JP3413816B2 - Synchronous motor - Google Patents

Synchronous motor

Info

Publication number
JP3413816B2
JP3413816B2 JP32131192A JP32131192A JP3413816B2 JP 3413816 B2 JP3413816 B2 JP 3413816B2 JP 32131192 A JP32131192 A JP 32131192A JP 32131192 A JP32131192 A JP 32131192A JP 3413816 B2 JP3413816 B2 JP 3413816B2
Authority
JP
Japan
Prior art keywords
winding
rotor
stator
phase
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32131192A
Other languages
Japanese (ja)
Other versions
JPH06153474A (en
Inventor
利彦 佐竹
覚 佐竹
幸男 大野木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Corp
Original Assignee
Satake Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Corp filed Critical Satake Corp
Priority to JP32131192A priority Critical patent/JP3413816B2/en
Publication of JPH06153474A publication Critical patent/JPH06153474A/en
Application granted granted Critical
Publication of JP3413816B2 publication Critical patent/JP3413816B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、誘導電動機として自己
起動し、同期運転に切り換える同期電動機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synchronous motor which is self-starting as an induction motor and switches to synchronous operation.

【0002】[0002]

【従来の技術】一般の同期電動機は、その回転子を固定
子巻線の作る回転磁界の回転速度すなわち同期速度近く
まで加速する起動機と、回転子巻線を直流励磁するため
のブラシおよび直流電源が必要である。
2. Description of the Related Art A general synchronous motor includes a starter for accelerating its rotor up to a rotational speed of a rotating magnetic field formed by a stator winding, that is, a synchronous speed, and a brush and a DC for exciting the rotor winding by direct current. Power is needed.

【0003】この起動機を省略して同期電動機自体に起
動トルクを持たせるようにしたのが誘導同期電動機であ
る。これは起動時に回転子巻線を短絡して誘導電動機と
して起動するために起動機を必要としないが、同期運転
に必要な回転子巻線の直流励磁のためにブラシを必要と
する。すなわち、回転子の回転速度が同期速度に近づく
と、回転子巻線の短絡を開放して外部の直流電源からブ
ラシを介して回転子巻線に直流電流を流して回転子に磁
極を作り、この磁極が固定子巻線の作る回転磁界に引っ
張られて回転子は同期速度で回転する。しかしながら、
このブラシ付き電動機は保守点検を必要とすることから
保守費が嵩み、ブラシレス構造で自己起動の可能な同期
電動機が望まれている。
An induction synchronous motor is one in which the synchronous motor itself is provided with a starting torque by omitting the starter. This does not require a starter to short-circuit the rotor winding at start-up and start it as an induction motor, but does require a brush for DC excitation of the rotor winding required for synchronous operation. That is, when the rotation speed of the rotor approaches the synchronous speed, the short circuit of the rotor winding is released, and a DC current is passed from the external DC power source to the rotor winding through the brush to form a magnetic pole on the rotor. This magnetic pole is pulled by the rotating magnetic field created by the stator windings, and the rotor rotates at a synchronous speed. However,
Since this brushed electric motor requires maintenance and inspection, the maintenance cost is high, and a synchronous electric motor having a brushless structure and capable of self-starting is desired.

【0004】回転子巻線を有する構造のブラシレス同期
電動機としては、交流励磁機と回転整流器を用いる交流
励磁機付きブレシレス同期電動機があるが、これは回路
構成が複雑で信頼性に欠けるという欠点がある。また回
転子巻線にダイオ−ドを接続してインバ−タの方形波電
圧による高調波磁界を利用するブラシレス自励形三相同
期電動機があるが、これは誘導機始動が不可能で、回転
子の界磁起磁力が不足で十分な出力が得られない欠点が
ある。
As a brushless synchronous motor having a structure having a rotor winding, there is a brushless synchronous motor with an AC exciter using an AC exciter and a rotary rectifier, but this has a drawback that the circuit configuration is complicated and the reliability is low. is there. There is also a brushless self-excited three-phase synchronous motor that connects a diode to the rotor winding and uses the harmonic magnetic field generated by the square wave voltage of the inverter. There is a drawback that sufficient output cannot be obtained because the field magnetomotive force of the child is insufficient.

【0005】更に前記のインバ−タ駆動のブラシレス同
期電動機において、三相の固定子巻線の一相にダイオ−
ドを挿入して固定子の作る正相分回転磁界に静止磁界を
重畳して、同期速度付近で回転する回転子巻線に静止磁
界による交流電圧を誘起させて、これをダイオ−ドで整
流することによって回転子巻線を直流励磁し、正相分回
転磁界を作用させて同期トルクを発生するブラシレス自
励形三相同期電動機があるが、これも誘導機始動が不可
能なために、回転子鉄心の渦電流による起動となり起動
トルクが小さく、同期トルクも小さいという欠点があ
る。
Further, in the above-mentioned inverter-driven brushless synchronous motor, a diode is connected to one phase of the three-phase stator winding.
The static magnetic field generated by the stator is superposed on the rotating magnetic field for the positive phase to induce an AC voltage due to the static magnetic field in the rotor winding rotating near the synchronous speed, and this is rectified by the diode. By doing so, there is a brushless self-excited three-phase synchronous motor that excites the rotor winding by direct current and applies a rotating magnetic field for the positive phase to generate synchronous torque.However, since this is also impossible to start the induction machine, There is a drawback that the starting torque is small due to the eddy current of the rotor core, and the synchronizing torque is also small.

【0006】本出願人は特開平3年212143号公報
によってこれら従来技術の欠点を解消すべく、複数固定
子構成の誘導同期電動機を開示した。
The applicant of the present application has disclosed an induction synchronous motor having a plurality of stators in order to solve these drawbacks of the prior art in Japanese Patent Laid-Open No. 212143/1993.

【0007】[0007]

【発明が解決しようとする課題】この同期電動機は、同
一回転軸上に設けた複数個の回転子コアに巻装した回転
子巻線をそれぞれ並列に結線し該回転子巻線の端子間に
ダイオ−ドを接続した回転子と、固定子巻線および該固
定子巻線の一相に直流励磁巻線からなる直流励磁回路を
設けた複数固定子より構成したものである。
In this synchronous motor, rotor windings wound around a plurality of rotor cores provided on the same rotary shaft are connected in parallel, and the terminals of the rotor windings are connected to each other. It is composed of a rotor to which a diode is connected, a stator winding, and a plurality of stators in which a DC exciting circuit including a DC exciting winding is provided in one phase of the stator winding.

【0008】この同期電動機の直流励磁回路には一般的
に固定子巻線の回転磁界によって基本波の交流電圧を誘
導するようになる。これは固定子の基本波により誘導さ
れた励磁巻線の交流電圧は励磁巻線に重畳して交流電流
を流し、さらにこの励磁巻線の交流電流は固定子巻線の
励磁電流に加わるように作用するので、固定子巻線の交
流電流は大きくなり、主巻線の容量が大きくなる欠点を
有する。この欠点を解消するため励磁回路に大きな直列
インダクタンスLが必要となる。このため、大きな直列
リアクトルを挿入したり、あるいは別の方法として固定
子巻線の影響を受けないように固定子とは極数の異なる
励磁巻線とこの励磁巻線の極数に対応した別の回転子を
構成することがあった。
In the DC excitation circuit of this synchronous motor, an AC voltage of the fundamental wave is generally induced by the rotating magnetic field of the stator winding. This is because the AC voltage of the excitation winding induced by the fundamental wave of the stator is superimposed on the excitation winding to flow an AC current, and the AC current of this excitation winding is added to the excitation current of the stator winding. Since it works, the AC current of the stator winding becomes large and the capacity of the main winding becomes large. To eliminate this drawback, a large series inductance L is required in the exciting circuit. For this reason, insert a large series reactor, or, as another method, separate the excitation winding with a different number of poles from the stator and the number of poles of this excitation winding so as not to be affected by the stator winding. Had to make up the rotor.

【0009】このような技術は同期電動機の構造を複雑
にするだけでなく大型となるため、特に複数固定子構成
にした誘導機起動可能な同期電動機においては採用する
ことはできないものである。
Since such a technique not only complicates the structure of the synchronous motor but also increases the size thereof, it cannot be employed particularly in a synchronous motor capable of starting an induction machine having a plurality of stators.

【0010】以上のことから、一般の誘導電動機と同様
の起動トルクを発生し、誘導機運転から同期運転への移
行が簡単にでき、しかも同期トルクが大きく、ブラシレ
スで保守の容易な同期電動機の提供と共に、固定子の励
磁回路を固定子の一相に設けるこれまでのような簡単な
構成としても、固定子巻線やその他の構成に影響の少な
い同期電動機の提供を技術的課題とする。
From the above, a starting torque similar to that of a general induction motor can be generated, the transition from the induction machine operation to the synchronous operation can be easily performed, the synchronous torque is large, and the brushless and easy-to-maintain synchronous motor can be used. Along with the provision, the technical problem is to provide a synchronous motor that has a small influence on the stator windings and other configurations even if the stator excitation circuit is provided in one phase of the stator.

【0011】[0011]

【課題を解決するための手段】本出願人は前記課題を解
決するために、同一回転軸上に任意の間隔をおいて設け
た2個の回転子コアを有し、該2個の回転子コアのそれ
ぞれに三相の回転子巻線を設けてそれぞれ直列に接続す
ると共に該回転子巻線の接続点に並列にダイオ−ドを接
続した回転子と、前記2個の回転子コアに対向して周設
した2個の固定子コアを有し、該2個の固定子コアのそ
れぞれに三相デルタ結線にした主巻線を巻装して三相電
接続した固定子と、前記2個の固定子コアの主巻線
の同一相にそれぞれ励磁巻線を設け該励磁巻線に直列に
ダイオ−ドを接続して、前記励磁巻線を互いに交差接続
すると共に励磁巻線と同一相の前記主巻線に印加される
線間電圧を開閉スイッチを介して前記励磁巻線の交差接
続点に並列接続した励磁器と、該2個の固定子主巻線の
うち一方の固定子主巻線がこれに対峙する回転子コアの
周囲に生じる回転磁界と他の固定子主巻線がこれに対峙
する回転子コアの周囲に生じる回転磁界との間に位相差
0゜と位相差180゜を生じさせる移相装置とにより構
成した同期電動機により前記課題を解決するための手段
とした。
In order to solve the above-mentioned problems, the present applicant has two rotor cores provided on the same rotating shaft at arbitrary intervals, and the two rotor cores are provided. A rotor in which three-phase rotor windings are provided in each of the cores and connected in series, and a diode is connected in parallel to the connection point of the rotor windings, and the rotor is opposed to the two rotor cores. A stator having two stator cores that are circumferentially provided, and a main winding having a three-phase delta connection is wound around each of the two stator cores and connected to a three-phase power source; Exciting windings are provided in the same phase of the main windings of the two stator cores, and diodes are connected in series to the exciting windings so that the exciting windings are cross-connected to each other and the same as the exciting windings. the line voltage applied to the main winding phase via an on-off switch connected in parallel with cross-connect point of the exciting winding The exciter and the rotating magnetic field generated around the rotor core that one of the two stator main windings faces, and the rotation of the other stator main winding that faces the rotor core. Phase difference with the rotating magnetic field generated around the child core
A means for solving the above-mentioned problems is provided by a synchronous motor constituted by a phase shift device which causes 0 ° and a phase difference of 180 ° .

【0012】[0012]

【作用】複数固定子構成の誘導電動機に設けられる移相
装置の作用について本出願人は特開昭61年第1283
14号公報においてその詳細を説明している。
The operation of the phase shifter provided in the induction motor having a plurality of stators is disclosed by the present applicant in Japanese Patent Laid-Open No. 1283/1986.
The details are described in JP-A-14.

【0013】本発明による同期電動機の作用について説
明する。同期電動機を同一回転軸上に任意の間隔をおい
て設けた2個の回転子コアを有し、該2個の回転子コア
のそれぞれに三相の回転子巻線を設けてそれぞれ直列に
接続すると共に該回転子巻線の接続点に並列にダイオ−
ドを接続した回転子と、前記2個の回転子コアに対向し
て周設した2個の固定子コアを有し、該2個の固定子コ
アのそれぞれに三相デルタ結線にした主巻線を巻装して
三相電源接続した固定子と、前記2個の主巻線の同一
相にそれぞれ励磁巻線を設け該励磁巻線に直列にダイオ
−ドを接続して、前記励磁巻線を互いに交差接続すると
共に励磁巻線と同一相の前記主巻線に印加される線間電
圧を開閉スイッチを介して前記励磁巻線の交差接続点に
並列接続した励磁器と、該2個の固定子主巻線のうち一
方の固定子主巻線がこれに対峙する回転子コアの周囲に
生じる回転磁界と他の固定子主巻線がこれに対峙する回
転子コアの周囲に生じる回転磁界との間に位相差0゜と
位相差180゜を生じさせる移相装置とにより構成し
た。
The operation of the synchronous motor according to the present invention will be described. The synchronous motor has two rotor cores provided on the same rotary shaft at arbitrary intervals, and three-phase rotor windings are provided on each of the two rotor cores and connected in series. In parallel with the rotor winding connection point
A rotor connected to a rotor and two stator cores provided around the two rotor cores so as to face each other, and each of the two stator cores has a three-phase delta connection main winding. A stator having a wire wound around it and connected to a three-phase power source , and excitation windings are provided in the same phase of the two main windings, respectively, and diodes are connected in series to the excitation windings to form the excitation. An exciter in which windings are cross-connected to each other and a line voltage applied to the main winding in the same phase as that of the exciting winding is connected in parallel to the cross-connecting point of the exciting winding via an open / close switch; Rotating magnetic field generated around one rotor main winding around one of the stator main windings and another stator main winding generated around the rotor core facing it 0 ° phase difference with the rotating magnetic field
And a phase shifter for producing a phase difference of 180 ° .

【0014】この構成によると、起動時には2個の固定
子コアのそれぞれに設けた主巻線の回転磁界によって、
2個の回転子コアの回転子巻線に誘起される電圧が同相
になるようにすなわち2個の回転子コアの回転子巻線を
環流する電流が流れて回転子巻線の接続点に並列に設け
たダイオ−ドには電流が流れないように移相装置を作動
させて一般の誘導電動機として起動する。
According to this structure, at the time of start-up, the rotating magnetic fields of the main windings provided on the two stator cores cause
In order that the voltages induced in the rotor windings of the two rotor cores should be in phase, that is, the current circulating in the rotor windings of the two rotor cores should flow and be parallel to the connection points of the rotor windings. The phase shifter is actuated so that no current flows in the diode provided in, and the diode is started as a general induction motor.

【0015】なおこのとき励磁器の開閉スイッチは開放
してあり、また固定子の回転磁界によって2個の固定子
コアの励磁巻線にそれぞれ電圧が誘起して、励磁巻線を
環流するように電流が流れようとするが、それらの電流
は、励磁巻線を交差接続したことによりダイオ−ドが逆
方向に接続した状態になっているので励磁巻線には電流
が流れない。したがって起動時には静止磁界も発生しな
い。
At this time, the open / close switch of the exciter is open, and the rotating magnetic field of the stator causes a voltage to be induced in the exciting windings of the two stator cores to circulate the exciting windings. Currents try to flow, but no current flows in the exciting windings because the diodes are connected in the opposite direction due to the cross-connection of the exciting windings. Therefore, no static magnetic field is generated at startup.

【0016】起動後、回転子の回転速度は上昇して回転
磁界の回転速度がすなわち同期速度に近づく。ここまで
は誘導電動機としての作用である。次にすべりがS=
0.05に近づいたときに移相装置を作動させると同時
に励磁器の開閉スイッチを閉じると電動機は同期運転に
入る。これはつぎのように作用する。
After starting, the rotation speed of the rotor increases and the rotation speed of the rotating magnetic field approaches the synchronous speed. Up to this point, the operation is as an induction motor. Next is S =
When the phase shifter is activated when the value approaches 0.05, the opening and closing switch of the exciter is closed and the motor starts synchronous operation. This works as follows.

【0017】2個の固定子主巻線のうち一方の固定子主
巻線がこれに対峙する回転子コアの周囲に生じる回転磁
界と他の固定子主巻線がこれに対峙する回転子コアの周
囲に生じる回転磁界との間にθ=180゜の位相差を生
じさせるように移相装置を作動させる。
Of the two stator main windings, one of the stator main windings has a rotating magnetic field generated around the rotor core that faces it, and the other stator main winding has a rotor core that faces it. The phase shifter is operated so as to generate a phase difference of θ = 180 ° with the rotating magnetic field generated around the.

【0018】これらの回転磁界によって2個の回転子巻
線に誘起した電圧は180゜の位相差角をもつので、こ
れまで流れていた環流電流は流れなくなり回転子巻線の
接続点に並列に設けたダイオ−ドを通じて電流が流れる
ようになる。
Since the voltages induced in the two rotor windings by these rotating magnetic fields have a phase difference angle of 180 °, the circulating current that has been flowing so far does not flow and is parallel to the connection point of the rotor windings. A current flows through the diode provided.

【0019】このとき、励磁器の開閉スイッチは閉じて
あるので、励磁巻線を設けた固定子巻線の一相と同じ線
間電圧が励磁巻線に印加されている。この印加された線
間電圧は励磁巻線のダイオ−ドにより整流され、励磁巻
線には整流電流が流れて静止磁界を生じることになる。
この励磁巻線には線間電圧が印加されているので、同じ
線間電圧を印加した固定子の主巻線と並列回路となって
おり、励磁巻線による整流電流はその一部が同一相の主
巻線にも流れるようになる。したがって、最終的には、
この整流電流による励磁巻線の磁束と主巻線の磁束との
差によって静止磁界が作られるようになっている。
At this time, since the open / close switch of the exciter is closed, the same line voltage as one phase of the stator winding provided with the exciting winding is applied to the exciting winding. The applied line voltage is rectified by the diode of the exciting winding, and a rectifying current flows in the exciting winding to generate a static magnetic field.
Since a line voltage is applied to this exciting winding, it forms a parallel circuit with the main winding of the stator to which the same line voltage is applied. It also flows into the main winding of. So in the end,
A static magnetic field is created by the difference between the magnetic flux of the excitation winding and the magnetic flux of the main winding due to this rectified current.

【0020】このようにして励磁巻線には静止磁界を生
じ、その生じる静止磁界はそれぞれの励磁巻線を交差接
続しているので互いに逆方向となり位相差角でθ=18
0゜となっている。この静止磁界によって2個の回転子
巻線には電圧が誘起し、この電圧による環流電流は流れ
ず、2個の回転子巻線の接続点に並列に設けたダイオ−
ドを通じて整流された電流が流れる。
In this way, a static magnetic field is generated in the excitation windings, and the static magnetic fields generated are in mutually opposite directions because the excitation windings are cross-connected, and the phase difference angle is θ = 18.
It is 0 °. A voltage is induced in the two rotor windings by this static magnetic field, and a circulating current due to this voltage does not flow, and a diode provided in parallel at the connection point of the two rotor windings is used.
The rectified current flows through the battery.

【0021】したがって、回転子巻線を流れる整流電流
による直流分によって、回転子は直流励磁されて磁極を
形成し、固定子の主巻線の回転磁界との間に同期トルク
を生じて電動機は同期運転する。
Therefore, the DC component of the rectified current flowing through the rotor winding excites the rotor to form a magnetic pole, and a synchronous torque is generated between the rotor and the rotating magnetic field of the main winding of the stator. Operate synchronously.

【0022】さて従来、固定子巻線の回転磁界によって
励磁巻線に誘起する電圧は、励磁巻線のダイオ−ドを通
じて流れ、整流されて静止磁界を作るが、同時に交流分
の電流も存在し、この電流は逆に固定子巻線に補償電流
を流すことになる。補償電流は固定子に流れる電流に加
わって固定子側の容量アップを余儀なくされ、力率低下
を招く原因となっていた。
Conventionally, the voltage induced in the exciting winding by the rotating magnetic field of the stator winding flows through the diode of the exciting winding and is rectified to form a static magnetic field, but at the same time, there is an alternating current. On the contrary, this current causes a compensation current to flow in the stator winding. The compensating current is forced to increase the capacity of the stator side in addition to the current flowing through the stator, which causes a decrease in power factor.

【0023】本発明によると、励磁巻線を設けた位置と
同じ相の固定子主巻線の線間電圧を励磁巻線に印加する
ようにしたので、励磁巻線には、固定子の回転磁界によ
り誘起した電圧と線間電圧との両方の交流分が加わり、
最終的には線間電圧と誘起電圧との差電圧による電流が
流れるようになる。その方向は線間電圧が高電位である
ことから固定子の回転磁界により誘起されて流れる励磁
電流とは逆方向となる。この差電圧による電流により固
定子側には補償電流が流れるが、この補償電流は固定子
を流れる電流に対して進み電流となり、従来技術とは逆
に固定子を流れる電流の低下と固定子(一次側)の力率
改善につながるものとなった。
According to the present invention, the line voltage of the stator main winding having the same phase as the position where the exciting winding is provided is applied to the exciting winding. The alternating current component of both the voltage induced by the magnetic field and the line voltage is added,
Eventually, a current due to the difference voltage between the line voltage and the induced voltage will flow. Since the line voltage has a high potential, the direction is opposite to the exciting current induced by the rotating magnetic field of the stator and flowing. A compensating current flows on the side of the stator due to the current due to this difference voltage, but this compensating current becomes a lead current with respect to the current flowing through the stator, and contrary to the prior art, a decrease in the current flowing through the stator and This has led to the improvement of the power factor on the primary side.

【0024】ここで同期トルクを考察してみるに、2個
の固定子のうち一方の固定子が作る回転磁界の位相が他
の固定子が作る回転磁界の位相よりも180゜移相され
るが、前記励磁巻線の静止磁界によって、一方の固定子
と対峙する回転子の回転子巻線に流れるダイオ−ドで整
流された電流の方向も他の回転子巻線に流れるダイオ−
ドで整流された電流の方向とは逆方向になるので、同期
トルクはすべての回転子において同一の方向となり同期
トルクはすべて加算されたものとなって、本発明の同期
電動機は2個の固定子ではあるがその合計の容量は従来
のブラシを有する誘導同期電動機と同等である。
Considering the synchronous torque, the phase of the rotating magnetic field produced by one of the two stators is shifted by 180 ° from the phase of the rotating magnetic field produced by the other stator. However, due to the static magnetic field of the exciting winding, the direction of the current rectified by the diode flowing in the rotor winding of the rotor facing the one stator also flows in the other rotor winding.
Since the direction of the current rectified by the motor is in the opposite direction, the synchronous torque is the same in all rotors, and the synchronous torques are all added, so that the synchronous motor of the present invention has two fixed motors. Although it is a child, its total capacity is equivalent to that of an induction synchronous motor having a conventional brush.

【0025】励磁巻線の静止磁界で回転子に誘起する電
圧によって回転子巻線に整流された直流電流が流れて、
回転子巻線が直流界磁巻線の作用をするので、同期トル
クが大きく、ブラシなどの保守を必要としない同期電動
機を提供することが可能となった。
A rectified direct current flows through the rotor winding due to the voltage induced in the rotor by the static magnetic field of the excitation winding,
Since the rotor winding acts as a DC field winding, it is possible to provide a synchronous motor that has a large synchronous torque and does not require maintenance such as brushes.

【0026】このように誘導電動機から起動して同期電
動機への移行を移相装置による切り換えによって行う
が、この移相装置は2個の固定子のうち一方の固定子が
作る回転磁界の位相と他の固定子が作る回転磁界の位相
との間に電気角でθ=180゜の位相差角を設けるよう
にしたもので、本発明においては2個の固定子のいずれ
か一方の固定子巻線の極性を入れ換えるように、固定子
巻線の端子をスイッチで切り換えて電源に接続するよう
にしてある。このほか位相差を設ける方法としては、回
転軸を中心にいずれか一方の固定子を回動させることに
よって設けることも可能であるが、本発明のように切り
換えを瞬時に行う必要があるものにおいてはスイッチに
よる切り換えの方が迅速且つ正確に切り換え可能とな
る。
In this way, the induction motor is started and the transition to the synchronous motor is performed by switching by the phase shifter. This phase shifter has the phase of the rotating magnetic field produced by one of the two stators. A phase difference angle of θ = 180 ° is provided in electrical angle with respect to the phase of the rotating magnetic field generated by another stator. In the present invention, one of the two stator windings is wound. The terminals of the stator winding are switched by a switch so as to switch the polarities of the wires, and are connected to the power supply. As another method of providing the phase difference, it is also possible to provide it by rotating either one of the stators about the rotation axis, but in the case where the switching needs to be performed instantaneously as in the present invention. The switch can be switched more quickly and accurately.

【0027】ところで前記固定子励磁巻線は単相、三相
を問わず何れでも可能である。
By the way, the stator excitation winding may be either single-phase or three-phase.

【0028】[0028]

【実施例】本発明は主として2個の固定子主巻線の結線
を電源に対して並列に接続した例について説明するが、
電源に対して直列でも良く本例に限定されることはな
い。また回転子巻線の場合、スタ−接続でもデルタ−接
続のいずれでも同様である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention mainly describes an example in which two stator main windings are connected in parallel to a power source.
It may be connected in series to the power source and is not limited to this example. In the case of the rotor winding, the same applies to both star connection and delta connection.

【0029】すでに本出願人は特公平2−27920号
として本発明の構成の一部である複数固定子からなる誘
導電動機の構成、作用の詳細な説明を行っている。たと
えば、電圧移相装置によって複数個の固定子の内、特定
の固定子がこれに対峙する回転子の周囲に生じる回転磁
界と他の固定子がこれに対峙する回転子の周囲に生じる
回転磁界との間の位相差を、たとえば同相すなわち電気
角で0゜とした場合、回転子導体に流れる電流は回転子
導体を還流し、たとえば電気角で180゜とした場合、
回転子導体に流れる電流は回転子コア間で回転子導体間
を連結した連結材を通じて流れることなどを詳説してい
る。
The applicant has already described in detail in Japanese Examined Patent Publication No. 27920/1990, the construction and operation of an induction motor having a plurality of stators, which is a part of the construction of the present invention. For example, of a plurality of stators, a rotating magnetic field generated around a rotor facing a specific stator and a rotating magnetic field generated around a rotor facing another stator by a voltage phase shifter. When the phase difference between and is, for example, the same phase, that is, an electrical angle of 0 °, the current flowing through the rotor conductor returns to the rotor conductor, and, for example, when an electrical angle is 180 °,
It explains in detail that the current flowing through the rotor conductors flows through the connecting material that connects the rotor conductors between the rotor cores.

【0030】さらに移相装置の構成については、固定子
を回動させるものや、固定子主巻線の結線の切り換えを
おこなうものなどを示しているが、本発明においては、
特に固定子主巻線の極性の切り換えをおこなう移相装置
で構成すると、前記電気角の0゜から180゜への切り
換えは瞬時におこなえるため同期速度への引き込みは容
易となる。また回転速度を検出するセンサ−と移相装置
の制御装置とを設けて連絡すると、同期速度への引き込
みが自動化できると共に、万一脱調した場合でも、回転
速度を検出するセンサ−の信号により即座に同期運転か
ら誘導電動機の運転に切り換えることが可能であり、一
般の同期電動機のように脱調から急激に停止することが
なく事故防止が簡単にできるものとなる。
Further, regarding the constitution of the phase shifter, there are shown a constitution in which the stator is rotated and a constitution in which the connection of the stator main winding is switched, but in the present invention,
In particular, if the phase shifter is configured to switch the polarity of the stator main winding, the electrical angle can be switched from 0 ° to 180 ° instantaneously, so that the synchronous speed can be easily pulled. In addition, if a sensor for detecting the rotation speed and a control device for the phase shifter are provided to communicate with each other, the pull-in to the synchronous speed can be automated, and even if a step out occurs, the signal from the sensor for detecting the rotation speed can be used. It is possible to immediately switch from the synchronous operation to the operation of the induction motor, and unlike the general synchronous motor, there is no sudden stop from step out, and accident prevention can be easily performed.

【0031】図1により本発明の実施例を説明する。図
1に示すものは本発明の同期電動機の固定子と回転子の
巻線だけを抜きだしたものである。まず符号1は同期電
動機の固定子側を示し、符号2は同じく回転子側を示し
ている。
An embodiment of the present invention will be described with reference to FIG. FIG. 1 shows only the windings of the stator and rotor of the synchronous motor of the present invention. First, reference numeral 1 indicates the stator side of the synchronous motor, and reference numeral 2 also indicates the rotor side.

【0032】まず固定子側1は、2個の固定子コア(省
略)のそれぞれに設けた、スタ−結線の第1主巻線3と
第2主巻線4が並列に三相交流電源5に接続されてい
る。前記固定子側1の2個の主巻線3,4の同一相にそ
れぞれ励磁巻線6,7を設け励磁巻線6,7に直列にダ
イオ−ドD,Dを接続して、前記励磁巻線6,7を
互いに交差接続してある。更に前記主巻線3,4の一相
と同じ線間電圧Vrsを開閉スイッチSを介して前記
励磁巻線6,7の交差接続点に並列接続して励磁器10
としてある。
First, on the stator side 1, a star-connected first main winding 3 and a second main winding 4 provided in each of two stator cores (omitted) are connected in parallel to a three-phase AC power supply 5. It is connected to the. Exciting windings 6 and 7 are provided in the same phase of the two main windings 3 and 4 on the stator side 1, and diodes D 1 and D 2 are connected in series to the exciting windings 6 and 7, The excitation windings 6 and 7 are cross-connected to each other. Further, the line voltage Vrs, which is the same as one phase of the main windings 3 and 4, is connected in parallel to the cross connection point of the excitation windings 6 and 7 via the open / close switch S 1 and the exciter 10 is connected.
There is.

【0033】一方回転子側2は、2個の回転子コア(省
略)のそれぞれに回転子巻線8,9を設け、この回転子
巻線8,9を直列に接続すると共に、該回転子巻線8,
9の接続点間に並列にダイオ−ドD,Dが接続して
ある。
On the other hand, on the rotor side 2, two rotor cores (omitted) are provided with rotor windings 8 and 9, respectively, and the rotor windings 8 and 9 are connected in series, and Winding 8,
Diodes D 3 and D 4 are connected in parallel between the connection points of 9.

【0034】さて固定子側1の第2主巻線4には、主巻
線4の各相の巻線4R,4S,4Tの両端に巻線の極性
を切り換えるようにスイッチ13,14を設けて移相装
置15を構成してある。
In the second main winding 4 on the stator side 1, switches 13 and 14 are provided at both ends of the windings 4R, 4S and 4T of the respective phases of the main winding 4 so as to switch the polarities of the windings. And the phase shifter 15 is configured.

【0035】ここで第1主巻線3に対峙する励磁巻線6
に誘起する電圧をEとし、第2主巻線4に対峙する励
磁巻線7に誘起する電圧をEεjθとする。また、第
1主巻線3に対峙する回転子巻線8に誘起する電圧をE
とし、第2主巻線4に対峙する回転子巻線9に誘起す
る電圧をEεjθとする。ここでのθは電圧の位相差
角である。
Here, the excitation winding 6 facing the first main winding 3
Let E 1 be the voltage induced in E 2, and let E 1 ε j θ be the voltage induced in the excitation winding 7 facing the second main winding 4. In addition, the voltage induced in the rotor winding 8 facing the first main winding 3 is E
2 and the voltage induced in the rotor winding 9 facing the second main winding 4 is E 2 ε . Here, θ is the phase difference angle of the voltage.

【0036】以上のように各巻線を構成した本発明の同
期電動機の始動について説明する。第2主巻線4の移相
装置15のスイッチ13,14をA側に投入し、また開
閉スイッチSを開放して、第1主巻線3、第2主巻線
4を並列に電源5に投入する。この場合、移相装置15
は作用していないのでθ=0である。
The starting of the synchronous motor of the present invention in which each winding is constructed as described above will be described. The switches 13 and 14 of the phase shifter 15 for the second main winding 4 are turned on to the A side, and the open / close switch S 1 is opened to power the first main winding 3 and the second main winding 4 in parallel. Put in 5. In this case, the phase shifter 15
Does not work, so θ = 0.

【0037】なおこのとき励磁器10の開閉スイッチS
は開放してあり、また固定子の回転磁界によって2個
の固定子コアの励磁巻線6,7にそれぞれ電圧E,E
εjθが誘起して、励磁巻線6,7を環流するように
電流が流れようとするが、それらの電流は、励磁巻線
6,7を交差接続したことによりダイオ−ドD,D
が逆方向に接続した状態になっているので導通せず、励
磁巻線6,7にはダイオ−ドD,Dを通じての環流
電流は流れない。したがって起動時には静止磁界も発生
しない。
At this time, the open / close switch S of the exciter 10
1 is open, and the exciting magnetic fields 6 and 7 of the two stator cores are supplied with voltages E 1 and E by the rotating magnetic field of the stator.
1 ε induces currents to flow so as to circulate in the excitation windings 6 and 7. However, these currents are generated by connecting the excitation windings 6 and 7 in a diode D 1 , D 2
Since they are connected in the opposite direction, they do not conduct, and no circulating current flows through the excitation windings 6 and 7 through the diodes D 1 and D 2 . Therefore, no static magnetic field is generated at startup.

【0038】一方、回転子巻線8,9には主巻線3,4
の回転磁界による電圧E,Eεjθが誘起している
が移相装置が作用していないのでθ=0であるから環流
電流が流れ一般の誘導電動機として始動する。この場
合、ダイオ−ドD,Dの端子電圧は零であるからダ
イオ−ドD,Dを通じて電流は流れない。
On the other hand, the rotor windings 8 and 9 have main windings 3 and 4, respectively.
The voltages E 2 and E 2 ε are induced by the rotating magnetic field, but since the phase shifter is not operating, θ = 0, so a circulating current flows and the motor is started as a general induction motor. In this case, diode - since the terminal voltage of the de D 3, D 4 is zero diode - no current flows through the de D 3, D 4.

【0039】次に同期への引き入れについて説明する。
第2主巻線4の移相装置15のスイッチ13,14をB
側に投入し、第2主巻線4の極性を逆にして接続する。
また開閉スイッチSを投入し励磁巻線6,7を線間電
圧Vrsに接続する。
Next, a description will be given of how to bring in synchronization.
Set the switches 13 and 14 of the phase shifter 15 of the second main winding 4 to B
Then, the second main winding 4 is reversed in polarity and connected.
Further, the open / close switch S 1 is turned on to connect the exciting windings 6 and 7 to the line voltage Vrs.

【0040】こうすると固定子主巻線の回転磁界の位相
差角θはθ=180゜になる。つまり励磁巻線6,7に
誘起する電圧はE,Eεj180゜となりEε
j180゜=−Eとなるが励磁巻線6,7は交差接続
してあるので互いに逆方向の電流となって打ち消し合い
電流はながれることはない。
In this way, the phase difference angle θ of the rotating magnetic field of the stator main winding becomes θ = 180 °. That voltage induced to the excitation winding 6 and 7 E 1, E 1 ε j180 ° becomes E 1 epsilon
Although j180 ° = −E 1 , the exciting windings 6 and 7 are cross-connected, so that currents in opposite directions cancel each other out.

【0041】このとき、励磁器10の開閉スイッチS
は閉じてあるので、励磁巻線6,7を設けた固定子巻線
の一相(3R,4R)と同じ線間電圧Vrsが励磁巻線
6,7それぞれに印加されている。この印加された線間
電圧Vrsは励磁巻線6,7のダイオ−ドD,D
より整流され、励磁巻線6,7には整流電流が流れて静
止磁界を生じることになる。ここで図2に示すように、
この励磁巻線6,7には線間電圧Vrsが印加されてい
るので、同じ線間電圧を印加した固定子の主巻線3R,
4Rと並列回路となっており、励磁巻線のダイオ−ドD
,Dによる整流電流はその一部が同一相の主巻線3
R,4Rにも流れるようになる。したがって、最終的に
は、この整流電流による励磁巻線6,7の磁束と主巻線
3R,4Rの磁束との差によって静止磁界が作られるよ
うになっている。
At this time, the open / close switch S 1 of the exciter 10
Is closed, the line voltage Vrs, which is the same as one phase (3R, 4R) of the stator winding provided with the excitation windings 6 and 7, is applied to each of the excitation windings 6 and 7. The applied line voltage Vrs is rectified by the diodes D 1 and D 2 of the excitation windings 6 and 7, and a rectified current flows in the excitation windings 6 and 7 to generate a static magnetic field. Here, as shown in FIG.
Since the line voltage Vrs is applied to the excitation windings 6 and 7, the main winding 3R of the stator to which the same line voltage is applied,
It is a parallel circuit with 4R, and the excitation winding diode D
1. A part of the rectified current by D 2 is the main winding 3 of the same phase.
It will also flow to R and 4R. Therefore, finally, a static magnetic field is created by the difference between the magnetic fluxes of the excitation windings 6 and 7 and the magnetic fluxes of the main windings 3R and 4R due to the rectified current.

【0042】このようにして励磁巻線には静止磁界を生
じ、その生じる静止磁界はそれぞれの励磁巻線を交差接
続しているので互いに逆方向となり位相差角でθ=18
0゜となっている。
In this way, a static magnetic field is generated in the exciting windings, and the static magnetic fields generated are in opposite directions because the exciting windings are cross-connected, and the phase difference angle is θ = 18.
It is 0 °.

【0043】さて同期速度になると主巻線3,4の回転
磁界による回転子巻線8,9の誘起電圧E,Eε
jθは共に零になるが、前述の静止磁界によって回転子
巻線8,9に電圧E,Eεjθを誘起し、この場合
θ=180゜であるからE2εj180゜=−Eとな
って回転子巻線8,9には環流電流は流れず、ダイオ−
ドD,Dを通じて整流された電流が回転子巻線8,
9に流れ、回転子巻線8,9は直流分で励磁されて磁極
を形成し、主巻線3,4の回転磁界との間にトルクを生
じて同期運転に至る。
Now, at the synchronous speed, the induced voltages E 2 , E 2 ε of the rotor windings 8, 9 due to the rotating magnetic fields of the main windings 3, 4 are generated.
Both are zero, but the static magnetic field induces the voltages E 2 , E 2 ε in the rotor windings 8 and 9. In this case, θ = 180 °, so E2ε j 180 ° = −E 2 . As a result, no circulating current flows through the rotor windings 8 and 9, and
The current rectified through the terminals D 3 and D 4 is applied to the rotor winding 8,
9, the rotor windings 8 and 9 are excited by a direct current component to form magnetic poles, and torque is generated between the rotor windings 8 and 9 and the rotating magnetic fields of the main windings 3 and 4 to reach synchronous operation.

【0044】以上の構成から本発明による同期電動機
は、起動時には位相差角をθ=0゜として従来の誘導電
動機と同様のトルク特性で起動を行い、すべりSがたと
えばS=0.05になったとき移相装置のスイッチを切
り換えて位相差角をθ=180゜とし、同期速度に移行
して同期電動機のトルク特性で運転するものである。こ
のような構成から、本発明の同期電動機は起動機や直流
電源、またブラシを必要としないから、その構造や構成
が簡単となるだけでなく、従来の誘導電動機と同様のト
ルク特性で起動できるので重負荷がかかったままでも移
相装置のスイッチを切り換えるだけで起動から同期への
移行が可能となる。
With the above construction, the synchronous motor according to the present invention is started with a torque characteristic similar to that of the conventional induction motor with the phase difference angle θ = 0 ° at the time of start, and the slip S becomes, for example, S = 0.05. At this time, the switch of the phase shifter is switched to set the phase difference angle to θ = 180 °, the synchronous speed is shifted to operate with the torque characteristic of the synchronous motor. With such a configuration, the synchronous motor of the present invention does not require a starter, a DC power source, or a brush, so that not only the structure and the configuration thereof are simplified, but also the conventional induction motor can be started with the same torque characteristics. Therefore, even if the heavy load is applied, it is possible to shift from the startup to the synchronization simply by switching the switch of the phase shifter.

【0045】さて従来、固定子巻線3,4の回転磁界に
よって励磁巻線6,7に誘起する電圧は、前述のように
励磁巻線6,7のダイオ−ドD,Dを通じて流れ、
整流されて静止磁界を作るが、同時に交流分の電流も存
在し、この電流は逆に固定子巻線3,4に補償電流を流
すことになる。補償電流は固定子に流れる電流に加わっ
て固定子側の容量アップを余儀なくされ、力率低下を招
く原因となっていた。
Conventionally, the voltage induced in the exciting windings 6 and 7 by the rotating magnetic fields of the stator windings 3 and 4 flows through the diodes D 1 and D 2 of the exciting windings 6 and 7 as described above. ,
The static magnetic field is rectified to generate a static magnetic field, but at the same time, an alternating current also exists, and this current causes a compensating current to flow in the stator windings 3 and 4 on the contrary. The compensating current is forced to increase the capacity of the stator side in addition to the current flowing through the stator, which causes a decrease in power factor.

【0046】本発明によると、励磁巻線6,7を設けた
位置と同じ相の固定子主巻線3R,4Rの線間電圧Vr
sを励磁巻線6,7に印加するようにしたので、励磁巻
線6,7には、固定子の回転磁界により誘起した電圧E
と線間電圧Vrsとの両方の交流分が加わり、最終的
には線間電圧Vrsから誘起電圧Eを差し引いた差電
圧による交流分電流が流れるようになる。この差電圧に
よる交流分電流により固定子側には補償電流が流れる
が、この補償電流は固定子を流れる電流に対して進み電
流となり、従来技術とは逆に固定子を流れる電流の低下
と固定子(一次側)の力率改善につながるものとなっ
た。
According to the present invention, the line voltage Vr of the stator main windings 3R and 4R in the same phase as the position where the excitation windings 6 and 7 are provided.
Since s is applied to the excitation windings 6 and 7, the voltage E induced by the rotating magnetic field of the stator is applied to the excitation windings 6 and 7.
The AC component of both 1 and the line voltage Vrs is added, and finally, the AC component current due to the difference voltage obtained by subtracting the induced voltage E 1 from the line voltage Vrs comes to flow. A compensating current flows on the side of the stator due to the AC component current due to this difference voltage, but this compensating current becomes a lead current with respect to the current flowing through the stator, and contrary to the prior art, the current flowing through the stator decreases and is fixed. This led to the improvement of the power factor of the child (primary side).

【0047】ところで前述のダイオ−ドD,Dをサ
イリスタで構成することにより励磁巻線の励磁電流を制
御することが可能となり、この場合、励磁電流を制御す
ることにより固定子主巻線に流れる整流電流の制御と共
に静止磁界を制御することができる。以上の構成から本
発明による同期電動機は、起動時には移相差角をθ=0
゜として従来の誘導電動機と同様のトルク特性で起動を
行い、すべりSがたとえばS=0.05になったとき移
相装置のスイッチを切り換えて移相差角をθ=180゜
とし、同期速度に移行して同期電動機のトルク特性で運
転するものである。このような構成から、本発明の同期
電動機は起動機や直流電源、またブラシを必要としない
から、その構造や構成が簡単となるだけでなく、従来の
誘導電動機と同様のトルク特性で起動できるので重負荷
がかかったままでも移相装置のスイッチを切り換えるだ
けで起動から同期への移行が可能となる。
By constructing the diodes D 1 and D 2 by thyristors, it is possible to control the exciting current of the exciting winding. In this case, the exciting current is controlled to control the stator main winding. The static magnetic field can be controlled together with the control of the rectified current flowing through the static magnetic field. With the above configuration, the synchronous motor according to the present invention has a phase shift angle of θ = 0 at start-up.
When the slip S becomes, for example, S = 0.05, the switch of the phase shifter is switched to set the phase shift angle to θ = 180 ° and the synchronous speed to the synchronous speed. It shifts and operates with the torque characteristics of the synchronous motor. With such a configuration, the synchronous motor of the present invention does not require a starter, a DC power source, or a brush, so that not only the structure and the configuration thereof are simplified, but also the conventional induction motor can be started with the same torque characteristics. Therefore, even if the heavy load is applied, it is possible to shift from the startup to the synchronization simply by switching the switch of the phase shifter.

【0048】[0048]

【発明の効果】以上の構成から本発明の同期電動機は、
起動時を従来の誘導電動機と同様のトルク特性で行い、
回転子の速度がたとえばすべりS=0.05付近から同
期速度に移行して同期電動機のトルク特性で運転するも
のである。この同期電動機は起動機や直流電源、またブ
ラシを必要としないから、その構造や構成が簡単となる
だけでなく、従来の誘導電動機と同様のトルク特性で起
動できるので重負荷がかかったままでも起動から同期へ
の移行が可能となる。
As described above, the synchronous motor of the present invention has the following structure.
Performs startup with the same torque characteristics as conventional induction motors,
For example, the speed of the rotor shifts from the vicinity of slip S = 0.05 to the synchronous speed and the rotor is operated with the torque characteristics of the synchronous motor. Since this synchronous motor does not require a starter, DC power supply, or brush, it not only has a simple structure and configuration, but it can be started with the same torque characteristics as conventional induction motors, so even if a heavy load is applied. It is possible to shift from startup to synchronization.

【0049】また、本発明により励磁巻線に流れる電流
に誘起して流れる固定子主巻線の補償電流の影響をこれ
までとは逆に電動機主巻線に対し進みの補償電流とする
ことができたので、電動機力率改善に大きく貢献できる
ものである。
Further, according to the present invention, the influence of the compensating current of the stator main winding, which is induced by the current flowing in the exciting winding, may be made to be a compensating current that is advanced with respect to the motor main winding, contrary to the conventional case. Since it has been completed, it can greatly contribute to the improvement of the motor power factor.

【0050】ところで、本発明の同期電動機は、誘導電
動機と同期電動機との両方のトルク特性を備えるから、
どちらの電動機のトルク特性でも使用可能である。この
ことは同期速度で運転中、何らかの原因で脱調した場合
でも同期電動機のトルク特性から誘導電動機のトルク特
性に切り換えて運転することが可能であるから、一般の
同期電動機のように電動機が急激に停止することはな
い。
By the way, since the synchronous motor of the present invention has the torque characteristics of both the induction motor and the synchronous motor,
The torque characteristics of either motor can be used. This means that even if a step out occurs for some reason during operation at synchronous speed, it is possible to operate by switching from the torque characteristics of the synchronous motor to the torque characteristics of the induction motor. Never stop.

【0051】以上のようにブラシがなく複雑な構成を必
要としないから、保守点検が容易で信頼性も高く、起動
トルクの大きい同期電動機の提供が可能となった。
As described above, since there is no brush and a complicated structure is not required, it is possible to provide a synchronous motor that is easy to maintain and has high reliability and has a large starting torque.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の同期電動機による実施例の固定子と回
転子の巻線部分だけを抜きだして示した図である。
FIG. 1 is a diagram showing only a winding portion of a stator and a rotor of an embodiment of a synchronous motor according to the present invention.

【図2】本発明の実施例による励磁巻線の別の実施例図
である。
FIG. 2 is a diagram showing another embodiment of the excitation winding according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 固定子側 2 回転子側 3 第1の主巻線 4 第2の主巻線 5 三相交流電源 6 励磁巻線 7 励磁巻線 8 回転子巻線 9 回転子巻線 10 励磁器 13 スイッチ 14 スイッチ 15 移相装置 D1 ダイオ−ド D2 ダイオ−ド D3 ダイオ−ド D4 ダイオ−ド S1 開閉スイッチ 1 Stator side 2 rotor side 3 First main winding 4 Second main winding 5 Three-phase AC power supply 6 excitation winding 7 excitation winding 8 rotor winding 9 rotor winding 10 exciter 13 switch 14 switch 15 Phase shifter D1 diode D2 diode D3 diode D4 diode S1 open / close switch

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02K 19/00,17/00 Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H02K 19 / 00,17 / 00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 同一回転軸上に任意の間隔をおいて設け
た2個の回転子コアを有し、該2個の回転子コアのそれ
ぞれに三相の回転子巻線を設けてそれぞれ直列に接続す
ると共に該回転子巻線の接続点に並列にダイオ−ドを接
続した回転子と、前記2個の回転子コアに対向して周設
した2個の固定子コアを有し、該2個の固定子コアのそ
れぞれに三相デルタ結線にした主巻線を巻装して三相電
接続した固定子と、前記2個の主巻線の同一相にそ
れぞれ励磁巻線を設け該励磁巻線に直列にダイオ−ドを
接続して、前記励磁巻線を互いに交差接続すると共に
磁巻線と同一の相の前記主巻線に印加される線間電圧を
開閉スイッチを介して前記励磁巻線の交差接続点に並列
接続した励磁器と、該2個の固定子主巻線のうち一方の
固定子主巻線がこれに対峙する回転子コアの周囲に生じ
る回転磁界と他の固定子主巻線がこれに対峙する回転子
コアの周囲に生じる回転磁界との間に位相差0゜と位相
差180゜を生じさせる移相装置とにより構成したこと
を特徴とする同期電動機。
1. A rotor having two rotor cores provided at arbitrary intervals on the same rotary shaft, each of the two rotor cores being provided with a three-phase rotor winding, and each rotor core being connected in series. A rotor having a diode connected in parallel to a connection point of the rotor winding, and two stator cores provided around the two rotor cores so as to face each other. a stator connected to the three-phase power supply by winding a primary winding that is a three-phase delta connection in each of the two stator core, each excitation winding in the same phase of the two main winding provided A diode is connected in series to the excitation winding so that the excitation winding is cross-connected to each other and is excited.
An exciter in which a line voltage applied to the main winding of the same phase as the magnetic winding is connected in parallel to the cross connection point of the excitation windings via an open / close switch, and the two stator main windings position between the rotating magnetic field one of the rotating magnetic field generated around the rotor core stator main winding facing to the other stator main winding of the results around the rotor core which faces thereto Phase difference 0 ° and phase
A synchronous motor comprising a phase shift device for producing a difference of 180 ° .
【請求項2】2. 移相装置は、起動時を位相差0゜で、同期The phase shifter synchronizes at startup with a phase difference of 0 °.
引き入れ時を位相差180゜とするとともに、開閉スイThe phase difference when pulling in is 180 ° and the opening and closing switch
ッチは、起動時には開いて、同期引き入れ時に閉じるこThe switch must be opened at startup and closed at the time of synchronization.
とを特徴とする請求項1記載の同期電動機。The synchronous motor according to claim 1, wherein:
【請求項3】3. 移相装置は、2個の固定子のいずれか一方The phase shifter is either one of the two stators.
の固定子巻線の極性をスイッチで切り換えて電源に接続Switch the polarity of the stator winding with a switch and connect to the power supply
するものであることを特徴とする請求項1記載の同期電The synchronous power supply according to claim 1, characterized in that
動機。Motive.
JP32131192A 1992-11-04 1992-11-04 Synchronous motor Expired - Fee Related JP3413816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32131192A JP3413816B2 (en) 1992-11-04 1992-11-04 Synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32131192A JP3413816B2 (en) 1992-11-04 1992-11-04 Synchronous motor

Publications (2)

Publication Number Publication Date
JPH06153474A JPH06153474A (en) 1994-05-31
JP3413816B2 true JP3413816B2 (en) 2003-06-09

Family

ID=18131172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32131192A Expired - Fee Related JP3413816B2 (en) 1992-11-04 1992-11-04 Synchronous motor

Country Status (1)

Country Link
JP (1) JP3413816B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103701286A (en) * 2014-01-10 2014-04-02 史立伟 High-reliability four-phase alternating current starting motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103701286A (en) * 2014-01-10 2014-04-02 史立伟 High-reliability four-phase alternating current starting motor
CN103701286B (en) * 2014-01-10 2015-12-09 史立伟 A kind of four cross streams starter-generators of high reliability

Also Published As

Publication number Publication date
JPH06153474A (en) 1994-05-31

Similar Documents

Publication Publication Date Title
KR100215534B1 (en) Dual-stator induction synchronous motor
KR940002926B1 (en) Starter generator system
US5796233A (en) Multiple-stator induction synchronous motor
JP3033621B2 (en) Brushless induction synchronous motor
US4110669A (en) Synchronous machine control system
US4656410A (en) Construction of single-phase electric rotating machine
JP3413816B2 (en) Synchronous motor
JP2001008490A (en) Controller and control method for permanent magnet synchronous motor
US10770999B2 (en) Brushless, self-excited synchronous field-winding machine
JPH06335271A (en) Synchronous motor
JP3358666B2 (en) Synchronous motor
JPH06245450A (en) Synchronous motor
JPH01264551A (en) Brushless self-excited synchronous generator
JP2828319B2 (en) Two stator induction synchronous motor
JP2975400B2 (en) 2 stator induction synchronous motor
JPH06253513A (en) Synchronuous motor
JP2927855B2 (en) Multiple stator induction synchronous motor
JP2893352B2 (en) Two stator induction synchronous motor
JPH05344695A (en) Synchronous motor
JPH05336716A (en) Brushless single-phase half speed synchronous motor
JP3062231B2 (en) Brushless single-phase induction synchronous motor
JP3115310B2 (en) 2 stator induction synchronous motor
JPS61173657A (en) Structure of rotary electric machine
JPS61185061A (en) Structure of electromagnetic joint
JPS63144744A (en) Brushless axial field rotary electric machine without exciter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees