JPH03261355A - Synchronous induction motor of two or more stators - Google Patents

Synchronous induction motor of two or more stators

Info

Publication number
JPH03261355A
JPH03261355A JP2057487A JP5748790A JPH03261355A JP H03261355 A JPH03261355 A JP H03261355A JP 2057487 A JP2057487 A JP 2057487A JP 5748790 A JP5748790 A JP 5748790A JP H03261355 A JPH03261355 A JP H03261355A
Authority
JP
Japan
Prior art keywords
rotor
stator
conductors
stators
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2057487A
Other languages
Japanese (ja)
Other versions
JP2893352B2 (en
Inventor
Toshihiko Satake
佐竹 利彦
Yukio Onoki
大野木 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Original Assignee
Satake Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2057487A priority Critical patent/JP2893352B2/en
Application filed by Satake Engineering Co Ltd filed Critical Satake Engineering Co Ltd
Priority to AU66089/90A priority patent/AU656885B2/en
Priority to DE69015213T priority patent/DE69015213T2/en
Priority to US07/849,078 priority patent/US5796233A/en
Priority to CA002071542A priority patent/CA2071542C/en
Priority to DK90915825.5T priority patent/DK0570582T3/en
Priority to EP90915825A priority patent/EP0570582B1/en
Priority to KR1019920700980A priority patent/KR0167654B1/en
Priority to PCT/JP1990/001366 priority patent/WO1991007005A1/en
Priority to MYPI90001866A priority patent/MY107152A/en
Publication of JPH03261355A publication Critical patent/JPH03261355A/en
Priority to FI921856A priority patent/FI921856A0/en
Priority to FI921857A priority patent/FI107654B/en
Priority to NO921618A priority patent/NO921618D0/en
Application granted granted Critical
Publication of JP2893352B2 publication Critical patent/JP2893352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To increase both starting torque and synchronizing torque by changing the phase difference angle of induced voltage in a rotor conductor at the time of starting and synchronized rotation. CONSTITUTION:A motor is started by closing a power supply in a condition that stator windings 21, 22 are connected so as to obtain a zero phase difference angle of induced voltage in rotor conductors 31, 32 at the time of starting. Here starting torque is increased because no flow of current is generated in a diode 34 by allowing a current in the rotor conductor to flow so as to recirculate in the rotor conductor 32 from the rotor conductor 31. When a rotational speed approaches the synchronous speed, phase difference between two rotational magnetic fields, generated by the rotor conductors 31, 32, is set at 180 deg.. In this way, the current is recirculated through the diode 34 by stopping the recirculation to the rotor conductor 32 from the rotor conductor 31. Thus by forming a magnetic pole in a rotor core, it is rotated while being pulled by a rotational magnetic field generated by the stator windings 21, 22.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は同期電動機に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a synchronous motor.

〔従来の技術〕[Conventional technology]

一般に同期電動機は、その回転子を固定子巻線の作る回
転磁界の回転速度すなわち同期速度近くまで加速する起
動機と、回転子巻線の直流励磁が必要である。
Generally, a synchronous motor requires a starter that accelerates the rotor to the rotation speed of the rotating magnetic field generated by the stator winding, that is, close to the synchronous speed, and DC excitation of the rotor winding.

この起動機を省略して同期電動機自体に起動トルクを持
たせるように考案されたのが誘導同期電動機で、これは
起動時には回転子巻線を短絡して誘導電動機として起動
するために起動機は必要としないが、同期運転に必要な
回転子巻線の直流励磁のために、ブラシを必要とする。
The induction synchronous motor was devised to omit this starter and give the synchronous motor itself its own starting torque.This motor short-circuits the rotor windings at startup and starts the motor as an induction motor. Although not required, brushes are required for DC excitation of the rotor windings required for synchronous operation.

なすわち、回転子の回転速度が同期速度に近づくと回転
子巻線の短絡を開放して外部の直流電源からブラシを介
して回転子巻線に直流電流を流して回転子に磁極を作り
、この磁極が固定子巻線の作る回転磁界に引張られて回
転子は同期速度で回転する。このブラシは保守点検を必
要とすることから保守費が嵩み、ブラシレス構造の同期
電動機の開発が望まれている。
That is, when the rotational speed of the rotor approaches the synchronous speed, the short circuit in the rotor winding is opened, and a DC current is passed from an external DC power source to the rotor winding through the brushes to create magnetic poles in the rotor. , these magnetic poles are pulled by the rotating magnetic field created by the stator windings, causing the rotor to rotate at a synchronous speed. This brush requires maintenance and inspection, which increases maintenance costs, and there is a desire to develop a synchronous motor with a brushless structure.

このブラシレス構造の同期電動機としては、従来から永
久磁石形やリラクタンス形かあるか、トルクが小さく、
減磁の問題や、低力率等の欠点があるため小容量のもの
に限られている。またランゾル形やインダクタ形の同期
電動機は磁路の構成が複雑で大型となる欠点があった。
Conventionally, synchronous motors with this brushless structure have either permanent magnet type or reluctance type, and have low torque.
Due to problems such as demagnetization and low power factor, it is limited to small capacity devices. Furthermore, Ransol-type and inductor-type synchronous motors have the disadvantage of having complicated magnetic path configurations and being large.

また交流励磁器と回転整流器を用いる方法も同様である
。また回転子巻線にダイオードを接続してインバーター
の方形波電圧による高調波磁界を利用するブラシレス自
励形三相同期電動機は回転子の界磁起磁力が不足で十分
な出力が得られない欠点がある。更には三相の固定子巻
線の一相にダイオードを挿入して固定子の作る正相分回
転磁界に静止磁界を重畳して、同期速度で回転する回転
子巻線に静止磁界による交流電圧を誘起させて、これを
ダイオードで整流することによって回転子巻線を直流励
磁して、正相分目−転磁界を作用させて同期トルクを発
生するブラシレス自励形三相同期電動機かあるが、これ
は誘導機始動が不可能なために、回転子鉄心の渦電流に
よる起動となり起動トルクが小さい欠点かある。
Also, the method using an AC exciter and a rotating rectifier is similar. In addition, brushless self-excited three-phase synchronous motors that connect diodes to the rotor windings and utilize the harmonic magnetic field generated by the square wave voltage of the inverter have the disadvantage that sufficient output cannot be obtained due to insufficient field magnetomotive force of the rotor. There is. Furthermore, by inserting a diode into one phase of the three-phase stator winding, a static magnetic field is superimposed on the positive phase rotating magnetic field generated by the stator, and the alternating current voltage due to the static magnetic field is applied to the rotor winding rotating at a synchronous speed. There is a brushless self-excited three-phase synchronous motor that excites the rotor winding with DC current by inducing this and rectifying it with a diode, and generates synchronous torque by applying a positive phase rotating magnetic field. This is because the induction motor cannot be started, so the starting torque is small due to the eddy current in the rotor core.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

したがって起動トルクか大きく、さらに同期トルクも大
きく、しかもブラシを必要とせず、保守点検が容易で構
造が簡単で専用の起動機も必要としない同期電動機の提
供を技術的課題とするものである。
Therefore, the technical object is to provide a synchronous motor that has a large starting torque and a large synchronous torque, does not require brushes, is easy to maintain and inspect, has a simple structure, and does not require a dedicated starter.

〔課題を解決するための手段〕[Means to solve the problem]

前記課題を解決するために、同一回転軸上に任意の間隔
をおいて設けた複数個の回転子コアを有し、該複数個の
回転子コアに連通ずる導体を複数個設けその両端を短絡
してかご形導体とした回転子と、前記各回転子コアにそ
れぞれ対向して周設した複数個の固定子と、前記複数個
の回転子コアに連通ずる導体の前記固定子に対向しない
部分でお互いに電気角1800に位置する導体間を連結
するダイオードと、前記複数個の固定子のうち特定の固
定子がこれに対峙する回転子コアの周囲に生じる回転磁
界と他の固定子がこれに対峙する回転子コアの周囲に生
じる回転磁界との間に位相差を生じさせる電圧移相装置
及び前記複数個の固定子に設けた直流励磁回路とにより
構成すること、あるいは同一回転軸上に任意の間隔をお
いて設けた複数個の回転子コアを有し、該複数個の回転
子コアに連通ずる導体を複数個設けその両端を短絡して
かご形導体とした回転子と、前記各回転子コアにそれぞ
れ対向して周設した複数個の固定子と、前記複数個の固
定子のうち特定の固定子がこれに対峙する回転子コアの
周囲に生じる回転磁界と、他の固定子がこれに対峙する
回転子コアの周囲に生じる回転磁界との間に位相差を生
じさせる電圧移相装置と、前記回転軸に直結して整流回
路を有する回転電機子と、該回転電機子に対向して周設
した直流励磁用の固定子を設けると共に、前記回転電機
子の整流回路の直流出力を、前記複数個の回転子コアに
連通ずる導体の前記固定子に対向しない部分でお互いに
電気角で180°に位置する導体間にダイオードを介し
て並列に接続して構成したことにより前記課題を解決す
るための手段とした。
In order to solve the above problem, a plurality of rotor cores are provided on the same rotating shaft at arbitrary intervals, and a plurality of conductors are provided that communicate with the plurality of rotor cores, and both ends of the conductors are short-circuited. a rotor formed into a squirrel-cage conductor; a plurality of stators disposed around each of the rotor cores facing each other; and a portion of the conductor communicating with the plurality of rotor cores that does not face the stator. A diode connecting conductors located at an electrical angle of 1800 degrees with respect to each other, a rotating magnetic field generated around a rotor core to which a specific stator faces the other stator, and a rotating magnetic field generated around the rotor core, which is opposed to a specific stator among the plurality of stators. A voltage phase shift device that creates a phase difference between the rotating magnetic field generated around the rotor core facing the rotor core and a DC excitation circuit provided in the plurality of stators, or on the same rotating shaft. A rotor having a plurality of rotor cores arranged at arbitrary intervals, a plurality of conductors communicating with the plurality of rotor cores, and both ends of which are short-circuited to form squirrel cage conductors; A plurality of stators are provided around the rotor core, each facing the rotor core, and a rotating magnetic field generated around the rotor core where a specific stator among the plurality of stators faces the stator, and other stators. and a rotating magnetic field generated around a rotor core facing the voltage phase shifter; a rotating armature directly connected to the rotating shaft and having a rectifying circuit; In addition to providing circumferentially facing stators for direct current excitation, the direct current outputs of the rectifying circuit of the rotating armature are connected to each other using portions of conductors that communicate with the plurality of rotor cores that do not face the stator. A means for solving the above problem is achieved by connecting conductors located at 180 degrees in electrical angle in parallel via a diode.

〔作 用〕[For production]

複数固定子誘導電動機の電圧移相装置の作用について本
出願人は特願昭61−128314号においてその詳細
を説明している。
The details of the operation of a voltage phase shifter for a multi-stator induction motor have been described by the present applicant in Japanese Patent Application No. 128314/1983.

本発明によると、先ず同一回転軸上に設けた複数個の回
転子コアを有し、該複数個の回転子コアに連通ずる導体
を複数個設けその両端を短絡してかご形導体とした回転
子と、固定子巻線および直流励磁回路を設けた複数固定
子より構成されたものにおいては、起動時には複数個の
固定子巻線の作る回転磁界によって複数個の回転子導体
に誘起される電圧が同相になるように、すなわち回転子
導体間を還流する電流が流れるように、従って回転子導
体のお互いに電気角で180°に位置する導体間を連結
したダイオードには電流が流れないように、電圧移相装
置を作動させて一般の誘導電動機として起動する。起動
後回転子の回転速度が上昇して回転磁界の回転速度すな
わち同期速度に近づくと、回転磁界による回転子導体の
誘起電圧は小さくなる。ここまでは誘導電動機としての
動作であるが、すベリSが5=11.05に近づいた時
に同期運転に入る。これは次のようにして行う。
According to the present invention, first, a plurality of rotor cores are provided on the same rotating shaft, and a plurality of conductors are provided in communication with the plurality of rotor cores, and both ends of the conductors are short-circuited to form a squirrel cage conductor. In a device consisting of multiple stators equipped with stator coils, stator windings, and DC excitation circuits, the voltage induced in the multiple rotor conductors by the rotating magnetic field created by the multiple stator windings during startup. so that they are in phase, that is, so that a circulating current flows between the rotor conductors, so that no current flows through the diodes connected between the rotor conductors located at 180 degrees electrical angle from each other. , the voltage phase shift device is activated to start the motor as a general induction motor. When the rotational speed of the rotor increases after startup and approaches the rotational speed of the rotating magnetic field, that is, the synchronous speed, the voltage induced in the rotor conductor by the rotating magnetic field becomes smaller. Up to this point, the motor is operating as an induction motor, but when the slip S approaches 5=11.05, it enters synchronous operation. This is done as follows.

先ず複数個の固定子のうち特定の固定子がこれに対峙す
る回転子コアの周囲に生じる回転磁界と他の固定子がこ
れに対峙する回転子コアの周囲に生じる回転磁界との間
に180度の位相差を生じさせるように電圧移相装置を
作動させる。
First, there is a difference of 180 degrees between the rotating magnetic field generated around the rotor core facing a specific stator among the plurality of stators and the rotating magnetic field generated around the rotor core facing the other stators. The voltage phase shifter is activated to create a degree phase difference.

このようにすると今まで回転子導体間を還流して流れて
いた電流が流れなくなり、回転子導体のお互いに電気角
で180°に位置する導体間を連結したダイオードを通
じて電流が流れるようになる。
By doing this, the current that had previously flowed back and forth between the rotor conductors will no longer flow, and the current will now flow through the diodes that connect the rotor conductors that are located at 180 degrees electrical angle from each other.

この回転磁界によって回転子導体に流れる電流は回転子
が同期速度になるとすべりが零になるので流れなくなる
が、先の電圧移相装置と同時に、固定子に設けた直流励
磁回路を作用させると、この直流励磁回路によって静止
磁界が生じ、回転子導体はこの静止磁界と鎖交して交流
の電圧を誘起するようになる。この交流電圧は回転子の
回転速度が大になるほど大きくなる。
The current flowing in the rotor conductor due to this rotating magnetic field stops flowing because the slip becomes zero when the rotor reaches synchronous speed, but if the DC excitation circuit installed in the stator is activated at the same time as the voltage phase shift device described above, This DC excitation circuit generates a static magnetic field, and the rotor conductors interlink with this static magnetic field to induce an AC voltage. This AC voltage increases as the rotational speed of the rotor increases.

この交流電圧の位相は前記電圧移相装置と連動させであ
るので、この交流電圧が回転子導体の導体間に接続され
たダイオードに印加され、整流された電流が回転子導体
に流れるように作用して回転子コアは磁極を形成し、固
定子巻線の作る回転磁界に引張られて回転子は同期速度
で回転する。
Since the phase of this AC voltage is interlocked with the voltage phase shifter, this AC voltage is applied to the diode connected between the conductors of the rotor conductor, and acts so that the rectified current flows through the rotor conductor. The rotor core forms magnetic poles and is pulled by the rotating magnetic field created by the stator windings, causing the rotor to rotate at a synchronous speed.

ここで同期トルクを考察してみるに、複数個の固定子の
うち特定の固定子が作る回転磁界の位相が他の固定子が
作る回転磁界のそれよりも180°移相されるが、前記
静止磁界によって特定の固定子と対峙する回転子の回転
子導体に流れるダイオードで整流された電流の方向も他
の回転子導体のそれとは逆方向になるので、同期トルク
はすべての回転子において同一の方向となり、同期トル
クはすべて加算されることになって、本発明の誘導同期
電動機は複数固定子ではあるがその合計の容量は、従来
のブラシを有する誘導同期電動機と同等である。
Considering synchronous torque here, the phase of the rotating magnetic field generated by a specific stator among multiple stators is shifted by 180 degrees from that of the rotating magnetic field generated by other stators. The direction of the diode-rectified current flowing through the rotor conductor of a rotor facing a particular stator due to the static magnetic field is also in the opposite direction to that of other rotor conductors, so the synchronous torque is the same for all rotors. , and all the synchronous torques are added together. Although the induction synchronous motor of the present invention has a plurality of stators, its total capacity is equivalent to that of a conventional induction synchronous motor with brushes.

以上のように、本発明の複数固定子誘導同期電動機は、
起動時には従来の誘導電動機の原理で起動するから起動
トルクが大きく、従って他の特別の起動機を必要としな
い。また同期速度においては回転子導体が直流励磁巻線
の作用をするので同期トルクが大きく、ブラシなどの保
守を必要としない同期電動機を提供することが可能とな
った。
As described above, the multiple stator induction synchronous motor of the present invention is
When starting, the starting torque is large because the starting principle is based on the principle of a conventional induction motor, and therefore no other special starter is required. Furthermore, at synchronous speed, the rotor conductor acts as a DC excitation winding, so the synchronous torque is large, making it possible to provide a synchronous motor that does not require maintenance such as brushes.

また前記直流励磁回路にかえて、回転軸に整流回路を有
する回転電機子と、それに対向して周設した直流励磁用
の固定子を設け、前記整流回路の直流出力を回転子導体
にダイオードを介して並列に接続し、回転子導体を直流
励磁すること【よって同期運転することも可能である。
In addition, instead of the DC excitation circuit, a rotating armature having a rectifier circuit on the rotating shaft and a stator for DC excitation disposed around it opposite to it are provided, and the DC output of the rectifier circuit is connected to a diode in the rotor conductor. It is also possible to connect the rotor conductors in parallel through the rotor and excite the rotor conductors with direct current [thus, synchronous operation is possible.

ところで上記直流励磁回路は複数個の固定子巻線の1相
を利用して、サイリスタとダイオードを逆極性に並列に
接続した回路を前記固定子巻線の一相に挿入し、サイリ
スタの点弧角を変えてその巻線に直流分電流を流すこと
によって静止磁界を作ることも可能である。
By the way, the above-mentioned DC excitation circuit utilizes one phase of a plurality of stator windings, and a circuit in which a thyristor and a diode are connected in parallel with opposite polarity is inserted into one phase of the stator winding, and the thyristor is ignited. It is also possible to create a static magnetic field by changing the angle and passing a direct current through the winding.

なお、電圧移相装置としては本出願人が特願昭61−1
28314号において固定子の位置を回転軸のまわりに
機械的に回動させることによって変える方法と、固定子
巻線の接続をスイッチによって切換えて行う方法の2つ
を説明している。
The voltage phase shift device was developed by the applicant in Japanese Patent Application No. 1986-1.
No. 28314 describes two methods: one in which the position of the stator is changed by mechanically rotating it around a rotating shaft, and the other in which the connection of the stator windings is changed by a switch.

以上のような構成によって、起動トルクが大きく、さら
に同期トルクも大きく、しかもブラシを必要とせず、保
守点検が容易で構造が簡単で専用の起動機を必要としな
い同期電動機を提供することが可能となった。
With the above configuration, it is possible to provide a synchronous motor that has a large starting torque, a large synchronous torque, does not require brushes, is easy to maintain and inspect, has a simple structure, and does not require a dedicated starter. It became.

ところで、前記固定子巻線を励磁する電源は、商用周波
数の交流電源かまたはインバーターを利用した可変周波
数電源を利用できる。また単相においても多相において
も利用できるものである。上記可変周波数電源を利用す
ると、同期速度の変更が容易に可能となり、その場合で
も通常の誘導電動機の始動トルクで起動可能であり、利
用分野は大きく拡大し、安価な同期電動機の提供が可能
となった。
By the way, the power source for exciting the stator winding can be a commercial frequency AC power source or a variable frequency power source using an inverter. Moreover, it can be used in both single phase and polyphase. By using the variable frequency power supply mentioned above, it becomes possible to easily change the synchronous speed, and even in that case, it can be started with the starting torque of a normal induction motor, greatly expanding the field of use and making it possible to provide inexpensive synchronous motors. became.

〔実施例〕〔Example〕

本発明は主として2固定子誘導向期電動機を主構成とし
て詳細を説明するが、固定子数はこれに限定されないこ
とは言うまでもない。また固定子巻線の結線も並列、直
列、スター結線、デルタ結線のいずれでもよい。さらに
2相、3相、多相のどちらでもよい。また回転子導体も
同様である。すでに本出願人は、特願昭61−1283
14号として本発明の構成の一部である複数固定子から
なる誘導電動機の構成、作用の詳細な説明を行っている
。つまり、電圧移相装置によって、複数個の固定子のう
ち特定の固定子がこれに対峙する回転子の周囲に生じる
回転磁界と他の固定子がこれに対峙する回転子の周囲に
生じる回転磁界との間の位相差を、たとえば同相すなわ
ち電気角で00とした場合、回転子導体に流れる電流は
回転子導体を還流し、たとえば電気角で180°とした
場合、回転子導体に流れる電流は回転子コア間で回転子
導体間を連結した連結材を通じて流れることなどを詳説
している。
Although the present invention will be described in detail mainly with a two-stator induction motor as its main configuration, it goes without saying that the number of stators is not limited to this. Furthermore, the stator windings may be connected in parallel, in series, in star connection, or in delta connection. Furthermore, it may be 2-phase, 3-phase, or polyphase. The same applies to the rotor conductor. The applicant has already filed a patent application in 1983-1283.
No. 14 provides a detailed explanation of the structure and operation of an induction motor consisting of a plurality of stators, which is a part of the structure of the present invention. In other words, due to the voltage phase shift device, a rotating magnetic field is generated around the rotor that a specific stator faces from among multiple stators, and a rotating magnetic field is generated around the rotor that faces the other stators. For example, if the phase difference between the It explains in detail how the fluid flows between the rotor cores and through the connecting material that connects the rotor conductors.

更に電圧移相装置の構成については、固定子を回動させ
るものや、固定子巻線の結線の切換えを行うものなどを
示しているが、本発明において、特に固定子巻線の結線
の切換を行なって電圧移相装置を構成すると、前記電気
角の0゜から1800への切換は瞬時に行なえるため同
期速度への引き込みは容易となる。また回転速度を検出
するセンサーと、直流励磁回路と、電圧移相装置の制御
装置とを設けて連絡すると、同期速度への引き込みが自
動化できると共に、万−税調した場合でも、回転速度を
検出するセンサーの信号により即座に同期運転から誘導
電動機の運転に切換え可能であり、一般の同期電動機の
ように税調から急激に停止することがなく事故防止が簡
単にできるものとなる。
Further, regarding the configuration of the voltage phase shift device, one that rotates the stator and one that switches the wiring connection of the stator winding are shown, but in the present invention, in particular, the configuration of the voltage phase shift device is If a voltage phase shifter is configured by performing the above steps, the electrical angle can be switched from 0° to 1800° instantaneously, and therefore it is easy to achieve synchronous speed. In addition, by installing and communicating a sensor that detects the rotation speed, a DC excitation circuit, and a control device for the voltage phase shifter, it is possible to automate the pull-in to the synchronous speed, and even in the event of a tax adjustment, the rotation speed can be detected. It is possible to immediately switch from synchronous operation to induction motor operation based on a sensor signal, and unlike general synchronous motors, there is no sudden stop due to tax adjustment, making it easy to prevent accidents.

第1図から第3図により本発明の第1の実施例を説明す
る。まず符号20は2固定子誘導向期電動機の固定子側
を示す。また符号30は同じく回転子側を示す。
A first embodiment of the present invention will be explained with reference to FIGS. 1 to 3. First, reference numeral 20 indicates the stator side of the two-stator induction motor. Further, the reference numeral 30 similarly indicates the rotor side.

固定子側20は、スター結線した2つの固定子巻線21
.22が並列に3相交流電源R,S。
The stator side 20 has two star-connected stator windings 21.
.. 22 are three-phase AC power supplies R and S in parallel.

Tに接続されている。さらに固定子側20には固定子巻
線21.22とは別に直流励磁回路の直流励磁巻線40
が設けである。一方、回転子側30の同一回転軸10上
に設けた2個の回転子コアに連通する導体31.32を
複数個設け、その両端に短絡環33を設けてかご形導体
とし、前記複数個の回転子コアに連通する導体の前記固
定子に対向しない部分37でお互いに電気角で180°
に位置する導体間をダイオード34を介して連結しであ
る。これを第2図に示す。またこの連結の別の方法とし
て第3図のようにダイオード34および連絡環36を介
してお互いに電気角で1800に位置する導体間を連結
してもよい。なお、第2図と第3図は2極の場合を示し
たがこれに限定されないことはいうまでもない。
Connected to T. Furthermore, on the stator side 20, in addition to the stator windings 21 and 22, there is a DC excitation winding 40 of the DC excitation circuit.
is the provision. On the other hand, a plurality of conductors 31 and 32 are provided which communicate with the two rotor cores provided on the same rotating shaft 10 on the rotor side 30, and short-circuit rings 33 are provided at both ends of the conductors 31 and 32 to form squirrel cage conductors. The portion 37 of the conductor that does not face the stator and communicates with the rotor core of the conductor is 180° electrically
The conductors located at are connected via a diode 34. This is shown in FIG. Alternatively, as shown in FIG. 3, conductors located at 1800 electrical angles may be connected via a diode 34 and a connecting ring 36, as shown in FIG. Incidentally, although FIGS. 2 and 3 show the case of two poles, it goes without saying that the present invention is not limited to this.

ここで固定子巻線21に対峙する回転子導体31に誘起
する電圧をElとし、固定子巻線22に対峙する回転子
導体32に誘起する電圧をE1εノ8とする。ここでθ
は電圧の位相差角である。
Here, it is assumed that the voltage induced in the rotor conductor 31 facing the stator winding 21 is El, and the voltage induced in the rotor conductor 32 facing the stator winding 22 is E1ε. Here θ
is the voltage phase difference angle.

以上の構成による作用を説明する。まず起動時には、回
転子導体31.32の誘起電圧の位相差角θ=08にな
るように固定子巻線21゜22が結線された状態で電源
に投入して起動する。このようにすると固定子巻線21
.22に電源から三相電流が流れてそれぞれ同相の回転
磁界を生じ、回転子導体31.32に電圧が誘起される
。この場合の誘起電圧の位相差角θ=θ°であるから、
回転子導体に流れる電流は回転子導体31から回転子導
体32へ環流するように流れ、回転子導体の導体間に接
続されたダイオード34には電流が流れない。従って起
動トルクは第7図に示すような従来の誘導電動機と同じ
特性で起動し、起動トルクは大きく、特別の別個の起動
機を必要としない。起動後、回転子の回転速度が上昇し
て回転□磁界の回転速度すなわち同期速度に近づくと、
すベリSが小さくなるので回転磁界による回転子導体の
誘起電圧E1は小さくなる。ここまでは誘導電動機とし
ての動作であるが、すベリS=0.05に近づいた時に
同期運転に引入れる。これは次のようにしておこなう。
The effect of the above configuration will be explained. First, at startup, the power is turned on with the stator windings 21 and 22 connected so that the phase difference angle θ of the induced voltage of the rotor conductors 31 and 32 is 08. In this way, the stator winding 21
.. Three-phase currents flow from the power supply through the rotor 22 to generate rotating magnetic fields of the same phase, and voltages are induced in the rotor conductors 31 and 32. Since the phase difference angle of the induced voltage in this case is θ=θ°,
The current flowing through the rotor conductor flows from the rotor conductor 31 to the rotor conductor 32 in a circular manner, and no current flows through the diode 34 connected between the rotor conductors. Therefore, the starting torque is started with the same characteristics as a conventional induction motor as shown in FIG. 7, the starting torque is large, and a special separate starter is not required. After startup, the rotation speed of the rotor increases and approaches the rotation speed of the rotating □ magnetic field, that is, the synchronous speed,
Since the shift S becomes smaller, the induced voltage E1 in the rotor conductor due to the rotating magnetic field becomes smaller. Up to this point, the motor has been operating as an induction motor, but when it approaches S=0.05, it enters synchronous operation. This is done as follows.

先づ電圧移相装置によって二つの固定子巻線21.22
の一方たとえば固定子巻線22の位置を、当該固定子の
コアを回転軸のまわりに回動させることによって変えて
、二つの固定子巻線21.22の作る二つの回転磁界の
位相差角θがθ=180°になるようにする。このよう
にすると二つの回転子導体31.32の誘起電圧の位相
差角θがθ=180°となり、今までの回転子導体31
から回転子導体32へ還流していた回転磁界による電流
は環流しなくなり、回転子導体の導体間に接続したダイ
オード34を通じて流れるようになる。また先の電圧移
相装置と共に固定子に設けた直流励磁巻線40を作用さ
せる。すなわち直流励磁巻線40に直流電流を流して静
止磁界を作ると、回転子導体31゜32はすベリSがS
=0になってもこれらの静止磁界と鎖交して交流の電圧
を誘起する。この静止磁界による交流電圧は回転子の回
転速度が大きくなるほど大きくなる。この静止磁界によ
る交流電圧の位相は直流励磁巻線40が前記電圧移相装
置と連動させであるので、二つの回転子導体31.32
に誘起する静止磁界による交流電圧の位相差角θはθ=
 180’となり、これらの交流電圧によって回転子導
体の導体間に接続したダイオード34を通じて整流され
た電流が回転子導体31.32に流れ、回転子コアは磁
極を形成し、固定子巻線21.22の作る回転磁界に引
張られて回転子は同期速度で回転するようになる。この
時の同期トルクは第7図に示すとおりである。この同期
トルクは前記静止磁界の強さに比例するので、大きな同
期トルクを得ることか可能である。ここでさらにこの同
期トルクを考察して見るに、同期運転時には電圧移相装
置によって固定子巻線22の作る回転磁界の位相が固定
子巻線21のそれに対して180’移相され、さらに前
記静止磁界によって回転子導体32に誘起する交流電圧
も回転子導体31のそれに対して180°移相されて、
整流電流が回転子導体を環流しない方向すなわちそれぞ
れの回転子導体からダイオード34を通じて流れるので
、同期トルクは2つの回転子において同一の方向となり
、同期トルクは加算されることになって、本発明の誘導
同期電動機は2固定子ではあるが、その合計の容量は従
来のブラシを有する誘導同期電動機と同等である。
Firstly, the two stator windings 21 and 22 are connected by a voltage phase shifter.
For example, by changing the position of the stator winding 22 by rotating the core of the stator around the rotation axis, the phase difference angle between the two rotating magnetic fields created by the two stator windings 21 and 22 can be changed. Set θ to θ=180°. In this way, the phase difference angle θ between the induced voltages of the two rotor conductors 31 and 32 becomes θ=180°, and the rotor conductors 31 and 32
The current due to the rotating magnetic field that was flowing back to the rotor conductor 32 no longer flows back to the rotor conductor 32, and begins to flow through the diode 34 connected between the rotor conductors. In addition, the DC excitation winding 40 provided on the stator is activated together with the voltage phase shifter described above. In other words, when a static magnetic field is created by passing a DC current through the DC excitation winding 40, the rotor conductors 31 and 32 become S.
Even if it becomes 0, it interlinks with these static magnetic fields and induces an alternating current voltage. The alternating current voltage due to this static magnetic field increases as the rotation speed of the rotor increases. The phase of the AC voltage due to this stationary magnetic field is determined by the DC excitation winding 40 interlocking with the voltage phase shifter, so that the two rotor conductors 31 and 32
The phase difference angle θ of the AC voltage due to the static magnetic field induced in is θ=
180', a current rectified by these alternating voltages through the diode 34 connected between the conductors of the rotor conductors flows through the rotor conductors 31.32, the rotor core forms magnetic poles, and the stator windings 21.32. The rotor is pulled by the rotating magnetic field created by 22 and rotates at a synchronous speed. The synchronous torque at this time is as shown in FIG. Since this synchronous torque is proportional to the strength of the static magnetic field, it is possible to obtain a large synchronous torque. Further considering this synchronous torque here, during synchronous operation, the phase of the rotating magnetic field created by the stator winding 22 is shifted by 180' with respect to that of the stator winding 21 by the voltage phase shifter, and furthermore, The alternating current voltage induced in the rotor conductor 32 by the static magnetic field is also phase shifted by 180° with respect to that of the rotor conductor 31,
Since the rectified current flows in a direction that does not circulate through the rotor conductors, i.e. from each rotor conductor through the diode 34, the synchronous torques will be in the same direction in the two rotors, and the synchronous torques will be additive, thus achieving the advantage of the present invention. Although the induction synchronous motor has two stators, its total capacity is equivalent to a conventional induction synchronous motor with brushes.

以上のように、本発明の複数固定子誘導同期電動機は、
起動時には従来の誘導電動機の原理で起動するから起動
トルクが大きく、従って他の特別の起動機を必要としな
い。
As described above, the multiple stator induction synchronous motor of the present invention is
When starting, the starting torque is large because the starting principle is based on the principle of a conventional induction motor, and therefore no other special starter is required.

また同期速度においては、回転子導体が直流励磁巻線す
なわち界磁巻線の作用をするので、同期トルクが大きく
、ブラシなどの保守を必要としない同期電動機を提供す
ることが可能となった。
Furthermore, at synchronous speed, the rotor conductor acts as a DC excitation winding, that is, a field winding, so it has become possible to provide a synchronous motor that has a large synchronous torque and does not require maintenance such as brushes.

さて本実施例では回転子導体の誘起電圧に位相差を設け
る電圧移相装置として、一方の固定子のコアを回転軸の
まわりに回動させる方法を記載したが、固定子巻線の結
線変更すなわち固定子巻線の両端子を入換えて結線する
ことによって電気的に位相差角θをθ=0°からθ=1
80°に切換えることも可能である。
Now, in this example, as a voltage phase shifter that creates a phase difference in the induced voltage of the rotor conductor, a method is described in which the core of one stator is rotated around the rotation axis, but the wiring connection of the stator winding is changed. In other words, by swapping and connecting both terminals of the stator winding, the phase difference angle θ can be changed electrically from θ=0° to θ=1.
It is also possible to switch to 80°.

また本実施例では電源として商用電源を用いる方法を記
載したが、インバータのような可変周波数電源を用いる
ことによって任意の同期速度で運転することも可能であ
る。
Further, in this embodiment, a method using a commercial power source as a power source has been described, but it is also possible to operate at any synchronous speed by using a variable frequency power source such as an inverter.

次に第2の実施例を第4図と第5図によって説明する。Next, a second embodiment will be explained with reference to FIGS. 4 and 5.

この実施例が前記第1の実施例と異なる点は、同期運転
時に必要な回転子導体の直流励磁の方法である。なすわ
ち回転軸10には回転電機子形交流発電機50が直結さ
れ、その電機子巻線56の出力電圧を整流回路55によ
って整流し、その直流出力端子を前記複数個の回転子コ
アに連通ずる導体の前記固定子に対向しない部分37で
お互いに電気角で1800に位置する導体間にダイオー
ド34を介して並列に接続する。
This embodiment differs from the first embodiment in the DC excitation method of the rotor conductors required during synchronous operation. That is, a rotating armature type AC generator 50 is directly connected to the rotating shaft 10, the output voltage of the armature winding 56 is rectified by a rectifying circuit 55, and its DC output terminal is connected to the plurality of rotor cores. At a portion 37 of the communicating shear conductor that does not face the stator, conductors located at 1800 degrees electrical angle from each other are connected in parallel via a diode 34.

より詳しく第5図によって説明する。すなわち前記整流
回路55の直流主力端子の正極をダイオード34を介し
て回転子導体に接続し、その回転子導体から電気角で1
80度の位置にある回転子導体からダイオード34を介
して整流回路55の直流出力端子の負極に接続する。そ
の他の導体についても同様で、整流回路55から流れる
直流電流によって回転子に固定子の極数に等しい磁極が
できるように構成する。第1の実施例同様2極の構成を
示しているがこれに限定されることはない。
This will be explained in more detail with reference to FIG. That is, the positive terminal of the DC main terminal of the rectifier circuit 55 is connected to the rotor conductor via the diode 34, and the electrical angle of 1
The rotor conductor located at the 80 degree position is connected to the negative electrode of the DC output terminal of the rectifier circuit 55 via the diode 34. The same goes for the other conductors, and they are configured so that the direct current flowing from the rectifier circuit 55 forms magnetic poles on the rotor equal to the number of poles on the stator. Although a two-pole configuration is shown as in the first embodiment, the present invention is not limited to this.

また前記回転電機子形交流発電機50の固定子側51は
同期運転時には直流励磁巻線53に直流電源54から直
流電流を流して励磁して、回転電機子56に交流電圧を
誘起させて、この交流電圧を整流回路55によって整流
し、この整流された電流をダイオード34を介して回転
子導体31.32に分流させることによって回転子導体
31.32を直流励磁して、固定子巻線21.22の作
る回転磁界と作用させて同期運転させる。
Furthermore, during synchronous operation, the stator side 51 of the rotating armature type AC generator 50 is excited by passing a DC current from a DC power supply 54 through the DC excitation winding 53 to induce an AC voltage in the rotating armature 56. This AC voltage is rectified by the rectifier circuit 55, and this rectified current is shunted to the rotor conductor 31.32 via the diode 34, thereby DC exciting the rotor conductor 31.32, and the stator winding 21 .22 generates a rotating magnetic field for synchronous operation.

この方法は回転子導体31.32に流れる整流電流を整
流回路55によって全波整流とすることができるので、
前記第1の実施例の半波整流のものより同期トルクが大
になる利点がある。
In this method, the rectified current flowing through the rotor conductors 31 and 32 can be full-wave rectified by the rectifier circuit 55.
There is an advantage that the synchronous torque is larger than that of the half-wave rectification of the first embodiment.

次に前記第1および第2の実施例における直流励磁の別
の実施例を第6図において示す。
Next, another example of direct current excitation in the first and second examples is shown in FIG.

この実施例が前記第1および第2の実施例と異なる点は
第1図および第4図に示す直流励磁巻線40を省略して
固定子巻線の一部を流用したことである。すなわち第6
図に示すように固定子巻線21.22の1相にサイリス
タ71とダイオード72を逆極性に並列に接続した回路
を挿入しである。そしてこれは同期運転時に必要な前記
第1および第2の実施例において述べた静止磁界を作る
時に作動する。すなわちサイリスタ71の点弧角を00
より太き(すると、ダイオード72によって固定子巻線
21. 22に直流分を含んだ電流が流れて静止磁界を
作ることが可能である。このようにすれば固定子巻線と
は別個の直流励磁巻線を設ける必要がなく構造が簡単に
なる利点がある。
This embodiment differs from the first and second embodiments in that the DC excitation winding 40 shown in FIGS. 1 and 4 is omitted and a portion of the stator winding is used. That is, the sixth
As shown in the figure, a circuit in which a thyristor 71 and a diode 72 are connected in parallel with opposite polarities is inserted into one phase of the stator windings 21 and 22. This operates when creating the static magnetic field described in the first and second embodiments, which is necessary during synchronous operation. In other words, the firing angle of the thyristor 71 is set to 00.
thicker (then, a current containing a DC component flows through the stator windings 21 and 22 due to the diode 72, making it possible to create a stationary magnetic field. In this way, it is possible to create a static magnetic field with a DC component separate from the stator windings). This has the advantage of simplifying the structure since there is no need to provide an excitation winding.

しかしこの場合固定子巻線21.22の作る回転磁界は
歪むので、対称座標法による正相分回転磁界によって同
期トルクを生じることになる。その他の作用は第1およ
び第2の実施例と同様である。
However, in this case, the rotating magnetic field created by the stator windings 21 and 22 is distorted, so a synchronous torque is generated by the positive phase rotating magnetic field based on the symmetrical coordinate method. Other operations are similar to those in the first and second embodiments.

以上のように構成したので本発明の複数固定子誘導同期
電動機は起動時には誘導電動機として起動し、同期速度
に近づくと、したがって、すべりがS=0.05付近か
ら同期速度に吸引されて同期電動機として回転するもの
である。
With the above configuration, the multiple stator induction synchronous motor of the present invention starts as an induction motor at startup, and when it approaches the synchronous speed, the slip is attracted to the synchronous speed from around S = 0.05, and the synchronous motor It rotates as follows.

〔効 果〕〔effect〕

以上の構成から本発明の複数固定子誘導同期電動機は、
起動時は従来の誘導電動機と同様のトルク特性で行い、
すベリSかたとえばS−005付近から同期速度に移行
して同期電動機のトルク特性で運転するものである。こ
の複数固定子誘導同期電動機は、起動機やブラシを必要
としないからその構造、構成が簡単となるだけでな(、
従来の誘導電動機と同様のトルク特性で起動できるので
重負荷かかかったままで起動と同期運転が可能となる。
From the above configuration, the multiple stator induction synchronous motor of the present invention has the following features:
At startup, it has the same torque characteristics as a conventional induction motor,
For example, the Suberi S shifts to a synchronous speed from around S-005 and operates with the torque characteristics of a synchronous motor. This multi-stator induction synchronous motor does not require a starter or brushes, which not only simplifies its structure and configuration.
Since it can be started with the same torque characteristics as conventional induction motors, it is possible to start and operate synchronously even under heavy loads.

ところで、本発明の複数固定子誘導同期電動機は、誘導
電動機と同期電動機との両方のトルク特性を備えるから
、どちらの電動機のトルク特性でも使用可能である。こ
のことは、同期速度で運転中、何らかの原因で脱調した
場合でも、同期電動機トルク特性から誘導電動機のトル
ク特性に切換え可能であるから、一般の同期電動機のよ
うに電動機が急激に停止することがない。
By the way, since the multiple stator induction synchronous motor of the present invention has the torque characteristics of both an induction motor and a synchronous motor, it can be used with the torque characteristics of either motor. This means that even if the motor loses synchronization for some reason while operating at synchronous speed, it is possible to switch from the synchronous motor torque characteristic to the induction motor torque characteristic, so the motor will not suddenly stop like a general synchronous motor. There is no.

以上のようにブラシがなく複雑な構成を必要としないか
ら保守点検も容易であり、起動トルクが大きく同期トル
クも大きい同期電動機の提供が可能となった。
As described above, since there are no brushes and no complicated configuration is required, maintenance and inspection are easy, and it has become possible to provide a synchronous motor with a large starting torque and a large synchronous torque.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の実施例の固定子巻線側と回転子導体側の
簡略な構成図、第2図は第1の実施例の回転子導体をダ
イオードで連絡した簡略な構成図、第3図は第1の実施
例の回転子導体をダイオードで連絡した別の簡略な構成
図、第4図は第2の実施例の固定子巻線側と回転子導体
側の簡略な正断面図、第5図は第2の実施例の回転子導
体と整流回路とをダイオードを介して接続した簡略な構
成図、第6図は、第1および第2の実施例に示す固定子
側直流励磁回路の別の実施例図、第7図は、本発明の同
期電動機のトルク特性の一例を示す図である。 10・・・回転軸、20・・・固定子側、21・・・固
定子巻線、22・・・固定子巻線、30・・・回転子側
、31・・・回転子導体、32・・・回転子導体、33
・・・短絡環、34・・・ダイオード、35・・・回転
子側、36・・・連絡環、37・・・固定子に対向しな
い回転子導体部分、40・・・直流励磁巻線、50・・
・回転電機子形交流発電機、51・・・交流発電機の固
定子側、52・・・交流発電機の回転電機子側、53・
・・直流励磁巻線、54・・・直流電源、55・・・整
流回路、56・・・回転電機子、70・・・固定子側、
71・・・サイリスタ、72・・・ダイオード。
Figure 1 is a simplified configuration diagram of the stator winding side and rotor conductor side of the first embodiment, Figure 2 is a simplified configuration diagram of the rotor conductors of the first embodiment connected by diodes, Fig. 3 is another simple configuration diagram in which the rotor conductors of the first embodiment are connected through diodes, and Fig. 4 is a simple front cross-sectional view of the stator winding side and the rotor conductor side of the second embodiment. , FIG. 5 is a simple configuration diagram in which the rotor conductor and rectifier circuit of the second embodiment are connected via diodes, and FIG. 6 is a diagram showing the stator side DC excitation shown in the first and second embodiments. Another embodiment of the circuit, FIG. 7, is a diagram showing an example of the torque characteristics of the synchronous motor of the present invention. DESCRIPTION OF SYMBOLS 10... Rotating shaft, 20... Stator side, 21... Stator winding, 22... Stator winding, 30... Rotor side, 31... Rotor conductor, 32 ...Rotor conductor, 33
... Short circuit ring, 34... Diode, 35... Rotor side, 36... Connection ring, 37... Rotor conductor portion not facing the stator, 40... DC excitation winding, 50...
- Rotating armature type alternator, 51... Stator side of the alternator, 52... Rotating armature side of the alternator, 53.
... DC excitation winding, 54 ... DC power supply, 55 ... Rectifier circuit, 56 ... Rotating armature, 70 ... Stator side,
71...thyristor, 72...diode.

Claims (3)

【特許請求の範囲】[Claims] (1)同一回転軸上に任意の間隔をおいて設けた複数個
の回転子コアを有し、該複数個の回転子コアに連通する
導体を複数個設け、その両端を短絡してかご形導体とし
た回転子と、前記各回転子コアにそれぞれ対向して周設
した複数個の固定子と、前記複数個の回転子コアに連通
する導体の前記固定子に対向しない部分でお互いに電気
角で180゜に位置する導体間を連結するダイオードと
、前記複数個の固定子のうち特定の固定子がこれに対峙
する回転子コアの周囲に生じる回転磁界と他の固定子が
これに対峙する回転子コアの周囲に生じる回転磁界との
間に位相差を生じさせる電圧移相装置及び前記複数個の
固定子に設けた直流励磁回路とにより構成することを特
徴とする複数固定子誘導同期電動機。
(1) It has a plurality of rotor cores arranged at arbitrary intervals on the same rotating shaft, a plurality of conductors are provided that communicate with the plurality of rotor cores, and both ends are short-circuited to form a squirrel cage. A rotor that is a conductor, a plurality of stators disposed around each of the rotor cores facing each other, and a portion of the conductor that communicates with the plurality of rotor cores that does not face the stator are electrically connected to each other. A diode connecting conductors located at 180 degrees at a corner, a rotating magnetic field generated around a rotor core with which a specific stator of the plurality of stators faces, and another stator with which it faces. and a DC excitation circuit provided in the plurality of stators. Electric motor.
(2)同一回転軸上に任意の間隔をおいて設けた複数個
の回転子コアを有し、該複数個の回転子コアに連通する
導体を複数個設け、その両端を短絡してかご形導体とし
た回転子と、前記各回転子コアにそれぞれ対向して周設
した複数個の固定子と、前記複数個の固定子のうち特定
の固定子がこれに対峙する回転子コアの周囲に生じる回
転磁界と他の固定子がこれに対峙する回転子コアの周囲
に生じる回転磁界との間に位相差を生じさせる電圧移相
装置と、前記回転軸に直結して整流回路を有する回転電
機子と該回転電機子に対向して周設した直流励磁用の固
定子とからなる回転電機子形発電機とにより構成すると
共に、前記回転電機子の整流回路の直流出力を、前記複
数個の回転子コアに連通する導体の前記固定子に対向し
ない部分でお互いに電気角で180゜に位置する導体間
にダイオードを介して並列に接続したことを特徴とする
複数固定子誘導同期電動機。
(2) It has a plurality of rotor cores arranged at arbitrary intervals on the same rotating shaft, a plurality of conductors are provided that communicate with the plurality of rotor cores, and both ends are short-circuited to form a squirrel cage shape. A rotor as a conductor, a plurality of stators disposed around each of the rotor cores facing each other, and a specific stator among the plurality of stators surrounding the rotor core facing the rotor core. A rotating electric machine having a voltage phase shift device that creates a phase difference between a generated rotating magnetic field and a rotating magnetic field generated around a rotor core opposed by another stator, and a rectifier circuit directly connected to the rotating shaft. and a stator for direct current excitation disposed around the rotary armature in opposition to the rotary armature. A multi-stator induction synchronous motor, characterized in that conductors communicating with a rotor core are connected in parallel via diodes between conductors located at an electrical angle of 180 degrees from each other in a portion not facing the stator.
(3)前記請求項(1)または(2)記載の複数固定子
誘導同期電動機であって、直流励磁回路は、固定子巻線
の1相にサイリスタとダイオードを逆極性に並列に接続
した回路を挿入したものであることを特徴とする複数固
定子誘導同期電動機。
(3) The multi-stator induction synchronous motor according to claim (1) or (2), wherein the DC excitation circuit is a circuit in which a thyristor and a diode are connected in parallel with opposite polarities to one phase of the stator winding. A multiple stator induction synchronous motor characterized by having a plurality of stators inserted therein.
JP2057487A 1989-10-27 1990-03-07 Two stator induction synchronous motor Expired - Fee Related JP2893352B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2057487A JP2893352B2 (en) 1990-03-07 1990-03-07 Two stator induction synchronous motor
KR1019920700980A KR0167654B1 (en) 1989-10-27 1990-10-24 Multiple-stator synchronous induction motor
US07/849,078 US5796233A (en) 1989-10-27 1990-10-24 Multiple-stator induction synchronous motor
CA002071542A CA2071542C (en) 1989-10-27 1990-10-24 Multiple-stator induction synchronous motor
DK90915825.5T DK0570582T3 (en) 1989-10-27 1990-10-24 Synchronous induction motor with a plurality of stators
EP90915825A EP0570582B1 (en) 1989-10-27 1990-10-24 Multiple-stator synchronous induction motor
AU66089/90A AU656885B2 (en) 1989-10-27 1990-10-24 Multiple-stator synchronous induction motor
PCT/JP1990/001366 WO1991007005A1 (en) 1989-10-27 1990-10-24 Multiple-stator synchronous induction motor
DE69015213T DE69015213T2 (en) 1989-10-27 1990-10-24 SYNCHRONOUS INDUCTION MOTOR WITH MULTIPLE STAND.
MYPI90001866A MY107152A (en) 1989-10-27 1990-10-26 Induction synchronous motor
FI921856A FI921856A0 (en) 1989-10-27 1992-04-24 SYNCHRONIZED INDICATORS WITH MULTIPLA STATORER.
FI921857A FI107654B (en) 1989-10-27 1992-04-24 Synchronized induction motor with multiple stators
NO921618A NO921618D0 (en) 1989-10-27 1992-04-27 MULTI-STATOR INDUCTION SYNCHRON MOTOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2057487A JP2893352B2 (en) 1990-03-07 1990-03-07 Two stator induction synchronous motor

Publications (2)

Publication Number Publication Date
JPH03261355A true JPH03261355A (en) 1991-11-21
JP2893352B2 JP2893352B2 (en) 1999-05-17

Family

ID=13057076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2057487A Expired - Fee Related JP2893352B2 (en) 1989-10-27 1990-03-07 Two stator induction synchronous motor

Country Status (1)

Country Link
JP (1) JP2893352B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1296443A2 (en) * 2001-09-19 2003-03-26 Parker Hannifin Corporation Motor driver and system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1296443A2 (en) * 2001-09-19 2003-03-26 Parker Hannifin Corporation Motor driver and system
EP1296443A3 (en) * 2001-09-19 2004-01-14 Parker Hannifin Corporation Motor driver and system
US6815920B2 (en) 2001-09-19 2004-11-09 Parker-Hannifin Corporation Motor driver and system with phase-spaced redundancy

Also Published As

Publication number Publication date
JP2893352B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
KR100215534B1 (en) Dual-stator induction synchronous motor
JP3033621B2 (en) Brushless induction synchronous motor
EP0570582B1 (en) Multiple-stator synchronous induction motor
US4110669A (en) Synchronous machine control system
JP2927855B2 (en) Multiple stator induction synchronous motor
JP2893352B2 (en) Two stator induction synchronous motor
JP2828319B2 (en) Two stator induction synchronous motor
JPH06335271A (en) Synchronous motor
JP2975400B2 (en) 2 stator induction synchronous motor
JP3062231B2 (en) Brushless single-phase induction synchronous motor
JP3115310B2 (en) 2 stator induction synchronous motor
JPH06245450A (en) Synchronous motor
JP3358666B2 (en) Synchronous motor
JP3413816B2 (en) Synchronous motor
JPH11252876A (en) Reluctance motor, apparatus and method for driving the motor
JP2893353B2 (en) Two stator induction synchronous motor
JPH05336716A (en) Brushless single-phase half speed synchronous motor
JP2989881B2 (en) 2 stator induction synchronous motor
JPH06253513A (en) Synchronuous motor
JPH06284656A (en) Induction generator
JPH05344695A (en) Synchronous motor
JPH0956127A (en) Ac induction motor
JPS6243423B2 (en)
JPH11196554A (en) Winding structure for permanent magnet incorporating synchronous motor
JPS6271461A (en) Structure of rotary electric machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees