JPH06253513A - Synchronuous motor - Google Patents

Synchronuous motor

Info

Publication number
JPH06253513A
JPH06253513A JP6301493A JP6301493A JPH06253513A JP H06253513 A JPH06253513 A JP H06253513A JP 6301493 A JP6301493 A JP 6301493A JP 6301493 A JP6301493 A JP 6301493A JP H06253513 A JPH06253513 A JP H06253513A
Authority
JP
Japan
Prior art keywords
winding
rotor
stator
phase
exciting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6301493A
Other languages
Japanese (ja)
Inventor
Toshihiko Satake
利彦 佐竹
Satoru Satake
覚 佐竹
Yukio Onoki
幸男 大野木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Original Assignee
Satake Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd filed Critical Satake Engineering Co Ltd
Priority to JP6301493A priority Critical patent/JPH06253513A/en
Publication of JPH06253513A publication Critical patent/JPH06253513A/en
Pending legal-status Critical Current

Links

Landscapes

  • Synchronous Machinery (AREA)

Abstract

PURPOSE:To obtain a synchronous motor requiring no brush structure for DC excitation in which the stator is not affected by the AC component of DC exciting circuit. CONSTITUTION:The synchronous motor is constituted of the stator side l comprising a three-phase star-connected main winding 3 connected with a three-phase AC power supply 5 and an exciting circuit 7 where three-phase exciting windings 4 are connected in series with a diode D1, and the rotor side 2 comprising a three-phase star-connected rotor winding 6 connected in parallel with diodes D2 and D3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固定子に影響のない励
磁巻線とした同期電動機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synchronous motor having an excitation winding that does not affect the stator.

【0002】[0002]

【従来の技術】一般の同期電動機は、その回転子を固定
子巻線の作る回転磁界の回転速度すなわち同期速度近く
まで起動機で加速し、直流電源からブラシによって回転
子巻線を直流励磁するようにしてある。
2. Description of the Related Art In a general synchronous motor, its rotor is accelerated by a starter to a rotational speed of a rotating magnetic field formed by a stator winding, that is, near a synchronous speed, and a rotor is DC-excited by a brush from a DC power source. Is done.

【0003】しかしながら、このブラシ付き同期電動機
は保守点検を必要とすることから保守費が嵩み、ブラシ
レス構造の同期電動機が望まれている。
However, since this brush-equipped synchronous motor requires maintenance and inspection, maintenance costs are high, and a brushless synchronous motor is desired.

【0004】回転子巻線を有する構造のブラシレス同期
電動機としては、交流励磁機と回転整流器を用いる交流
励磁機付きブラシレス同期電動機があるが、これは回路
構成が複雑で信頼性に欠けるという欠点がある。また回
転子巻線にダイオ−ドを接続してインバ−タの方形波電
圧による高調波磁界を利用するブラシレス自励形三相同
期電動機があるが、回転子の界磁起磁力が不足で十分な
出力が得られない欠点がある。
As a brushless synchronous motor having a structure having a rotor winding, there is a brushless synchronous motor with an AC exciter using an AC exciter and a rotary rectifier. However, this has a drawback that the circuit configuration is complicated and the reliability is low. is there. There is also a brushless self-excited three-phase synchronous motor that utilizes a harmonic magnetic field generated by the square wave voltage of the inverter by connecting a diode to the rotor winding, but the field magnetomotive force of the rotor is insufficient. However, there is a drawback that it cannot obtain high output.

【0005】更に前記のインバ−タ駆動のブラシレス同
期電動機において、三相の固定子巻線の一相にダイオ−
ドを挿入して固定子の作る正相分回転磁界に静止磁界を
重畳して、同期速度付近で回転する回転子巻線に静止磁
界による交流電圧を誘起させて、これをダイオ−ドで整
流することによって回転子巻線を直流励磁し、正相分回
転磁界を作用させて同期トルクを発生するブラシレス自
励形三相同期電動機があるが、固定子の一相にダイオ−
ドを挿入しているため、固定子の三相回転磁界は欠相状
態に近くなり、スム−ズな回転が得られないだけでな
く、同期運転への引き入れも確実性に欠けるという欠点
があった。
Further, in the above-mentioned inverter-driven brushless synchronous motor, a diode is connected to one phase of the three-phase stator winding.
The static magnetic field generated by the stator is superposed on the rotating magnetic field for the positive phase to induce an AC voltage due to the static magnetic field in the rotor winding rotating near the synchronous speed, and this is rectified by the diode. There is a brushless self-excited three-phase synchronous motor that excites the rotor winding by direct current and applies a rotating magnetic field for the positive phase to generate synchronous torque.
Since the stator is inserted, the three-phase rotating magnetic field of the stator is close to the open phase state, not only smooth rotation can not be obtained, but also there is a drawback that it is not reliable in pulling into synchronous operation. It was

【0006】[0006]

【発明が解決しようとする課題】これらの従来技術の欠
点を解消するため、固定子に、固定子巻線と同様に固定
子の回転磁界によって誘起する直流励磁巻線とダイオ−
ドとによる直流励磁回路を設け、回転子コアに巻装した
回転子巻線をスタ−結線し該回転子巻線の線間に並列に
ダイオ−ドを接続した回転子とにより構成したものがあ
る。
In order to solve these drawbacks of the prior art, a DC excitation winding and a diode, which are induced by the rotating magnetic field of the stator, are formed in the stator in the same manner as the stator winding.
And a rotor in which a rotor winding wound around a rotor core is star-connected and a diode is connected in parallel between the lines of the rotor winding. is there.

【0007】この同期電動機の直流励磁回路には一般的
に固定子巻線の回転磁界によって基本波の交流電圧を誘
導するようになる。この固定子の基本波により誘導され
た励磁巻線の交流電圧は、ダイオ−ドにより整流された
直流とともに励磁巻線に重畳して交流電流を流し、さら
にこの励磁巻線の交流電流は固定子巻線の励磁電流に加
わるように作用するので、固定子巻線の交流電流は大き
くなり、主巻線の容量が大きくなる欠点を有する。この
欠点を解消するため励磁回路に大きな直列インダクタン
スLが必要となる。このため、大きな直列リアクトルを
挿入したり、あるいは別の方法として固定子巻線の影響
を受けないように固定子とは極数の異なる励磁巻線とこ
の励磁巻線の極数に対応した別の回転子を構成すること
があった。
In the direct current excitation circuit of this synchronous motor, an alternating voltage of the fundamental wave is generally induced by the rotating magnetic field of the stator winding. The AC voltage of the excitation winding induced by the fundamental wave of the stator is superimposed on the excitation winding together with the DC rectified by the diode to flow an AC current. Since it acts so as to add to the exciting current of the winding, the AC current of the stator winding becomes large and the capacity of the main winding becomes large. To eliminate this drawback, a large series inductance L is required in the exciting circuit. For this reason, insert a large series reactor, or, as another method, separate the excitation winding with a different number of poles from the stator and the number of poles of this excitation winding so as not to be affected by the stator winding. Had to make up the rotor.

【0008】このような技術は同期電動機の構造を複雑
にするだけでなく大型となるため、汎用の同期電動機に
おいては採用することはできないものである。
Since such a technique not only complicates the structure of the synchronous motor but also makes it large, it cannot be used in a general-purpose synchronous motor.

【0009】以上のことから、同期トルクが大きく、ブ
ラシレスで保守の容易な同期電動機の提供と共に、回転
子の直流励磁回路を固定子の同一相に巻線を設けるこれ
までのような簡単な構成としても、その他の構成や性能
に影響のない同期電動機の提供を技術的課題とする。
In view of the above, a brushless, easy-to-maintain synchronous motor having a large synchronous torque is provided, and a DC exciting circuit of the rotor is provided with windings in the same phase of the stator. Even so, the technical issue is to provide a synchronous motor that does not affect other configurations or performances.

【0010】[0010]

【課題を解決するための手段】本出願人は前記課題を解
決するために、回転子コアに三相の回転子巻線を設けて
三相スタ−結線すると共に該回転子巻線の2つ線間にダ
イオ−ドを接続した回転子と、前記回転子コアに対向し
て周設した固定子コアを有し、該固定子コアに三相スタ
−結線にした主巻線を巻装して三相電源に接続した固定
子と、前記固定子の主巻線の同一相にそれぞれ巻線を設
け、該巻線を固定子の回転磁界により各巻線に誘起する
電圧の総和が零にならないように直列結線して励磁巻線
とし該励磁巻線の端子を整流素子を介して接続した励磁
回路とにより構成した同期電動機により前記課題を解決
するための手段とした。
In order to solve the above-mentioned problems, the applicant of the present invention provides a rotor core with three-phase rotor windings to perform three-phase star connection and to connect two of the rotor windings. A rotor having a diode connected between the wires and a stator core provided around the rotor core so as to face the rotor core, and a main winding having a three-phase star connection is wound around the stator core. Windings are provided in the same phase of the stator connected to the three-phase power source and the main winding of the stator, and the total voltage induced in each winding by the rotating magnetic field of the stator does not become zero. As described above, a means for solving the above-mentioned problems is provided by a synchronous motor which is constituted by an exciting circuit which is connected in series to form an exciting coil and an exciting circuit in which terminals of the exciting coil are connected via a rectifying element.

【0011】[0011]

【作用】さて従来、固定子巻線の回転磁界によって励磁
巻線に誘起する電圧は、励磁巻線のダイオ−ドを通じて
流れ、整流されて静止磁界を作るが、同時に交流分の電
流も存在し、この電流は逆に固定子巻線に補償電流を流
すことになる。補償電流は固定子に流れる電流に加わっ
て固定子側の容量アップを余儀なくされ、力率低下を招
く原因となっていた。
In the past, the voltage induced in the exciting winding by the rotating magnetic field of the stator winding flows through the diode of the exciting winding and is rectified to form a static magnetic field, but at the same time, there is an alternating current. On the contrary, this current causes a compensation current to flow in the stator winding. The compensating current is forced to increase the capacity of the stator side in addition to the current flowing through the stator, which causes a decrease in power factor.

【0012】本発明によると、励磁巻線をダイオ−ド等
の整流素子を介して直列に接続するようにしたので、励
磁巻線には固定子の回転磁界により誘起した交流分電圧
とダイオ−ドにより整流された直流分電圧との両方の電
流が加わり流れるようになる。この直流分は前述のよう
に回転子を直流励磁するが一方の交流分は固定子側に補
償電流を流すように作用する。しかしながら励磁巻線の
各巻線にかかる電圧の総和が零にならないように結線し
てあるので、この固定子側に流れる補償電流は、スタ−
結線した固定子巻線においてはスタ−結線の中性点を中
心に電流の総和が零になるように流れ得ないので、結果
的に励磁回路による補償電流は固定子側には発生しない
ものである。
According to the present invention, the exciting windings are connected in series via a rectifying element such as a diode. Therefore, the exciting windings have an alternating voltage and a diode induced by the rotating magnetic field of the stator. Both the current and the DC component voltage rectified by the current flow. This direct current component excites the rotor by direct current as described above, while one alternating current component acts so as to flow a compensation current to the stator side. However, since the wires are connected so that the total voltage applied to each winding of the excitation winding does not become zero, the compensating current flowing on this stator side is
In the connected stator winding, the current cannot flow so that the total current becomes zero around the neutral point of the star connection, so that the compensation current due to the excitation circuit does not occur on the stator side. is there.

【0013】ここで同期トルクを考察してみるに、励磁
巻線の静止磁界で回転子に誘起する電圧によって回転子
巻線に整流された直流電流が流れて、回転子巻線が直流
界磁巻線の作用をするので、同期トルクが大きく、ブラ
シなどの保守を必要としない同期電動機を提供すること
が可能となった。
Considering the synchronous torque here, a DC current rectified in the rotor winding by a voltage induced in the rotor by the static magnetic field of the excitation winding causes a flow of DC current in the rotor winding. Since it functions as a winding, it is possible to provide a synchronous motor that has a large synchronous torque and does not require maintenance such as brushes.

【0014】[0014]

【実施例】本発明は主として回転子巻線をスタ−結線し
た例について説明するが、スタ−接続でもデルタ−接続
のいずれでも同様である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention mainly describes an example in which rotor windings are star-connected, but the same applies to both star connection and delta connection.

【0015】図1により本発明の実施例を説明する。図
1に示すものは本発明の同期電動機の固定子と回転子の
巻線だけを抜き出したものである。まず符号1は同期電
動機の固定子側を示し、符号2は同じく回転子側を示し
ている。
An embodiment of the present invention will be described with reference to FIG. In FIG. 1, only the stator and rotor windings of the synchronous motor of the present invention are extracted. First, reference numeral 1 indicates the stator side of the synchronous motor, and reference numeral 2 also indicates the rotor side.

【0016】まず固定子側1は、固定子コア(省略)に
設けた、スタ−結線の主巻線3が三相交流電源5に接続
されている。前記固定子側1の主巻線3の同一相にそれ
ぞれ励磁巻線4を設けダイオ−ドDを介して直列に接
続してあり励磁回路7としてある。
First, on the stator side 1, a main winding 3 of a star connection provided on a stator core (not shown) is connected to a three-phase AC power supply 5. Exciting windings 4 are provided in the same phase of the main winding 3 on the stator side 1 and are connected in series via a diode D 1 to form an exciting circuit 7.

【0017】一方回転子側2は、回転子コア(省略)の
それぞれに回転子巻線6を設け、この回転子巻線6をス
タ−に接続すると共に、該回転子巻線6の線間に並列に
ダイオ−ドD,Dが接続してある。また、図2およ
び図3により更に説明すると、主巻線3に対峙する励磁
巻線4に、前記主巻線3の電圧Eによって誘起する電
圧をEとする。また、主巻線3に対峙する回転子巻線
6に誘起する電圧をeとする。
On the other hand, on the rotor side 2, a rotor winding 6 is provided on each rotor core (omitted), the rotor winding 6 is connected to a star, and the line between the rotor windings 6 is connected. Diodes D 2 and D 3 are connected in parallel to the. 2 and 3, the voltage induced in the excitation winding 4 facing the main winding 3 by the voltage E 1 of the main winding 3 is E 2 . Further, the voltage induced in the rotor winding 6 facing the main winding 3 is e.

【0018】以上のように構成した本発明の同期電動機
は始動において、自己起動たとえば誘導機始動ができな
いので、電源にインバ−タを使用して低周波で同期引き
入れをして、その後周波数を上昇させて高速運転に移行
させる。
Since the synchronous motor of the present invention configured as described above cannot be self-started, for example, the induction motor can not be started, the inverter is used as a power source to synchronously pull in at a low frequency, and then the frequency is increased. And shift to high-speed operation.

【0019】このとき、図2に明らかなように固定子の
回転磁界(電圧E、Eε−J2π/3、Eε
J2π/3)によって固定子コアの励磁巻線4にそれぞ
れ電圧E、Eε−J2π/3、EεJ2π/3
誘起している。このとき励磁巻線4を図2のように結線
すると端子X−Y間の電圧Vは
At this time, as is apparent from FIG. 2, the rotating magnetic field of the stator (voltages E 1 , E 1 ε- J2π / 3 , E 1 ε).
J2π / 3 ) induces voltages E 2 , E 2 ε- J2π / 3 , and E 2 ε J2π / 3 in the excitation winding 4 of the stator core, respectively. At this time, when the exciting winding 4 is connected as shown in FIG. 2, the voltage V between the terminals X and Y becomes

【0020】[0020]

【数1】 ここで、COS(2π/3)を考える。図3から明らか
なように
[Equation 1] Here, consider COS (2π / 3). As is clear from FIG.

【0021】[0021]

【数2】 となる。ここにおいて励磁巻線4を結線した端子X−Y
間には電圧V=2Eなる電圧が発生している。つまり
同期運転時にはダイオ−ドDにV=2Eの電圧が印
加され励磁巻線4に電流が流れるようになる。このダイ
オ−ドDによって流れる電流は直流分と交流分とが一
般的に流れると考えられるが、直流分と交流分に分けて
説明する。
[Equation 2] Becomes Here, the terminal XY in which the excitation winding 4 is connected
A voltage V = 2E 2 is generated between them. That is, during the synchronous operation, the voltage V = 2E 2 is applied to the diode D 1 so that the current flows through the exciting winding 4. It is considered that the current flowing through the diode D 1 is generally a direct current component and an alternating current component, but will be described separately for the direct current component and the alternating current component.

【0022】まず図4にダイオ−ドDによる整流電流
の直流分Iを示した。次にこの直流分Iによって励磁巻
線4に作られる磁束を考える。直流分の通路は図4のと
おりであり、この電流Iによって磁束φを生じるものと
すると、まず励磁巻線4のa,b,c各相の巻線のIに
よってできる磁束Φはa,b,c巻線が3相に巻装され
ていることから、a相の磁束φを基準にとり各相の磁束
は空間的に2極で考えると図5(a)のようになり、こ
れが直列に接続されているので合成磁束Φは
First, FIG. 4 shows the direct current component I of the rectified current by the diode D 1 . Next, consider the magnetic flux generated in the excitation winding 4 by this DC component I. The path for the direct current component is as shown in FIG. 4, and assuming that the magnetic flux φ is generated by this current I, first, the magnetic flux Φ produced by I of the windings a, b, c of the exciting winding 4 is a, b. , C windings are wound in three phases, and when the magnetic flux φ of the a phase is used as a reference and the magnetic flux of each phase is spatially considered as two poles, it becomes as shown in FIG. Since it is connected, the synthetic magnetic flux Φ is

【0023】[0023]

【数3】 となる(図5(b))。[Equation 3] (FIG. 5B).

【0024】従って直流分Iによってできる励磁巻線の
磁束Φは図4のようになる。この磁束Φは静止磁界であ
るから、回転子が回転すると、磁束によって回転子に起
電力が図1の電圧eのように生じる。
Therefore, the magnetic flux Φ of the excitation winding formed by the DC component I is as shown in FIG. Since this magnetic flux Φ is a static magnetic field, when the rotor rotates, an electromotive force is generated in the rotor by the magnetic flux like the voltage e in FIG.

【0025】さて、前述の静止磁界によって回転子巻線
6に電圧eを誘起すると、回転子巻線6にはダイオ−ド
,Dを通じて整流された電流が流れ、回転子巻線
6は直流分で励磁されて磁極を形成し、主巻線3の回転
磁界に引かれて回転子が同期速度に至るものとなる。
When a voltage e is induced in the rotor winding 6 by the above-mentioned static magnetic field, a rectified current flows through the rotor winding 6 through the diodes D 2 and D 3 and the rotor winding 6 Is excited by a direct current component to form a magnetic pole, and is attracted by the rotating magnetic field of the main winding 3 to bring the rotor to a synchronous speed.

【0026】次に図4のダイオ−ドDに流れる整流電
流の交流分について見ると、この交流分をiとするとi
は図6のように流れている。このように励磁巻線4に流
れる交流電流iが主巻線3に補償電流i’を流すと仮定
すると、中性点0においてキルヒホツフの電流則が
Next, looking at the AC component of the rectified current flowing through the diode D 1 in FIG. 4, letting this AC component be i
Flows as shown in FIG. Assuming that the alternating current i flowing through the excitation winding 4 causes the compensation current i ′ to flow through the main winding 3 in this way, at the neutral point 0, Kirchhoff's current law is

【0027】[0027]

【数4】 となって成立しない。したがって主巻線3には励磁巻線
4に流れる交流分iの補償電流i’は流れないことにな
る。すなわち主巻線3と励磁巻線4の間の交流電流によ
る干渉はないということになる。結果的に励磁巻線4
は、大きい励磁インダクタンスを仮想的に有しこの仮想
励磁インダクタンスを通じて交流分iが流れるように作
用していることになる。
[Equation 4] It does not hold. Therefore, the compensating current i'of the AC component i flowing in the exciting winding 4 does not flow in the main winding 3. That is, there is no interference due to the alternating current between the main winding 3 and the excitation winding 4. As a result, excitation winding 4
Has a large exciting inductance and acts so that the alternating current component i flows through the virtual exciting inductance.

【0028】さて従来、固定子巻線3の回転磁界によっ
て励磁巻線4に誘起する電圧は、前述のように励磁巻線
4のダイオ−ドDを通じて流れ、整流されて静止磁界
を作るが、同時に交流分の電流も存在し、この電流は逆
に固定子巻線3に補償電流を流すことになっていた。し
かも補償電流は固定子に流れる電流に加わって固定子側
の容量アップを余儀なくされ、力率低下を招く原因とな
っていた。
Conventionally, the voltage induced in the exciting winding 4 by the rotating magnetic field of the stator winding 3 flows through the diode D 1 of the exciting winding 4 as described above and is rectified to form a static magnetic field. At the same time, there is an alternating current, and this current, on the contrary, was supposed to flow a compensation current in the stator winding 3. Moreover, the compensating current is forced to increase the capacity of the stator side in addition to the current flowing through the stator, causing a reduction in power factor.

【0029】本発明によると、励磁巻線4をダイオ−ド
を介して直列に結線するようにしたので、励磁巻線4に
よる交流分電流は、固定子への影響を無視できる程に抑
制されて、従来大きなリアクタンスを必要としていた同
期電動機から固定子側に影響のない直流励磁回路とする
ことが可能となった。
According to the present invention, since the exciting winding 4 is connected in series via the diode, the alternating current component of the exciting winding 4 is suppressed to a negligible influence on the stator. As a result, it has become possible to change from a synchronous motor, which previously required a large reactance, to a DC excitation circuit that does not affect the stator side.

【0030】ところで前述のダイオ−ドDをサイリス
タで構成することにより励磁巻線の励磁電流を制御する
ことが可能となり、この場合、励磁電流を制御すること
により静止磁界を制御することができる。
By constructing the diode D 1 with a thyristor, the exciting current of the exciting winding can be controlled. In this case, the static magnetic field can be controlled by controlling the exciting current. .

【0031】ところで、本発明の同期電動機は、この構
成において回転子を他の駆動源によって回転させること
によって発電機として利用可能である。
By the way, the synchronous motor of the present invention can be used as a generator by rotating the rotor by another drive source in this configuration.

【0032】[0032]

【発明の効果】以上の構成から本発明の同期電動機は、
直流電源、またブラシを必要としないから、その構造や
構成が簡単となるだけでなく、励磁巻線に流れる電流に
誘起して流れる固定子主巻線の補償電流の影響を抑制す
ることができたので、電動機力率改善に大きく貢献でき
るものである。
As described above, the synchronous motor of the present invention has the following structure.
Since it does not require a DC power supply or brush, it not only simplifies the structure and configuration, but also suppresses the influence of the compensating current of the stator main winding that is induced by the current flowing in the excitation winding. Therefore, it can greatly contribute to the improvement of the motor power factor.

【0033】以上のようにブラシがなく複雑な構成を必
要としないから、保守点検が容易で信頼性も高く、同期
トルクの大きい同期電動機の提供が可能となった。
As described above, since there is no brush and a complicated structure is not required, it is possible to provide a synchronous motor that is easy to maintain and highly reliable, and has a large synchronous torque.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の同期電動機による実施例の固定子と回
転子の巻線部分だけを抜きだして示した図である。
FIG. 1 is a diagram showing only a winding portion of a stator and a rotor of an embodiment of a synchronous motor according to the present invention.

【図2】主巻線と励磁巻線との間の誘起電圧を示した図
である。
FIG. 2 is a diagram showing an induced voltage between a main winding and an excitation winding.

【図3】励磁巻線に誘起される電圧のベクトル図であ
る。
FIG. 3 is a vector diagram of a voltage induced in an excitation winding.

【図4】同期運転時の励磁巻線の電流と静止磁束を示す
図である。
FIG. 4 is a diagram showing a current and a static magnetic flux of an excitation winding during synchronous operation.

【図5】同期運転時における、励磁巻線の各巻線の磁束
の合成を示すベクトル図である。
FIG. 5 is a vector diagram showing a combination of magnetic fluxes of respective windings of an excitation winding during synchronous operation.

【図6】励磁回路の交流分電流と主巻線の補償電流を示
す固定子の巻線部分だけを抜きだした図である。
FIG. 6 is a diagram in which only a winding portion of a stator showing an AC component current of an exciting circuit and a compensation current of a main winding is extracted.

【符号の説明】[Explanation of symbols]

1 固定子側 2 回転子側 3 主巻線 4 励磁巻線 5 三相交流電源 6 回転子巻線 7 励磁回路 D ダイオ−ド D ダイオ−ド D ダイオ−ド1 Stator side 2 Rotor side 3 Main winding 4 Excitation winding 5 Three-phase AC power supply 6 Rotor winding 7 Excitation circuit D 1 diode D 2 diode D 3 diode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 回転子コアに三相の回転子巻線を設けて
三相スタ−結線すると共に該回転子巻線の2つ線間にダ
イオ−ドを接続した回転子と、前記回転子コアに対向し
て周設した固定子コアを有し、該固定子コアに三相スタ
−結線にした主巻線を巻装して三相電源に接続した固定
子と、前記固定子の主巻線の同一相にそれぞれ巻線を設
け、該巻線を固定子の回転磁界により各巻線に誘起する
電圧の総和が零にならないように直列結線して励磁巻線
とし該励磁巻線の端子を整流素子を介して接続した励磁
回路とにより構成したことを特徴とする同期電動機。
1. A rotor in which a rotor core is provided with a three-phase rotor winding to perform three-phase star connection, and a diode is connected between two lines of the rotor winding, and the rotor. A stator having a stator core provided around the core so as to face the core, and a main winding having a three-phase star connection wound around the stator core and connected to a three-phase power source; Each winding is provided in the same phase of the winding, and the windings are connected in series so that the total voltage induced in each winding by the rotating magnetic field of the stator does not become zero to form an exciting winding. A synchronous motor comprising: an exciting circuit in which is connected via a rectifying element.
JP6301493A 1993-02-26 1993-02-26 Synchronuous motor Pending JPH06253513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6301493A JPH06253513A (en) 1993-02-26 1993-02-26 Synchronuous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6301493A JPH06253513A (en) 1993-02-26 1993-02-26 Synchronuous motor

Publications (1)

Publication Number Publication Date
JPH06253513A true JPH06253513A (en) 1994-09-09

Family

ID=13217049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6301493A Pending JPH06253513A (en) 1993-02-26 1993-02-26 Synchronuous motor

Country Status (1)

Country Link
JP (1) JPH06253513A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004086594A1 (en) * 2003-03-26 2004-10-07 Zhengfeng Zhu Star delta connection bias magnetic type reluctance motor
JP2012513184A (en) * 2008-12-18 2012-06-07 シマー エンジニアリング リミテッド Axial flux motor and generator assembly
JP2016046876A (en) * 2014-08-21 2016-04-04 スズキ株式会社 Rotary electric machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004086594A1 (en) * 2003-03-26 2004-10-07 Zhengfeng Zhu Star delta connection bias magnetic type reluctance motor
JP2012513184A (en) * 2008-12-18 2012-06-07 シマー エンジニアリング リミテッド Axial flux motor and generator assembly
US8922093B2 (en) 2008-12-18 2014-12-30 Scimar Engineering Ltd. Axial flux motor and generator assemblies
JP2016046876A (en) * 2014-08-21 2016-04-04 スズキ株式会社 Rotary electric machine

Similar Documents

Publication Publication Date Title
US8450963B2 (en) Brushless synchronous machine utilizing third harmonic excitation
JP3489105B2 (en) Brushless self-excited three-phase synchronous generator
US5796233A (en) Multiple-stator induction synchronous motor
US5012148A (en) AC machine system with induced DC field
JPH11220857A (en) Brushless three-phase synchronous generator
JPH06253513A (en) Synchronuous motor
JP2003134766A (en) Brushless electric rotating machine
JPH03245755A (en) Brushless self-excitation synchronous electric motor
JPH06335271A (en) Synchronous motor
JPH0516867Y2 (en)
JPS5961457A (en) Brushless 3-phase synchronous generator
JP3413816B2 (en) Synchronous motor
JPS6223348A (en) Brushless generator
JPH01264551A (en) Brushless self-excited synchronous generator
Chakraborty et al. Performance of a Doubly Excited Cylindrical Rotor Brushless Synchronous Generator
JPH06245450A (en) Synchronous motor
JPH05336716A (en) Brushless single-phase half speed synchronous motor
JPH0724930Y2 (en) Brushless single phase alternator
JPH06269151A (en) Brushless synchronous generator
JP2753721B2 (en) Brushless self-excited synchronous generator
JP3115310B2 (en) 2 stator induction synchronous motor
JPH1155912A (en) Cylindrical synchronous generator
JPH0626063Y2 (en) Brushless 4-pole 3-phase generator
JPH0424782Y2 (en)
JPH07264821A (en) Brushless 3-phase ac generator