JP2828319B2 - Two stator induction synchronous motor - Google Patents

Two stator induction synchronous motor

Info

Publication number
JP2828319B2
JP2828319B2 JP2136381A JP13638190A JP2828319B2 JP 2828319 B2 JP2828319 B2 JP 2828319B2 JP 2136381 A JP2136381 A JP 2136381A JP 13638190 A JP13638190 A JP 13638190A JP 2828319 B2 JP2828319 B2 JP 2828319B2
Authority
JP
Japan
Prior art keywords
rotor
stator
winding
poles
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2136381A
Other languages
Japanese (ja)
Other versions
JPH0433590A (en
Inventor
利彦 佐竹
幸男 大野木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SATAKE SEISAKUSHO KK
Original Assignee
SATAKE SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2136381A priority Critical patent/JP2828319B2/en
Application filed by SATAKE SEISAKUSHO KK filed Critical SATAKE SEISAKUSHO KK
Priority to AU77297/91A priority patent/AU643525B2/en
Priority to CA002043208A priority patent/CA2043208A1/en
Priority to EP91304765A priority patent/EP0467517B1/en
Priority to FI912532A priority patent/FI912532A/en
Priority to DK91304765.0T priority patent/DK0467517T3/en
Priority to DE91304765T priority patent/DE69100430T2/en
Priority to KR1019910008579A priority patent/KR100215534B1/en
Priority to MYPI91000895A priority patent/MY106518A/en
Priority to NO912024A priority patent/NO303606B1/en
Priority to US07/706,009 priority patent/US5254894A/en
Publication of JPH0433590A publication Critical patent/JPH0433590A/en
Application granted granted Critical
Publication of JP2828319B2 publication Critical patent/JP2828319B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

本発明は誘導機起動可能な同期電動機に関する。 The present invention relates to a synchronous motor capable of starting an induction motor.

【従来の技術】[Prior art]

一般に同期電動機は、その回転子を固定子巻線の作る
回転磁界の回転速度すなわち同期速度近くまで加速する
起動機と、回転子巻線の直流励磁が必要である。 この起動機を省略して同期電動機自体に起動トルクを
持たせるように考案されたのが誘導同期電動機で、これ
は起動時には回転子巻数を短絡して誘導電動機として起
動するために起動機は必要としないが、同期運転に必要
な回転子巻線の直流励磁のために、ブラシを必要とす
る。すなわち、回転子の回転速度が同期速度に近づくと
回転子巻線の短絡を開放して外部の直流電源からブラシ
を介して回転子巻線に直流電流を流して回転子に磁極を
作り、この磁極が固定子巻線の作る回転磁界に引っ張ら
れて回転子は同期速度で回転する。このブラシは保守点
検を必要とすることから保守費が嵩み、ブラシレス構造
の同期電動機の開発が望まれている。 このブラシレス構造の同期電動機としては、従来から
永久磁石形やリラクタンス形があるが、誘導機起動が不
可能なために起動トルクが小さい欠点があるため小容量
のものに限られている。またランデル形やインダクタ形
の同期電動機は、磁路の構成が複雑で大型となる欠点が
あった。また交流励磁機と回転整流器を用いる方法も同
様である。回転子巻線にダイオードを接続してインバー
タ方形波電圧による高調波磁界を利用するブラシレス自
励形三相同期電動機は、回転子の起磁力が不足で十分な
出力が得られない欠点がある。更には三相の固定子巻線
の一相にダイオードを挿入して固定子の作る正相分回転
磁界に静止励磁を重畳して、同期速度で回転する回転子
巻線に静止磁界による交流電圧を誘起させて、これをダ
イオードで整流することによって回転子巻線を直流励磁
して、正相分回転磁界を作用させて同期トルクを発生す
るブラシレス自励形三相同期電動機があるが、これは誘
導機始動が不可能なために、回転子鉄心の渦電流による
起動となり、起動トルクが小さい欠点がある。 また、特公昭54−34124には、起動を誘導機の原理に
よって行い、同期運転には軸方向の直流磁界を作ってこ
れによって回転子コアに磁極を形成して行うものがある
が、これは発生トルクが回転軸に対して非対象となるた
めに軸の振動の原因になる欠点がある。特公昭61−1992
には、4極と8極の相互干渉のない2つの回転磁界を用
いて、三相の回転子巻線のうち二相を同期運転に利用し
残る1相を短絡して起動用に利用するものがあるが、ゲ
ルゲス現象のため起動トルクが小さくなる欠点がある。
In general, a synchronous motor requires a starter that accelerates the rotor to near the rotational speed of the rotating magnetic field generated by the stator winding, that is, near the synchronous speed, and DC excitation of the rotor winding. An induction synchronous motor was devised so that the synchronous motor itself would have a starting torque by omitting this starter, which requires a starter to short-circuit the number of rotor turns and start as an induction motor at startup. However, a brush is required for DC excitation of the rotor winding required for synchronous operation. That is, when the rotation speed of the rotor approaches the synchronous speed, the short circuit of the rotor winding is opened, and a DC current is supplied from an external DC power supply to the rotor winding via a brush to create a magnetic pole in the rotor. The magnetic poles are pulled by the rotating magnetic field generated by the stator winding, and the rotor rotates at a synchronous speed. Since this brush requires maintenance and inspection, maintenance costs are increased, and development of a brushless synchronous motor is desired. As the synchronous motor having the brushless structure, there are a permanent magnet type and a reluctance type conventionally. However, since the starting torque of the induction motor is small because the induction motor cannot be started, it is limited to a small capacity motor. In addition, the synchronous motor of the Landel type or the inductor type has a disadvantage that the configuration of the magnetic path is complicated and large. The same applies to a method using an AC exciter and a rotary rectifier. A brushless self-excited three-phase synchronous motor that uses a harmonic magnetic field generated by an inverter square wave voltage by connecting a diode to a rotor winding has a drawback that sufficient output cannot be obtained due to insufficient magnetomotive force of the rotor. Furthermore, a diode is inserted into one phase of the three-phase stator winding, and static excitation is superimposed on the positive-phase rotating magnetic field generated by the stator, and the AC voltage due to the static magnetic field is applied to the rotor winding rotating at the synchronous speed. There is a brushless self-excited three-phase synchronous motor that generates a synchronous torque by inducing a rotor winding by direct current excitation by rectifying this with a diode and applying a rotating magnetic field corresponding to the positive phase. Since the induction motor cannot be started, it is started by the eddy current of the rotor core, and has a disadvantage that the starting torque is small. In Japanese Patent Publication No. 54-34124, there is a method in which starting is performed by the principle of an induction machine, and synchronous operation is performed by forming a DC magnetic field in an axial direction and thereby forming a magnetic pole in a rotor core. There is a disadvantage that the generated torque is asymmetrical with respect to the rotating shaft and causes vibration of the shaft. Tokiko Sho 61-1992
Uses two rotating magnetic fields of four poles and eight poles without mutual interference, uses two phases of a three-phase rotor winding for synchronous operation, and short-circuits the remaining one phase and uses it for startup. However, there is a disadvantage that the starting torque is reduced due to the gelges phenomenon.

【発明が解決しようとする課題】[Problems to be solved by the invention]

したがって起動トルクが大きく、更に同期トルクも大
きくしかもブラシを必要とせず、保守点検が容易で構造
が簡単で専用の起動機も必要としない同期電動機の提供
を技術的課題とするものである。
Accordingly, it is a technical object of the present invention to provide a synchronous motor that has a large starting torque, a large synchronous torque, does not require a brush, is easy to maintain and inspect, has a simple structure, and does not require a dedicated starter.

【課題を解決するための手段】[Means for Solving the Problems]

前記課題を解決するために、同一回転軸上に任意の間
隔を置いて設けた2個の回転子コアを有し、該2個の回
転子コアのそれぞれに任意の同一極数を持ち前記2個の
回転子コア間で接続された第1の回転子巻線と、該第1
の回転子巻線の極数と異なる極数を持ち前記2個の回転
子コア間で接続された第2の回転子巻線とを有する回転
子と、 前記2個の回転子コアにそれぞれ対向して周設した2
個の固定子コアを有し、該2個の固定子コアのそれぞれ
に前記第1の回転子巻線の極数に等しい極数を持つ固定
子巻線と前記第2の回転子巻線の極数に等しい極数を持
つ励磁巻線とを設けた2個の固定子と、 前記第1の回転子巻線の接続部分と前記第2の回転子
巻線の接続部分との間に設けられ、前記第2の回転子巻
線の出力電圧を整流し前記第1の回転子巻線に入力する
ように連絡した整流回路と、そして、 前記2個の固定子のうち特定の固定子がこれに対峙す
る回転子コアの周囲に生じる回転磁界と、他の固定子が
これに対峙する回転子コアの周囲に生じる回転磁界との
間に、180゜の位相差を生じさせる電圧移相装置と、に
より二固定子誘導同期電動機を構成した。 更に本発明によると、前記電圧移相装置は、2個の固
定子のうち一方あるいは双方の固定子コアの位置を機械
的に回動させる回動固定子からなること、あるいは、一
方の固定子巻線の端子を逆極性に切り換えるスイッチか
らなることにより前記課題を解決するための手段とし
た。
In order to solve the above-mentioned problem, two rotor cores provided at an arbitrary interval on the same rotation axis are provided, and each of the two rotor cores has the same number of poles and has the same number of poles. A first rotor winding connected between the rotor cores;
A rotor having a number of poles different from the number of rotor windings and having a second rotor winding connected between the two rotor cores, and facing the two rotor cores, respectively. 2
And two stator cores, each having a number of poles equal to the number of poles of the first rotor winding. Two stators provided with exciting windings having the same number of poles, and provided between a connecting portion of the first rotor winding and a connecting portion of the second rotor winding. A rectifier circuit connected to rectify the output voltage of the second rotor winding and input the rectified output voltage to the first rotor winding; and a specific stator among the two stators is A voltage phase shifter that produces a 180 ° phase difference between the rotating magnetic field generated around the rotor core facing the rotating core and the rotating magnetic field generated around the rotor core facing the other stator. Thus, a two-stator induction synchronous motor was configured. Furthermore, according to the present invention, the voltage phase shifter comprises a rotating stator for mechanically rotating the position of one or both stator cores of the two stators, or one of the stators. A means for solving the above-mentioned problem is constituted by a switch for switching the terminal of the winding to the reverse polarity.

【作用】[Action]

複数固定子誘導電動機とその電圧移相装置の作用につ
いて本出願人は特公平2−27920号においてその詳細を
説明している。ただし、本発明の場合、電圧移相装置は
起動時に位相差0゜、同期運転時に位相差180゜となる
ように作用する場合を説明している。 本発明は、まず第1の回転子巻線と該第1の回転子巻
線と異なる極数の第2の回転子巻線、また第1の回転子
巻線と銅極数の固定子巻線と、第2の回転子巻線と同極
数の励磁巻線を有し、回転子及び固定子のそれぞれは互
いに同一極数にした固定子と回転子間のみで作用し合
い、固定子巻線による回転磁界が異なる極数の第2の回
転子巻線に電磁作用を及ぼすことはないという公知の理
論に基づいている。 本発明によると、起動時には固定子巻線の作る回転磁
界によって同極数の第1の回転子巻線に電圧が誘起され
回転子は回転を始める。また極数の異なる第2の回転子
巻線には固定子巻線の回転磁界は影響しない。このとき
電圧移相装置は2個の回転子コアに巻相された第1の回
転子巻線に誘起される電圧が同相になるように、すなわ
ち2個の回転子コアに巻装された第1の回転子巻線に還
流する電流が流れるように作動させて、一般の誘導電動
機として起動する。起動後、回転子の回転速度が上昇し
て回転磁界の回転速度すなわち同期速度に近づくと、す
べりが小さくなり固定子の回転磁界による第1の回転子
巻線の誘起電圧は小さくなる。ここまでは誘導電動機と
しての動作であるが、すべりSがS=0.05に近づいた時
に同期運転に入る。これは次のようにして行う。 まず、2個の固定子のうち一方の固定子がこれに対峙
する回転子コアの周囲に生じる回転磁界と他方の固定子
がこれに対峙する回転子コアの周囲に生じる回転磁界と
の間に180゜の位相差を生じさせるように電圧位相装置
を作動させる。このようにすると今まで2個の回転子コ
アに設けた第1の回転子巻線を還流して流れていた電流
は流れなくなり、第1と第2の回転子巻線の接続部分に
設けた整流回路に電流が流れるようになる。さらに回転
子が同期速度に近付きすべりが零になると第1の回転子
巻線に電流は流れなくなる。そこで先の電圧移相装置の
作動と同時に固定子コアに設けた励磁巻線を作用させる
と、この励磁巻線は回転子コアの第2の回転子巻線と同
極数にしてあるから、極数の異なる第1の回転子巻線に
関係なく、第2の回転子巻線はこの励磁巻線の磁界と鎖
交して交流の電圧を誘起するようになる。この交流電圧
は回転子の回転速度が大になるほど大きくなる。また前
述のように回転磁界に位相差180゜を設けてあるよう
に、2個の固定子コアのそれぞれの励磁巻線を互いに18
0゜の位相差を設けて配置しておくことで、第2の回転
子巻線に誘起した交流電圧は2個の第2の回転子巻線を
還流せず、前記第2の回転子巻線の接続部分に設けた整
流回路に電流を流すようになる。この整流回路で整流さ
れた電流を整流回路の出力として第1の回転子巻線に入
力することにより第1の回転子巻線は磁極を形成し、同
極数の固定子巻線の回転磁界に引っ張られて回転子は同
期速度で回転するようになる。この時、第2の回転子巻
線は同極数の励磁巻線の磁界の作用を受け、第1の回転
子巻線は同極数の固定子巻線の回転磁界の作用を受けて
おり、互いに干渉しないことは明らかである。 ここで同期トルクを考察してみるに、2個の固定子の
うち特定の固定子が作る回転磁界の位相が他の固定子の
作る回転磁界のそれよりも180゜移相されるが、前記励
磁巻線の磁界によって一方の固定子と対峙する回転子コ
アの第2の回転子巻線に流れる電流の方向と、他方の固
定子と対峙する回転子コアの第2の回転子巻線に流れる
電流の方向とは逆方向となるため共に整流回路に電流が
流れ込んで第1の回転子巻線に磁極を生じ、この磁極の
極性が180゜の位相差を設けた回転磁界の極性と一致す
ることになる。したがって、2個の回転子のトルクが加
わるので誘導同期電動機は2固定子であるがその合計の
容量は従来のブラシを有する誘導同期電動機と同等であ
る。 以上のように、本発明の2固定子誘導同期電動機は、
起動時には第1の回転子巻線により従来の誘導電動機の
原理で起動するから起動トルクが大きく、したがって他
の特別の起動機を必要としない。また、同期速度におい
ては第1の回転子巻線が、励磁巻線と第2の固定子巻線
との発電作用と、整流回路の作用とにより磁極を形成す
るので同期トルクが大きく、ブラシなどの保守を必要と
しない同期電動機を提供することが可能となった。 なお電圧移相装置としては、本出願人が特公平2−27
920号において固定子の位置を回転軸のまわりに機械的
に回動させることによって変える方法と、固定子巻線の
接続をスイッチにより切り換えて行う方法の2つを説明
している。 以上のような構成によって、起動トルクが大きくさら
に同期トルクも大きく、しかもブラシを必要とせず、保
守点検が容易で構造が簡単で専用の起動機を必要としな
い同期電動機を提供することが可能となった。 ところで、前記固定子巻線を励磁する電源は、直流電
源のみならず商用周波数の交流電源かまたはインバータ
を利用した可変周波数電源を利用できる。また単相にお
いても三相においても利用できるものである。前記可変
周波数電源を利用すると、同期速度の変更が容易に可能
となり、その場合でも通常の誘導電動機の始動トルクで
起動可能であり、利用分野は大きく拡大し、安価な同期
電動機の提供が可能となった。
The applicant of the present invention describes the details of the operation of the multiple stator induction motor and its voltage phase shifter in Japanese Patent Publication No. Hei 2-27920. However, in the case of the present invention, a case is described in which the voltage phase shifter operates so as to have a phase difference of 0 ° at startup and a phase difference of 180 ° during synchronous operation. The present invention relates to a first rotor winding, a second rotor winding having a different number of poles from the first rotor winding, and a first rotor winding and a stator winding having a copper pole number. And a second rotor winding and an excitation winding having the same number of poles as the second rotor winding. Each of the rotor and the stator acts only between the stator and the rotor having the same number of poles. It is based on the known theory that the rotating magnetic field due to the windings does not have an electromagnetic effect on the second rotor windings of different pole numbers. According to the present invention, at the time of startup, a voltage is induced in the first rotor winding having the same number of poles by the rotating magnetic field generated by the stator winding, and the rotor starts rotating. Further, the rotating magnetic field of the stator winding does not affect the second rotor winding having a different number of poles. At this time, the voltage phase shifter operates so that the voltages induced in the first rotor winding wound around the two rotor cores have the same phase, that is, the second phase wound around the two rotor cores. One of the rotor windings is operated such that a recirculating current flows, and the motor is started up as a general induction motor. After the start, when the rotation speed of the rotor increases and approaches the rotation speed of the rotating magnetic field, that is, the synchronous speed, the slip decreases and the induced voltage of the first rotor winding due to the rotating magnetic field of the stator decreases. Up to this point, the operation is as an induction motor, but when the slip S approaches S = 0.05, the synchronous operation starts. This is performed as follows. First, between the rotating magnetic field generated around one rotor core facing one of the two stators and the rotating magnetic field generated around the rotor core facing the other. Activate the voltage phase shifter to create a 180 ° phase difference. In this way, the current that has been flowing back through the first rotor windings provided on the two rotor cores no longer flows, and is provided at the connection between the first and second rotor windings. A current flows through the rectifier circuit. Further, when the rotor approaches the synchronous speed and the slip becomes zero, no current flows through the first rotor winding. Therefore, when the exciting winding provided on the stator core is actuated simultaneously with the operation of the voltage phase shifter, the exciting winding has the same number of poles as the second rotor winding of the rotor core. Regardless of the first rotor winding having a different number of poles, the second rotor winding is linked with the magnetic field of the excitation winding to induce an AC voltage. This AC voltage increases as the rotation speed of the rotor increases. Also, as described above, the excitation windings of the two stator cores are connected to each other by 18 ° so that the rotating magnetic field has a phase difference of 180 °.
By arranging and providing a phase difference of 0 °, the AC voltage induced in the second rotor winding does not return to the two second rotor windings, and the second rotor winding does not return. The current flows through the rectifier circuit provided at the connection portion of the wire. By inputting the current rectified by the rectifier circuit as an output of the rectifier circuit to the first rotor winding, the first rotor winding forms a magnetic pole, and the rotating magnetic field of the stator winding having the same number of poles. The rotor rotates at a synchronous speed. At this time, the second rotor winding receives the action of the magnetic field of the exciting winding having the same number of poles, and the first rotor winding receives the action of the rotating magnetic field of the stator winding of the same number of poles. It is clear that they do not interfere with each other. Here, considering the synchronous torque, the phase of the rotating magnetic field created by a specific stator among the two stators is shifted by 180 ° from that of the rotating magnetic field created by the other stators. Due to the direction of the current flowing through the second rotor winding of the rotor core facing the one stator due to the magnetic field of the exciting winding, and to the second rotor winding of the rotor core facing the other stator. Since the current flows in the opposite direction, the current flows into the rectifier circuit to create a magnetic pole in the first rotor winding, and the polarity of this magnetic pole matches the polarity of the rotating magnetic field with a 180 ° phase difference. Will do. Therefore, since the torque of the two rotors is applied, the induction synchronous motor is a two-stator, but the total capacity is the same as that of an induction synchronous motor having a conventional brush. As described above, the two-stator induction synchronous motor of the present invention
At the time of starting, the starting torque is large because the first rotor winding starts according to the principle of the conventional induction motor, so that no other special starting machine is required. In addition, at the synchronous speed, the first rotor winding forms a magnetic pole by the power generation operation of the excitation winding and the second stator winding and the operation of the rectifier circuit, so that the synchronous torque is large, and a brush or the like is used. It has become possible to provide a synchronous motor that does not require maintenance. As a voltage phase shifter, the present applicant has disclosed in Japanese Patent Publication No. 2-27.
No. 920 describes two methods, a method of changing the position of the stator by mechanically rotating it around a rotation axis, and a method of switching the connection of the stator winding by a switch. With the above configuration, it is possible to provide a synchronous motor that has a large starting torque and a large synchronous torque, does not require a brush, is easy to maintain and inspect, has a simple structure, and does not require a dedicated starting device. became. By the way, the power supply for exciting the stator winding can use not only a DC power supply but also an AC power supply of a commercial frequency or a variable frequency power supply using an inverter. It can be used in a single phase or in a three phase. By using the variable frequency power supply, it is possible to easily change the synchronous speed, and even in that case, it is possible to start with the starting torque of a normal induction motor, the field of use is greatly expanded, and it is possible to provide an inexpensive synchronous motor. became.

【実施例】【Example】

本発明は主として2固定子誘導同期電動機として説明
し、固定子巻線の結線も並列、直列、スター結線、デル
タ結線のいずれでもよく、回転子巻線も同様である。す
でに本出願人は特公平2−27920号として本発明の構成
の一部である複数固定子からなる誘導電動機の構成、作
用の詳細な説明を行っている。つまり電圧移相装置によ
って、複数個の固定子のうち特定の固定子がこれに対峙
する固定子の周囲に生じる回転磁界と他の固定子がこれ
に対峙する回転子の周囲に生じる回転磁界との間の位相
差を、例えば同相すなわち電気角で0゜とした場合、回
転子導体に流れる電流は回転子導体を還流し、たとえば
電気角で180゜とした場合、回転子導体に流れる電流は
回転子導体を還流せず回転子コア間で回転子導体間を連
結した連結材を通じて流れることなどを詳説している。 更に電圧位相装置の構成については、固定子を回動さ
せるものや、固定子巻線の結線の切換を行うものなどを
示しているが、本発明において、特に固定子巻線の結線
の切換を行って電圧位相装置を構成すると、前述した電
気角の0゜から180゜への切換は瞬時に行えるため同期
速度への引き込みは容易となる。また回転速度を検出す
るセンサーと、励磁回路と、電圧位相装置の制御装置と
を設けて連絡すると、同期速度への引き込みが自動化で
きると共に、万一脱調した場合でも、回転速度を検出す
るセンサーの信号により即座に同期運転から誘導電動機
の運転に切換可能であり、一般の同期電動機のように脱
調から急激に停止することがなく自己防止が簡単にでき
るものとなる。 第1図により本発明の第1の実施例を説明する。まず
符号20は2固定子誘導同期電動機の固定子側を示してい
る。また符号30は同じく回転子側を示している。 固定子側20は2つの固定子コア(図示せず)のそれぞ
れに固定子巻線21,22が設けられて、それらが直列Y結
線されて三相交流電源R,S,Tに接続されている。さらに
固定子側20には2つの固定子コアのそれぞれに励磁巻線
41,42と、直流電源43と開閉スイッチSW2が設けてある。
一方回転子側30の同一回転軸上に設けた2個の回転子コ
ア(図示せず)に第1の回転子巻線31,32が設けられ
て、それらが並列に接続されている。さらに回転子側30
には、2つの回転子コアのそれぞれに第2の回転子巻線
33,34が設けられて、それらが並列に接続されている。 第1の回転子巻線31,32の極数と固定子巻線21,22の極
数は共に4極で一致させ、第2の回転子巻線33,34の極
数と励磁巻線41,42の極数は共に8極で一致させてあ
る。更に2つの回転子コア間の回転子巻線の接続部分に
おいて、第2の回転子巻線33,34の出力を整流する整流
回路35を設け、該整流回路35の出力端子をダイオード36
を介して第1の回転子巻線31,32の接続部分に接続して
ある。 ここで、固定子巻線21に対峙する第1の回転子巻線31
に誘起する電圧を図示の方向にEとし、同じく第2の回
転子巻線33に誘起する電圧を図示の方向にeとする。ま
た固定子巻線22に対峙する第1の回転子巻線32に誘起す
る電圧を図示の方向にEεjθとし、同じく第2の回転
子巻線34に誘起する電圧を図示の方向にeεjθとす
る。ここでθは電圧の位相差角である。 以上の構成による作用を説明する。まず起動時には、
第1の回転子巻線31,32の誘導電圧の位相差角θがθ=
0゜になるように固定子巻線21,22が結線された状態で
三相交流電源R,S,Tに投入して起動する。このようにす
ると固定子巻線21,22に三相交流電源から三相交流電源
が流れてそれぞれ同相の回転磁界を生じ、第1の回転子
巻線31,32に電圧E,Eεjθが誘起される。この場合の誘
導電圧の位相差角θはθ=0であるから、第1の回転子
巻線31,32に流れる電流は両巻線を還流するように流
れ、回転子は誘導電動機の原理で起動する(第2図)。
ここで第2の回転子巻線33,34の極数は8極で、固定子
巻線21,22の極数は4極であるから、相互干渉はなく、
固定子巻線21,22の作る回転磁界によっては第2の回転
子巻線33,34には電圧を誘起しない。したがって起動時
には第2の回転子巻線33,34は関与しない。つまり起動
は従来の誘導電動機と同じ特性で行われ、起動トルクは
大きく、別個の起動機を必要としない。 起動後、回転子の回転速度が上昇して固定子巻線21,2
2の作る4極の回転磁界の回転速度すなわち4極の同期
速度に近づくと、すべりSが小さくなるので第1の回転
子巻線31,32の誘機電圧Eは小さくなる。ここまでは誘
導電動機としての動作であるが、すべりSがS=0.05に
近づいた時に同期運転に引き入れる。これは次のように
して行う。 先ず電圧移相装置によって2つの固定子巻線21,22の
一方、例えば固定子巻線22の位置を当該固定子のコアを
回転軸の周りに回動させることによって変えて、2つの
固定子巻線21,22の作る2つの回転磁界の位相差角θが
θ=180゜になるようにする。このようにすると、第1
の回転子巻線31,32の誘起電圧の位相差角θがθ=180゜
となり、Eεjθ=−Eとなるので、今まで回転子巻線
31から回転子巻線32へ還流していた電流が流れなくなっ
て誘導電動機としての作用はなくなる。そこで2個の固
定子コアのそれぞれに設けた励磁巻線41,42を作用させ
る。ここでは直流励磁回路を示している。すなわち励磁
巻線41,42を直列に図示のように結線して開閉スイッチS
W2を閉じて直流電源43から直流電流を流して8極の静止
磁界を作ると、第2の回転子巻線33,34に交流電源e,eε
jθが誘起する。ここで前述のように固定子コアの回動
によってθ=180゜になっているので、eεjθ=−e
になる。したがって第2の回転子巻線33,34に流れる電
流はその接続部分から整流回路35に向かって流れて、こ
の電流が整流されてダイオード36を介して第1の回転子
巻線31,32の接続部分から回転子巻線31,32に流れて、こ
の直流分電流によって回転子巻線31,32に4極の磁極を
生じて、これと固定子巻線21,22の作る4極の回転磁界
によって同期トルクを生じて、回転子は同期運転に入
る。ここで第1の回転子巻線31,32の極数と励磁巻線41,
42の極数が異なるので両者の相互干渉はなく、また固定
子巻線21,22の極数と励磁巻線41,42の極数も異なるので
両者の相互干渉もなく、回転子は純粋な4極の同期電動
機として運転されることになり、第2図で示す同期トル
クも大きい。 次に脱調した場合を考察してみる。脱調した時は、固
定子巻線21,22の作る4極の回転磁界による第1の回転
子巻線31,32の誘導電圧E,−Eが大きくなるので、この
電圧によってダイオード36と整流回路35を介して第1の
回転子巻線31,32に整流された電流が流れ、脱調を防ぐ
作用が発生する。 更に同期トルクを考察してみるに、同期運転時には電
圧位相装置による固定子の回動によって固定子巻線と励
磁巻線は同時に回動され、固定子巻線22の作る回転磁界
の位相が固定子巻線21のそれに対して180゜位相されて
いるので、励磁巻線41,42の作る静止磁界によって第2
の回転子巻線33,34、整流回路35,ダイオード36を通じて
流れる整流回路による第1の回転子巻線31,32の磁極の
極性の関係が回転磁界のそれと相対的に等しくなり、同
期トルクは2つの回転子コアにおいて同一の方向とな
り、同期トルクは加算されることになって、本発明の誘
導同期電動機は2固定子ではあるが、その合計の容量は
従来のブラシを有する誘導同期電動機と同様である。 以上のように、本発明の2固定子誘導同期電動機は、
起動時には従来の誘導電動機の原理で起動するから起動
トルクが大きく、したがって他の特別の起動機を必要と
しない。また同期運転においては固定子巻線の作る回転
磁界と干渉しない静止磁界を利用するので同期トルクが
大きく、ブラシなどの保守を必要としない同期電動機を
提供することが可能となった。 さて本実施例には、回転子巻線の誘機電圧に位相差を
設ける電圧移相装置として、一方の固定子コアを回転軸
のまわりに回動させる方法を記載したが、固定子巻線の
結線変更すなわち固定子巻線の両端子を入れ換えて逆極
性に結線することによって電気的に位相差角θをθ=0
゜からθ=180゜に切り換えることも可能である。結線
切換による電圧移相装置としては特公平2−27920号に
詳しいことを前述しているが、これを第3図に第2実施
例として示す。なお回転子側の構成は前述の第1の実施
例と同様となるので異なる部分のみ説明する。また固定
子巻線21,22及び励磁巻線41,42についても同記号とす
る。 第2実施例の固定子巻線22には切換スイッチSW1が設
けられ、このスイッチSW1の切換により固定子巻線22の
極性を切り換えて、固定子巻線21と固定子巻線22との間
には電気的位相差θがθ=0゜とθ=180゜を設けるこ
とができるようになっている。また励磁巻線41,42は同
期運転にのみ作用させるので、予め位相差θ=180゜と
なるように結線しておけば、励磁巻線の結線変更は不要
であり、同期引き入れ時に励磁回路を動作させればよい
ものとなる。 本実施例では回転磁界と静止磁界の相互干渉を防ぐた
めに、4極と8極の組み合わせを記載したが、2極と6
極の組み合わせ等も考えられ、これに限定されるもので
はない。 また本実施例では、電源として商用電源を用いる方法
を記載したが、インバータのような可変周波数電源を用
いることによって任意の同期速度で運転することも可能
である。
The present invention will be described mainly as a two-stator induction synchronous motor. The connection of the stator windings may be any of parallel, series, star connection, and delta connection, and the same applies to the rotor windings. The applicant has already described in detail Japanese Patent Publication No. 2-27920 the configuration and operation of an induction motor including a plurality of stators, which is a part of the configuration of the present invention. In other words, the rotating magnetic field generated around the stator where a specific stator among the plurality of stators faces the rotating stator and the rotating magnetic field generated around the rotor facing the other stator by the voltage phase shifter. For example, if the phase difference between the currents is 0 ° in phase, that is, the electrical angle, the current flowing through the rotor conductor returns to the rotor conductor. For example, if the electrical angle is 180 °, the current flowing through the rotor conductor is It describes in detail that the rotor conductor does not return and flows through a connecting member connecting the rotor conductors between the rotor cores. Further, as for the configuration of the voltage phase device, there are shown those for rotating the stator and those for switching the connection of the stator winding. In the present invention, particularly, the switching of the connection of the stator winding is performed. When the voltage phase shifter is constructed by performing the above operation, the electrical angle can be instantaneously switched from 0 ° to 180 °, so that it is easy to pull in the synchronous speed. If a sensor that detects the rotational speed, an excitation circuit, and a control device for the voltage phase device are provided and connected, the pull-in to the synchronous speed can be automated, and even if a step-out occurs, the sensor that detects the rotational speed Can be switched immediately from the synchronous operation to the operation of the induction motor, and self-prevention can be easily performed without suddenly stopping from step-out as in a general synchronous motor. A first embodiment of the present invention will be described with reference to FIG. First, reference numeral 20 indicates the stator side of a two-stator induction synchronous motor. Reference numeral 30 also indicates the rotor side. On the stator side 20, stator windings 21 and 22 are provided on each of two stator cores (not shown), and they are connected in series Y and connected to three-phase AC power sources R, S and T. I have. Exciting windings are further provided on each of the two stator cores on the stator side 20.
41, 42, a DC power supply 43 and an open / close switch SW2 are provided.
On the other hand, first rotor windings 31, 32 are provided on two rotor cores (not shown) provided on the same rotation axis on the rotor side 30, and they are connected in parallel. Further rotor side 30
Has a second rotor winding on each of the two rotor cores
33 and 34 are provided and they are connected in parallel. The number of poles of the first rotor windings 31 and 32 and the number of poles of the stator windings 21 and 22 are made to coincide with each other by four poles, and the number of poles of the second rotor windings 33 and 34 and the exciting winding 41 , 42 are matched with 8 poles. Further, a rectifying circuit 35 for rectifying the output of the second rotor windings 33 and 34 is provided at a connecting portion of the rotor winding between the two rotor cores, and an output terminal of the rectifying circuit 35 is connected to a diode 36.
Are connected to the connection portions of the first rotor windings 31 and 32 through the connection. Here, the first rotor winding 31 facing the stator winding 21
The voltage induced in the second rotor winding 33 is E in the illustrated direction, and the voltage induced in the second rotor winding 33 is e in the illustrated direction. The voltage induced in the first rotor winding 32 facing the stator winding 22 is Eε jθ in the illustrated direction, and the voltage induced in the second rotor winding 34 is eε jθ in the illustrated direction. And Here, θ is the phase difference angle of the voltage. The operation of the above configuration will be described. First, at startup,
When the phase difference angle θ of the induced voltage of the first rotor windings 31 and 32 is θ =
When the stator windings 21 and 22 are connected so as to be 0 °, the three-phase AC power supplies R, S and T are turned on and activated. Thus the results in a rotating magnetic field of the respective stator windings 21, 22 from the three-phase AC power supply three-phase AC power source flows through common mode voltage to the first rotor winding 31 and 32 E, is Iipushiron j.theta. Induced Is done. In this case, since the phase difference angle θ of the induced voltage is θ = 0, the current flowing through the first rotor windings 31 and 32 flows so as to return the two windings, and the rotor is driven by the principle of the induction motor. Activate (FIG. 2).
Here, since the number of poles of the second rotor windings 33 and 34 is eight, and the number of poles of the stator windings 21 and 22 is four, there is no mutual interference.
No voltage is induced in the second rotor windings 33, 34 depending on the rotating magnetic field generated by the stator windings 21, 22. Therefore, the second rotor windings 33 and 34 do not participate during startup. That is, the starting is performed with the same characteristics as the conventional induction motor, the starting torque is large, and a separate starting machine is not required. After startup, the rotation speed of the rotor increases and the stator windings 21 and 2
When the rotation speed approaches the rotation speed of the four-pole rotating magnetic field, that is, the synchronization speed of the four poles, the slip S decreases and the trigger voltage E of the first rotor windings 31 and 32 decreases. Up to this point, the operation is as an induction motor, but when the slip S approaches S = 0.05, the operation is introduced into the synchronous operation. This is performed as follows. First, the position of one of the two stator windings 21, 22, for example, the stator winding 22, is changed by rotating the core of the stator around a rotation axis by a voltage phase shifter, thereby changing the two stator windings. The phase difference angle θ between the two rotating magnetic fields formed by the windings 21 and 22 is set to θ = 180 °. In this case, the first
, The phase difference angle θ of the induced voltages of the rotor windings 31 and 32 becomes θ = 180 ° and Eε = −E.
The current recirculating from 31 to the rotor winding 32 stops flowing, and the operation as the induction motor is lost. Therefore, excitation windings 41 and 42 provided on each of the two stator cores are operated. Here, a DC excitation circuit is shown. That is, the exciting windings 41 and 42 are connected in series as shown
When W2 is closed and a DC current flows from the DC power supply 43 to generate an 8-pole static magnetic field, the AC power supplies e and eε are applied to the second rotor windings 33 and 34.
is induced. Since θ = 180 ° due to the rotation of the stator core as described above, eε = −e
become. Therefore, the current flowing through the second rotor windings 33 and 34 flows from the connection portion thereof toward the rectifier circuit 35, and this current is rectified and is passed through the diode 36 to the first rotor windings 31 and 32. The DC current flows from the connection portion to the rotor windings 31 and 32, and the DC current causes the rotor windings 31 and 32 to generate four magnetic poles. A synchronous torque is generated by the magnetic field, and the rotor enters synchronous operation. Here, the number of poles of the first rotor windings 31, 32 and the excitation windings 41,
Since the number of poles of 42 is different, there is no mutual interference between them.The number of poles of the stator windings 21, 22 and the number of poles of the exciting windings 41, 42 are also different, so there is no mutual interference between them, and the rotor is pure. The motor is operated as a four-pole synchronous motor, and the synchronous torque shown in FIG. 2 is large. Next, let's consider the case of step-out. When the step-out occurs, the induced voltages E and -E of the first rotor windings 31 and 32 due to the four-pole rotating magnetic field generated by the stator windings 21 and 22 increase. A rectified current flows through the first rotor windings 31 and 32 via the circuit 35, and an action of preventing step-out occurs. Considering the synchronous torque, the stator winding and the exciting winding are simultaneously rotated by the rotation of the stator by the voltage phase device during the synchronous operation, and the phase of the rotating magnetic field generated by the stator winding 22 is fixed. Since it is 180 ° out of phase with that of the slave winding 21, the second magnetic field generated by the exciting windings 41 and 42 causes the second
The relationship of the polarity of the magnetic poles of the first rotor windings 31 and 32 due to the rectifier circuit flowing through the rotor windings 33 and 34, the rectifier circuit 35, and the diode 36 becomes relatively equal to that of the rotating magnetic field, and the synchronous torque becomes The two rotor cores have the same direction, and the synchronous torques are to be added. Thus, the induction synchronous motor of the present invention is a two-stator, but the total capacity is the same as that of the conventional synchronous motor having a brush. The same is true. As described above, the two-stator induction synchronous motor of the present invention
At the time of starting, since the starting is performed based on the principle of the conventional induction motor, the starting torque is large, so that no other special starting machine is required. In the synchronous operation, a static magnetic field that does not interfere with the rotating magnetic field generated by the stator winding is used, so that a synchronous motor having a large synchronous torque and requiring no maintenance such as a brush can be provided. In the present embodiment, a method of rotating one stator core around the rotation axis as a voltage phase shifter for providing a phase difference to the induction voltage of the rotor winding has been described. That is, the phase difference angle θ is electrically changed to θ = 0 by changing the connection of
It is also possible to switch from ゜ to θ = 180 °. The details of the voltage phase shifter by connection switching are described in Japanese Patent Publication No. 2-27920, which is shown in FIG. 3 as a second embodiment. Since the configuration on the rotor side is the same as that of the first embodiment, only different portions will be described. The same symbols are used for the stator windings 21 and 22 and the excitation windings 41 and 42. A changeover switch SW1 is provided on the stator winding 22 of the second embodiment, and the polarity of the stator winding 22 is switched by switching the switch SW1, so that the position between the stator winding 21 and the stator winding 22 is changed. Has an electrical phase difference θ of θ = 0 ° and θ = 180 °. Also, since the excitation windings 41 and 42 act only on the synchronous operation, if they are connected in advance so that the phase difference θ = 180 °, there is no need to change the connection of the excitation windings. It only needs to be activated. In this embodiment, a combination of 4 poles and 8 poles is described in order to prevent mutual interference between the rotating magnetic field and the stationary magnetic field.
A combination of poles is also conceivable, and the present invention is not limited to this. In this embodiment, a method using a commercial power supply as a power supply has been described, but it is also possible to operate at an arbitrary synchronous speed by using a variable frequency power supply such as an inverter.

【効果】【effect】

以上の構成から本発明の2固定子誘導同期電動機は、
起動時は従来の誘導電動機と同様のトルク特性で行い、
すべりSが例えばS=0.05付近から同期速度に移行して
同期電動機のトルク特性で運転するものである。この二
固定子誘導同期電動機は、起動機やブラシを必要としな
いから、その構造・構成が簡単となるだけでなく、従来
の誘導電動機と同様のトルク特性で起動できるので重負
荷がかかったままで起動と同期運転が可能となる。 ところで、本発明の二固定子誘導同期電動機は、誘導
電動機と同期電動機との両方のトルク特性を備えるか
ら、どちらの電動機のトルク特性でも使用可能である。
このことは、同期速度で運転中、何らかの原因で脱調し
た場合でも、同期電動機トルク特性から誘導電動機のト
ルク特性に切換可能であるから、一般の同期電動機のよ
うに電動機が急激に停止することがない。 以上のようにブラシがなく複雑な構成を必要としない
から保守点検も容易であり、起動トルクが大きく同期ト
ルクも大きい同期電動機の提供が可能となった。
From the above configuration, the two-stator induction synchronous motor of the present invention
At the time of starting, it performs with the same torque characteristics as the conventional induction motor,
The slip S shifts from, for example, around S = 0.05 to the synchronous speed, and the motor operates with the torque characteristics of the synchronous motor. This two-stator induction synchronous motor does not require a starter or a brush, so not only is its structure and configuration simple, but it can also be started with the same torque characteristics as conventional induction motors, so that heavy loads can be maintained. Startup and synchronous operation are possible. By the way, the two-stator induction synchronous motor of the present invention has both the torque characteristics of the induction motor and the synchronous motor, so that the torque characteristics of either motor can be used.
This means that even if the motor loses synchronism during operation at the synchronous speed, the torque characteristic of the induction motor can be switched from the torque characteristic of the synchronous motor to the torque characteristic of the induction motor, so that the motor suddenly stops like a general synchronous motor. There is no. As described above, since there is no brush and no complicated structure is required, maintenance and inspection are easy, and a synchronous motor having a large starting torque and a large synchronous torque can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例を示す固定子巻線側と回転子巻
線側の簡略な構成図、第2図は本発明の同期電動機のト
ルク特性の一例を示す図、第3図は結線切換による固定
子側の別の実施例図である。 20……固定子側、21……固定子巻線、22……固定子巻
線、30……回転子側、31,32……第1の回転子巻線、33,
34……第2の回転子巻線、35……整流回路、36……ダイ
オード、41,42……励磁巻線、43……直流電源、R,S,T…
…三相交流電源、SW1……切換スイッチ、SW2……開閉ス
イッチ。
FIG. 1 is a simplified configuration diagram of a stator winding side and a rotor winding side showing an embodiment of the present invention, FIG. 2 is a diagram showing an example of torque characteristics of a synchronous motor of the present invention, and FIG. It is another Example figure of the stator side by connection switching. 20 ... stator side, 21 ... stator winding, 22 ... stator winding, 30 ... rotor side, 31, 32 ... first rotor winding, 33,
34 ... second rotor winding, 35 ... rectifier circuit, 36 ... diode, 41,42 ... exciting winding, 43 ... DC power supply, R, S, T ...
... three-phase AC power supply, SW1 ... changeover switch, SW2 ... open / close switch.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】同一回転軸上に任意の間隔を置いて設けた
2個の回転子コアを有し、該2個の回転子コアのそれぞ
れに任意の同一極数を持ち前記2個の回転子コア間で接
続された第1の回転子巻線と、該第1の回転子巻線の極
数と異なる極数を持ち前記2個の回転子コア間で接続さ
れた第2の回転子巻線とを有する回転子と、 前記2個の回転子コアにそれぞれ対向して周設した2個
の固定子コアを有し、該2個の固定子コアのそれぞれに
前記第1の回転子巻線の極数に等しい極数を持つ固定子
巻線と前記第2の回転子巻線の極数に等しい極数を持つ
励磁巻線とを設けた2個の固定子と、 前記第1の回転子巻線の接続部分と前記第2の回転子巻
線の接続部分との間に設けられ、前記第2の回転子巻線
の出力電圧を整流し前記第1の回転子巻線に入力するよ
うに連絡した整流回路と、そして、 前記2個の固定子のうち特定の固定子がこれに対峙する
回転子コアの周囲に生じる回転磁界と、他の固定子がこ
れに対峙する回転子コアの周囲に生じる回転磁界との間
に、180゜の位相差を生じさせる電圧移相装置と、によ
り構成したことを特徴とする二固定子誘導同期電動機。
1. Two rotor cores provided at an arbitrary interval on the same rotation axis, each of the two rotor cores having an arbitrary number of poles and having the same number of poles A first rotor winding connected between the child cores, and a second rotor having a number of poles different from the number of poles of the first rotor winding and connected between the two rotor cores A rotor having windings; and two stator cores circumferentially opposed to the two rotor cores, respectively, the first rotor being provided on each of the two stator cores. Two stators provided with a stator winding having a number of poles equal to the number of poles of the winding and an excitation winding having a number of poles equal to the number of poles of the second rotor winding; Is provided between the connection portion of the rotor windings and the connection portion of the second rotor windings, and rectifies the output voltage of the second rotor windings to rectify the output voltage to the first rotor windings. A rectifier circuit operatively connected to the rotator, and a rotating magnetic field generated around a rotor core in which a specific stator of the two stators faces the rectifier circuit, and a rotation field in which the other stator faces the rotor. A two-stator induction synchronous motor, comprising: a voltage phase shifter for generating a 180 ° phase difference between a rotating magnetic field generated around a stator core and a rotating magnetic field.
【請求項2】請求項1記載の二固定子誘導同期電動機で
あって、前記電圧移相装置は、2個の固定子のうち一方
あるいは双方の固定子コアの位置を機械的に回動させる
回動固定子からなることを特徴とする二固定子誘導同期
電動機。
2. The two-stator induction synchronous motor according to claim 1, wherein said voltage phase shifter mechanically rotates the position of one or both stator cores of said two stators. A two-stator induction synchronous motor comprising a rotating stator.
【請求項3】請求項1記載の二固定子誘導同期電動機で
あって、前記電圧移相装置は、一方の固定子巻線の端子
を逆極性に切り換えるスイッチからなることを特徴とす
る二固定子誘導同期電動機。
3. The two-stator induction synchronous motor according to claim 1, wherein said voltage phase shifter comprises a switch for switching a terminal of one stator winding to a reverse polarity. Child induction synchronous motor.
JP2136381A 1990-05-26 1990-05-26 Two stator induction synchronous motor Expired - Fee Related JP2828319B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2136381A JP2828319B2 (en) 1990-05-26 1990-05-26 Two stator induction synchronous motor
CA002043208A CA2043208A1 (en) 1990-05-26 1991-05-24 Dual-stator induction synchronous motor
EP91304765A EP0467517B1 (en) 1990-05-26 1991-05-24 Dual-stator induction synchronous motor
FI912532A FI912532A (en) 1990-05-26 1991-05-24 SYNCHRONOUS MOTOR WITH DUBBELSTATOR.
DK91304765.0T DK0467517T3 (en) 1990-05-26 1991-05-24 Dobbeltstator-induction synchronous motor
DE91304765T DE69100430T2 (en) 1990-05-26 1991-05-24 Synchronous induction motor with double stator.
AU77297/91A AU643525B2 (en) 1990-05-26 1991-05-24 Dual-stator induction synchronous motor
KR1019910008579A KR100215534B1 (en) 1990-05-26 1991-05-25 Dual-stator induction synchronous motor
MYPI91000895A MY106518A (en) 1990-05-26 1991-05-25 Dual-stator induction synchronous motor.
NO912024A NO303606B1 (en) 1990-05-26 1991-05-27 Double stator induction synchronous motor
US07/706,009 US5254894A (en) 1990-05-26 1991-05-28 Dual-stator induction synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2136381A JP2828319B2 (en) 1990-05-26 1990-05-26 Two stator induction synchronous motor

Publications (2)

Publication Number Publication Date
JPH0433590A JPH0433590A (en) 1992-02-04
JP2828319B2 true JP2828319B2 (en) 1998-11-25

Family

ID=15173826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2136381A Expired - Fee Related JP2828319B2 (en) 1990-05-26 1990-05-26 Two stator induction synchronous motor

Country Status (2)

Country Link
JP (1) JP2828319B2 (en)
MY (1) MY106518A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4515115B2 (en) * 2004-03-01 2010-07-28 三菱電機株式会社 Synchronous induction motor protection device, compressor, refrigeration cycle device

Also Published As

Publication number Publication date
MY106518A (en) 1995-06-30
JPH0433590A (en) 1992-02-04

Similar Documents

Publication Publication Date Title
KR100215534B1 (en) Dual-stator induction synchronous motor
JPH04331448A (en) Synchronous motor
JP3033621B2 (en) Brushless induction synchronous motor
WO2013123531A2 (en) Synchronous electric machine
EP0570582B1 (en) Multiple-stator synchronous induction motor
JP2828319B2 (en) Two stator induction synchronous motor
JP2975400B2 (en) 2 stator induction synchronous motor
JP2927855B2 (en) Multiple stator induction synchronous motor
JPH06335271A (en) Synchronous motor
JP2893352B2 (en) Two stator induction synchronous motor
JP3062231B2 (en) Brushless single-phase induction synchronous motor
JP3115310B2 (en) 2 stator induction synchronous motor
JP2001258224A (en) Synchronous motor and drive system using the same
JP3358666B2 (en) Synchronous motor
JP3413816B2 (en) Synchronous motor
JPH06245450A (en) Synchronous motor
JPH09135545A (en) Electric motor
JP2893353B2 (en) Two stator induction synchronous motor
JP2989881B2 (en) 2 stator induction synchronous motor
JPH11252876A (en) Reluctance motor, apparatus and method for driving the motor
GB2372885A (en) Flux regulated permanent magnet brushless DC motor
JPH05344695A (en) Synchronous motor
JPH0956127A (en) Ac induction motor
TH14433B (en) Brushless induction synchronous motor with two stator.
TH19605A (en) Brushless induction synchronous motor with two stator.

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees