JPH03268364A - Semiconductor storage device - Google Patents

Semiconductor storage device

Info

Publication number
JPH03268364A
JPH03268364A JP6692690A JP6692690A JPH03268364A JP H03268364 A JPH03268364 A JP H03268364A JP 6692690 A JP6692690 A JP 6692690A JP 6692690 A JP6692690 A JP 6692690A JP H03268364 A JPH03268364 A JP H03268364A
Authority
JP
Japan
Prior art keywords
insulating film
semiconductor substrate
gate
thickness
floating gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6692690A
Other languages
Japanese (ja)
Inventor
Masayuki Hori
正幸 堀
Shinichi Tanaka
真一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6692690A priority Critical patent/JPH03268364A/en
Publication of JPH03268364A publication Critical patent/JPH03268364A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain sufficient read currents at the time of erasing by bringing the film thickness of an insulating film in the extending section of a control gate to 600Angstrom or less. CONSTITUTION:A floating gate 15 composed of polysilicon is formed onto the surface of a semiconductor substrate 11 through a first gate oxide film 14, and a control gate 17 consisting of polysilicon, etc., is formed onto the floating gate 15 and the semiconductor substrate 11 through a second gate oxide film 16. A gate oxide film 18 is extended to the semiconductor substrate 11 at one end section (an offset section) of the control gate 17 at that time, and the thickness of an insulating film 18 in the extending section (the offset section) is brought to 600Angstrom or less. Accordingly, read currents at the time of erasing can be acquired at a sufficiently large value.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は半導体記憶装置に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a semiconductor memory device.

(従来の技術) 従来、FE2FROMは、以下のようなものが知られて
いる。以下、第2図を参照して半導体記憶装置の従来技
術を説明する。
(Prior Art) Conventionally, the following FE2FROMs are known. Hereinafter, the conventional technology of semiconductor memory devices will be explained with reference to FIG.

P型シリコンからなる半導体基板21表面にN+型ソー
ス領域22、N+型ドレイン領域23を形成する。この
ソース領域22とドレイン領域23に挾まれた半導体基
板21の表面に第1のゲート酸化膜24を介し導電層か
らなるフローティングゲート25が形成されている。こ
のフローティングゲート25および半導体基板21上に
は、膜厚750人第2のゲート酸化膜26を介して導電
層からなるコントロールゲート27が形成されている。
An N+ type source region 22 and an N+ type drain region 23 are formed on the surface of a semiconductor substrate 21 made of P-type silicon. A floating gate 25 made of a conductive layer is formed on the surface of the semiconductor substrate 21 sandwiched between the source region 22 and the drain region 23 with a first gate oxide film 24 interposed therebetween. A control gate 27 made of a conductive layer is formed on the floating gate 25 and the semiconductor substrate 21 with a second gate oxide film 26 having a thickness of 750 mm interposed therebetween.

このとき、コントロールゲート27の一端部(オフセッ
ト部)に膜厚650人のゲート酸化膜28が、半導体基
板41上に延在している。
At this time, a gate oxide film 28 having a thickness of 650 mm extends over the semiconductor substrate 41 at one end (offset portion) of the control gate 27 .

この装置では、消去後、過消去によりフローティングゲ
ート25中にはホールが存在し、フローティングゲート
25下の半導体基板21表面上に反転層が形成されるた
め、読み出し電流はオフセット部に印加する電圧で制御
される。
In this device, after erasing, holes exist in the floating gate 25 due to overerasing, and an inversion layer is formed on the surface of the semiconductor substrate 21 under the floating gate 25, so the read current is determined by the voltage applied to the offset section. controlled.

しかし、オフセット部の膜厚が650人と厚いため、消
去時の読み出し電流を十分に大きく得ることができない
という欠点があった。
However, since the film thickness of the offset portion is 650 mm thick, there was a drawback that a sufficiently large read current during erasing could not be obtained.

(発明が解決しようとする課題) このように、従来技術を用いた半導体記憶装置では、コ
ントロールゲート下の延在部分(オフセット部)の絶縁
膜の膜厚が650人と厚いため、消去時の読み出し電流
を十分大きく得ることができないという問題点があった
(Problems to be Solved by the Invention) As described above, in the semiconductor memory device using the conventional technology, the thickness of the insulating film in the extended portion (offset portion) under the control gate is 650 thick, which causes problems during erasing. There was a problem that a sufficiently large read current could not be obtained.

本発明は以上の点に鑑み、消去時に読み出し電流を十分
大きく得ることができるような半導体記憶装置を提供す
るものである。
In view of the above points, the present invention provides a semiconductor memory device that can obtain a sufficiently large read current during erasing.

[発明の構成〕 (課題を解決するための手段) 本発明による半導体記憶装置は、半導体基板とこの半導
体基板に第一の絶縁膜を介して設けられるフローティン
グゲートとこのフローティングゲートに第二の絶縁膜を
介して設けられるコントロールゲートとを具備し、前記
コントロールゲートの端部が絶縁膜を介して前記フロー
ティングゲートの少なくとも一部と重なり合いかっ、前
記半導体基板と前記コントロールゲートの端部との間の
絶縁膜の膜厚が600Å以下であることを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) A semiconductor memory device according to the present invention includes a semiconductor substrate, a floating gate provided on the semiconductor substrate via a first insulating film, and a second insulating film on the floating gate. a control gate provided through a film, an end of the control gate overlaps at least a portion of the floating gate with an insulating film interposed therebetween, and a gap between the semiconductor substrate and the end of the control gate is provided. A feature is that the thickness of the insulating film is 600 Å or less.

(作用) このような装置では、コントロールゲートの延在部分の
絶縁膜の膜厚を600Å以下にすることにより、消去時
の読み出し電流が十分に得られる。
(Function) In such a device, by setting the thickness of the insulating film in the extended portion of the control gate to 600 Å or less, a sufficient read current can be obtained during erasing.

(実施例) 以下、本発明に係わる半導体記憶装置の実施例を第1図
を参照して説明する。
(Example) Hereinafter, an example of a semiconductor memory device according to the present invention will be described with reference to FIG.

P型シリコンからなる半導体基板11表面にN+型ソー
ス領域12、N 型ドレイン領域13を形成する。この
ソース領域12とドレイン領域13に挾まれた半導体基
板11の表面に膜厚280人の第1のゲート酸化膜14
を介してポリシリコンからなるフローティングゲート1
5が形成されている。このフローティングゲート15お
よび半導体基板11上には、膜厚320人の0 / N
 / O(oxide / SiN / oxide)
構造の第2のゲート酸化膜16を介してポリシリコンか
らなるコントロールゲート17が形成されている。
An N+ type source region 12 and an N type drain region 13 are formed on the surface of a semiconductor substrate 11 made of P type silicon. A first gate oxide film 14 with a thickness of 280 nm is formed on the surface of the semiconductor substrate 11 sandwiched between the source region 12 and the drain region 13.
Floating gate 1 made of polysilicon through
5 is formed. On this floating gate 15 and semiconductor substrate 11, a film thickness of 320 people is 0/N.
/O(oxide/SiN/oxide)
A control gate 17 made of polysilicon is formed through a second gate oxide film 16 of the structure.

このときコントロールゲート17の一端部(オフセット
部)には膜厚210人のO/N10構造によるゲート酸
化膜18が半導体基板11に延在している。
At this time, at one end portion (offset portion) of the control gate 17, a gate oxide film 18 having a 210-layer O/N10 structure extends over the semiconductor substrate 11.

このような構造は次のような工程を経て形成される。ま
ず、P型シリコン基板11上に膜厚280人の酸化膜1
4を形成する。次に、酸化膜14上に第1のポリシリコ
ン層を形成する。次に、第1のポリシリコン層をPEP
により加工しフローティングゲート15を形成し、フロ
ーティングゲートをマスクにしてN 型ドレイン拡散領
域13を形成する。
Such a structure is formed through the following steps. First, an oxide film 1 with a thickness of 280 mm is deposited on a P-type silicon substrate 11.
form 4. Next, a first polysilicon layer is formed on the oxide film 14. Next, the first polysilicon layer is PEP
A floating gate 15 is formed by processing, and an N type drain diffusion region 13 is formed using the floating gate as a mask.

図には示されないが、フローティングゲート15と第2
のポリシリコン層であるイレーズゲートとの間に絶縁膜
を形成する。その後、フローティングゲート15下の絶
縁膜14以外の絶縁膜をウェットエツチングで除去する
。次に、フローティングゲート15上に0/N10構造
による膜厚320人絶縁膜16を形成する。その時同時
にオフセット部には0/N10構造によるBottom
 0x1d厚90人・sIN膜厚150λ壷Topox
ld厚30人、全部で膜厚210人の絶縁膜I8を形成
される。その後、絶縁膜IB上に第3のポリシリコン層
からなるコントロールゲート17を形成し、コントロー
ルゲート17をマスクとしてN+型ソース拡散領域12
を形成する。なお、この場合と異なりオフセット部の絶
縁膜18をフローティングゲート15上の絶縁膜16と
別に形成する方法もある。
Although not shown in the figure, the floating gate 15 and the second
An insulating film is formed between the polysilicon layer and the erase gate. Thereafter, the insulating film other than the insulating film 14 under the floating gate 15 is removed by wet etching. Next, a 320-layer insulating film 16 having a 0/N10 structure is formed on the floating gate 15. At the same time, the offset part has a Bottom with 0/N10 structure.
0x1d thickness 90 people / sIN film thickness 150λ pot Topox
The insulating film I8 is formed to have a thickness of 30 layers and a total thickness of 210 layers. After that, a control gate 17 made of a third polysilicon layer is formed on the insulating film IB, and the N+ type source diffusion region 12 is formed using the control gate 17 as a mask.
form. Note that, unlike this case, there is also a method in which the insulating film 18 in the offset portion is formed separately from the insulating film 16 on the floating gate 15.

以上述べてきた本実施例の半導体記憶装置では、オフセ
ット部の絶縁膜18の膜厚を従来の850人から210
人にした。その効果は、第3図に示すようにオフセット
部の絶縁膜の膜厚が薄くなるにつれ消去時の読み出し電
流が増している。これに示されるように、オフセット部
の絶縁膜の膜厚を600Å以下にすることにより、消去
時の読み出し電流を十分大きく得ることができる。
In the semiconductor memory device of this embodiment described above, the thickness of the insulating film 18 in the offset portion has been increased from 850 to 210.
Made into a person. As shown in FIG. 3, the effect is that as the thickness of the insulating film in the offset portion becomes thinner, the read current during erasing increases. As shown, by setting the thickness of the insulating film in the offset portion to 600 Å or less, a sufficiently large read current during erasing can be obtained.

[発明の効果] 以上の結果から、本発明を用いることによって、コント
ロールゲートの延在部分(オフセット部)の絶縁膜の厚
さを600Å以下にするため、消去時の読み出し電流を
十分大きく得ることができるようになった。
[Effects of the Invention] From the above results, by using the present invention, it is possible to obtain a sufficiently large read current during erasing in order to reduce the thickness of the insulating film in the extended portion (offset portion) of the control gate to 600 Å or less. Now you can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる半導体記憶装置の断面図、第2
図は従来技術による半導体記憶装置の断面図、第3図は
オフセット部の絶縁膜の膜厚とオフセット部のセル電流
との関係を示した図である。 IL 21・・・半導体基板、12.22・・・N ソ
ース拡散領域、13.23・・・N+ドレイン拡散領域
、14.24・・・第1の絶縁膜、15.25・・・フ
ローティングゲート、16.26・・・第2の絶縁膜、
17.27・・・コントロールゲート、18・・・オフ
セット部の絶縁膜。
FIG. 1 is a sectional view of a semiconductor memory device according to the present invention, and FIG.
This figure is a cross-sectional view of a semiconductor memory device according to the prior art, and FIG. 3 is a diagram showing the relationship between the thickness of an insulating film in an offset part and the cell current in the offset part. IL 21... Semiconductor substrate, 12.22... N source diffusion region, 13.23... N+ drain diffusion region, 14.24... First insulating film, 15.25... Floating gate , 16.26... second insulating film,
17.27...Control gate, 18...Insulating film of offset part.

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板と、この半導体基板に第一の絶縁膜を
介して設けられるフローティングゲートとこのフローテ
ィングゲート上に第二の絶縁膜を介して設けられるコン
トロールゲートとを具備し、前記コントロールゲートの
端部が絶縁膜を介して前記フローティングゲートの少な
くとも一部と重なり合いかつ前記半導体基板と前記コン
トロールゲートの端部との間の絶縁膜の膜厚が600Å
以下であることを特徴とする半導体記憶装置。
(1) A semiconductor substrate, a floating gate provided on the semiconductor substrate via a first insulating film, and a control gate provided on the floating gate via a second insulating film; The end portion overlaps at least a portion of the floating gate via an insulating film, and the thickness of the insulating film between the semiconductor substrate and the end portion of the control gate is 600 Å.
A semiconductor memory device characterized by the following.
JP6692690A 1990-03-19 1990-03-19 Semiconductor storage device Pending JPH03268364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6692690A JPH03268364A (en) 1990-03-19 1990-03-19 Semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6692690A JPH03268364A (en) 1990-03-19 1990-03-19 Semiconductor storage device

Publications (1)

Publication Number Publication Date
JPH03268364A true JPH03268364A (en) 1991-11-29

Family

ID=13330077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6692690A Pending JPH03268364A (en) 1990-03-19 1990-03-19 Semiconductor storage device

Country Status (1)

Country Link
JP (1) JPH03268364A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685281A (en) * 1992-03-24 1994-03-25 Internatl Business Mach Corp <Ibm> Eeprom memory cell structure and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685281A (en) * 1992-03-24 1994-03-25 Internatl Business Mach Corp <Ibm> Eeprom memory cell structure and its manufacture

Similar Documents

Publication Publication Date Title
JPS62257768A (en) Manufacture of eprom cell composed of oxide-nitride-oxide dielectric and eprom cell manufactured by the method
JPH08255846A (en) Semiconductor device and manufacture thereof
JPH02188970A (en) Nonvolatile semiconductor storage device
JPH03268364A (en) Semiconductor storage device
JPS62160770A (en) Insulated gate type field effect transistor
JPH10173074A (en) Nonvolatile semiconductor device
JP2950557B2 (en) Semiconductor device and manufacturing method thereof
JP2675304B2 (en) Method of manufacturing nonvolatile memory element
JPS63278275A (en) Semiconductor nonvolatile memory
JPH01152672A (en) Non-volatile semiconductor memory
JPH04356969A (en) Nonvolatile semiconductor device
JPH06196497A (en) Manufacture of semiconductor device
JPS58121681A (en) Nonvolatile semiconductor memory cell
JP2582931B2 (en) Method for manufacturing semiconductor device
JP2002009183A (en) Semiconductor storage device and its manufacturing method
JPS61161769A (en) Insulated gate type non-volatile semiconductor memory device
JPH04179273A (en) Nonvolatile semiconductor memory
JPH03171775A (en) Thin film transistor and manufacture thereof
JPH02126679A (en) Mos transistor
JPH04334063A (en) Thin film memory transistor and its manufacture
JP3212689B2 (en) Semiconductor device and manufacturing method thereof
JPH02207536A (en) Semiconductor device
JP2532471B2 (en) Semiconductor device
JPH03155166A (en) Thin film semiconductor element
JPH025486A (en) Semiconductor non-volatile memory