこなえばよい。
In order to extract signal components having frequencies F and -F from C2, it is possible to use a frequency analyzer, an FM tuner, etc., but when the signal level is small, it is suitable to use a synchronous detection method. In this case, synchronous detection may be performed using signals having frequencies FI and -F as reference signals.

しかし、一般に光学干渉計は空気の揺らぎゃ外乱振動等
の影響を受は易くこれがノイズとなり、(2)式、(5
)式における位相φに時間的変動をもたらす。φの変動
はVの変動となり、安定に熱膨張振動を計測できない。
However, in general, optical interferometers are easily affected by air fluctuations and external vibrations, and this causes noise, resulting in equations (2) and (5)
) brings about temporal fluctuations in the phase φ in the equation. Fluctuations in φ result in fluctuations in V, making it impossible to stably measure thermal expansion vibration.

そこで、本実施例では、まずC2に変調信号(M ・5
in(2πFt+q))を乗算器14で乗算する。Mお
よびqは既知の定数。乗算後の信号Vl、lは、Vm 
=Ra+s(2π(Fb +F)t +φ1+q)+R
cos(2π(Fb −F)t +φ(1) −(7)
(R=2MV/π) になる。次にVmをフィルタ15に通し上式の右辺にお
ける第2項の信号Vrを取り出す。このVrを参照信号
として同期検波を行う。vrには位相φを含んでいるた
めVrを参照信号として同期検波16を行えば、■にお
ける位相φの影響は相殺される。同期検波出力V。は Vo  =  −LCO5(P+q)−(8)λ となり、位相φはなくなり安定にV。を計測でき、これ
により熱膨張振動(L、  P)を高精度で計測できる
Therefore, in this embodiment, first, a modulation signal (M 5
in(2πFt+q)) by the multiplier 14. M and q are known constants. The signal Vl,l after multiplication is Vm
=Ra+s(2π(Fb +F)t +φ1+q)+R
cos(2π(Fb −F)t +φ(1) −(7)
(R=2MV/π). Next, Vm is passed through a filter 15 to extract the second term signal Vr on the right side of the above equation. Synchronous detection is performed using this Vr as a reference signal. Since vr includes the phase φ, if the synchronous detection 16 is performed using Vr as a reference signal, the influence of the phase φ in ■ is canceled out. Synchronous detection output V. becomes Vo = -LCO5(P+q)-(8)λ, and the phase φ disappears and V becomes stable. This allows the thermal expansion vibrations (L, P) to be measured with high precision.

なお上記においては、周波数FI、−Fの抽出について
記したが、E、において周波数F、+Fの成分にも熱膨
張振動の情報が含まれる。従って(7)式のVmの右辺
の第1項の信号を参照信号として用いても熱膨張振動を
計測できる。
In the above description, extraction of the frequencies FI and −F has been described, but information on thermal expansion vibration is also included in the components of the frequencies F and +F in E. Therefore, thermal expansion vibration can also be measured using the signal of the first term on the right side of Vm in equation (7) as a reference signal.

第2図に試料の内部欠陥の検出方法を示す。即ち、同図
は試料の表面に熱膨張信号を誘起するレーザ光を照射さ
せ、熱膨張振動による歪波を試料の背面あるいは照射点
から離れた地点で検出する構成を示している。この場合
、検出される振動には、弾性波伝搬中の情報(弾性的特
性)を含んでおり、試料内部の欠陥、表面クラックの等
が検出できる。前記従来の反射率計測法では、励起光の
拡散長内の情報しか得られないため、このような1 評価はできない。
Figure 2 shows a method for detecting internal defects in a sample. That is, the figure shows a configuration in which the surface of the sample is irradiated with a laser beam that induces a thermal expansion signal, and strain waves caused by thermal expansion vibration are detected at the back of the sample or at a point away from the irradiation point. In this case, the detected vibrations include information (elastic characteristics) during the propagation of elastic waves, and defects, surface cracks, etc. inside the sample can be detected. In the conventional reflectance measuring method described above, such 1 evaluation cannot be performed because information only within the diffusion length of the excitation light can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明は以上述べたように、試料に周期的(同波数二F
)に強度変調した励起光を照射し、これによって生じる
試料表面の熱膨張振動を測定して試料を評価する方法に
おいて、前記励起光照射によって熱膨張振動を生じる試
料表面位置に、振動周波数F、なる測定光(ビーム1)
を照射し、その反射光と振動周波数F2なる参照光(ビ
ーム2)を干渉させ、上記干渉光を光電変換した電気信
号Eを得た後、上記電気信号Eのビート波信号E(ビー
ト周波数: Fb  (Fb=Fl −F2 ))を取
り出し、上記ビート波信号E、を2値化処理して2値信
号E2に変換し、上記2値信号E2から周波数F−Fb
あるいはF+Fbの成分を抽出し、この成分の振幅及び
位相により試料を評価することを特徴とする熱膨張振動
を用いた試料評価方法であるから、試料の温度変化又は
プラズマ密度の変化等に伴う反射率の変化により生じる
測定光の振幅変化の影響がキャンセルされるので、試料
の2 真の熱膨張振動を計測することができる。
As described above, the present invention provides a sample with periodic (same wave number 2F)
), in which a sample is evaluated by irradiating intensity-modulated excitation light and measuring the resulting thermal expansion vibrations on the sample surface, the vibration frequency F, measurement light (beam 1)
The reflected light and the reference light (beam 2) with the vibration frequency F2 are made to interfere with each other, and the electrical signal E is obtained by photoelectrically converting the interference light, and then the beat wave signal E (beat frequency: Fb (Fb=Fl −F2 )), the beat wave signal E is binarized and converted into a binary signal E2, and the frequency F−Fb is extracted from the binary signal E2.
Alternatively, since this is a sample evaluation method using thermal expansion vibration, which extracts the F+Fb component and evaluates the sample based on the amplitude and phase of this component, reflections due to changes in sample temperature or plasma density, etc. Since the influence of changes in the amplitude of the measurement light caused by changes in the rate is canceled, it is possible to measure the two true thermal expansion vibrations of the sample.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る評価方法の実施に使用
する装置を示すプロ・ンク図、第2図は試料の内部欠陥
の検出方法を示す概念図、第3図は従来の熱膨張振動を
計測する手法の概念図、第4図は従来の反射率計測法に
基づく試料評価手法を示す概念図である。 〔符号の説明〕 1・・・励起レーザ 2・・・グイクロイックミラ 3・・・レンズ 4・・・試料 5・・・測定用レーザ 6・・・周波数シック 7・・・偏向ビームスプリンタ 8・・・参照ミラー 9・・・2波長板     10・・・偏光板11・・
・光電変換器    12・・・フィルタ13・・・コ
ンパレータ    14・・・乗算H15・・・フィル
タ 16・・・同期検波器
Fig. 1 is a diagram showing the equipment used to implement the evaluation method according to an embodiment of the present invention, Fig. 2 is a conceptual diagram showing the method for detecting internal defects in a sample, and Fig. 3 is a diagram showing a conventional method for detecting internal defects in a sample. A conceptual diagram of a method for measuring expansion vibration. FIG. 4 is a conceptual diagram showing a sample evaluation method based on a conventional reflectance measurement method. [Explanation of symbols] 1... Excitation laser 2... Guicroic mirror 3... Lens 4... Sample 5... Measurement laser 6... Frequency thick 7... Deflection beam splinter 8 ...Reference mirror 9...Two-wavelength plate 10...Polarizing plate 11...
・Photoelectric converter 12... Filter 13... Comparator 14... Multiplication H15... Filter 16... Synchronous detector

Claims (1)

【特許請求の範囲】 1、試料に周期的(周波数:F)に強度変調した励起光
を照射し、これによって生じる試料表面の熱膨張振動を
測定して試料を評価する方法において、 前記励起光照射によって熱膨張振動を生じる試料表面位
置に、振動周波数F_1なる測定光(ビーム1)を照射
し、その反射光と振動周波数F_2なる参照光(ビーム
2)を干渉させ、 上記干渉光を光電変換した電気信号Eを得た後、上記電
気信号Eのビート波信号E_1(ビート周波数:F_b
(F_b=F_1−F_2))を取り出し、上記ビート
波信号E_1を2値化処理して2値信号E_2に変換し
、 上記2値信号E_2から周波数F−F_bあるいはF+
F_bの成分を抽出し、この成分の振幅及び位相により
試料を評価することを特徴とする熱膨張振動を用いた試
料評価方法。
[Claims] 1. A method for evaluating a sample by irradiating the sample with periodically (frequency: F) intensity-modulated excitation light and measuring thermal expansion vibrations on the sample surface caused by the excitation light, comprising: Measurement light (beam 1) with vibration frequency F_1 is irradiated onto the sample surface position where thermal expansion vibration occurs due to irradiation, and the reflected light is caused to interfere with reference light (beam 2) with vibration frequency F_2, and the interference light is photoelectrically converted. After obtaining the electrical signal E, the beat wave signal E_1 (beat frequency: F_b
(F_b=F_1-F_2)), the beat wave signal E_1 is binarized and converted into a binary signal E_2, and the frequency F-F_b or F+ is obtained from the binary signal E_2.
A sample evaluation method using thermal expansion vibration, characterized in that a component of F_b is extracted and a sample is evaluated based on the amplitude and phase of this component.
JP2070967A 1990-03-20 1990-03-20 Sample evaluation method using thermal expansion vibration Expired - Fee Related JPH0617864B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2070967A JPH0617864B2 (en) 1990-03-20 1990-03-20 Sample evaluation method using thermal expansion vibration
DE4109182A DE4109182A1 (en) 1990-03-20 1991-03-20 Sample evaluation system using thermal expansion deformation - using optical interference between reflected stimulation beam and reference beam with different frequency
KR1019910004405A KR0168444B1 (en) 1990-03-20 1991-03-20 Sample evaluating method by using thermal expansion displacement
US07/955,241 US5298970A (en) 1990-03-20 1992-10-01 Sample evaluating method by using thermal expansion displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2070967A JPH0617864B2 (en) 1990-03-20 1990-03-20 Sample evaluation method using thermal expansion vibration

Publications (2)

Publication Number Publication Date
JPH03269345A true JPH03269345A (en) 1991-11-29
JPH0617864B2 JPH0617864B2 (en) 1994-03-09

Family

ID=13446806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2070967A Expired - Fee Related JPH0617864B2 (en) 1990-03-20 1990-03-20 Sample evaluation method using thermal expansion vibration

Country Status (1)

Country Link
JP (1) JPH0617864B2 (en)

Also Published As

Publication number Publication date
JPH0617864B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
US5080491A (en) Laser optical ultarasound detection using two interferometer systems
US5298970A (en) Sample evaluating method by using thermal expansion displacement
US4480916A (en) Phase-modulated polarizing interferometer
JPH07311182A (en) Evaluation of sample by measurement of thermo-optical displacement
CN101329162A (en) Difference phase demodulation interference system
JP2744742B2 (en) Gas concentration measuring method and its measuring device
JP3029757B2 (en) Sample evaluation method by photothermal displacement measurement
Ueha et al. Flexible coherent optical probe for vibration measurements
JP2735348B2 (en) Sample evaluation method with a single light source using thermal expansion vibration
JPH03269345A (en) Sample evaluating method using thermal expansion oscillation
US6295131B1 (en) Interference detecting system for use in interferometer
KR0168444B1 (en) Sample evaluating method by using thermal expansion displacement
JPH06186337A (en) Laser distance measuring equipment
JP2923779B1 (en) Optical interference device for ultrasonic detection
JPH04273048A (en) Sample evaluation using thermal expansion vibration
JP2735368B2 (en) Sample evaluation method using thermal expansion vibration
JPH09133585A (en) Optical pulse train measuring method
JPH05288721A (en) Evaluating method of sample by photothermal displacement measurement
JPH0451772B2 (en)
JPH05288720A (en) Evaluating method of sample by ultrasonic vibration measurement
JP2672758B2 (en) Sample thermoelasticity evaluation device
JPH0536727B2 (en)
JPH06265496A (en) Defective evaluation method of sample
JP4080840B2 (en) Thin film evaluation equipment
JPH06167304A (en) Displacement sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080309

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees