JP2893353B2 - Two stator induction synchronous motor - Google Patents

Two stator induction synchronous motor

Info

Publication number
JP2893353B2
JP2893353B2 JP6764990A JP6764990A JP2893353B2 JP 2893353 B2 JP2893353 B2 JP 2893353B2 JP 6764990 A JP6764990 A JP 6764990A JP 6764990 A JP6764990 A JP 6764990A JP 2893353 B2 JP2893353 B2 JP 2893353B2
Authority
JP
Japan
Prior art keywords
stator
rotor
synchronous motor
rotor core
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6764990A
Other languages
Japanese (ja)
Other versions
JPH03270667A (en
Inventor
利彦 佐竹
幸男 大野木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SATAKE SEISAKUSHO KK
Original Assignee
SATAKE SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SATAKE SEISAKUSHO KK filed Critical SATAKE SEISAKUSHO KK
Priority to JP6764990A priority Critical patent/JP2893353B2/en
Priority to DK91302245.5T priority patent/DK0447257T3/en
Priority to EP91302245A priority patent/EP0447257B1/en
Priority to DE69102911T priority patent/DE69102911T2/en
Priority to MYPI91000435A priority patent/MY105310A/en
Priority to KR1019910004209A priority patent/KR910017709A/en
Priority to AU73541/91A priority patent/AU639191B2/en
Priority to CA002038480A priority patent/CA2038480C/en
Priority to NO911070A priority patent/NO303478B1/en
Priority to FI911306A priority patent/FI911306A/en
Priority to US07/671,116 priority patent/US5144180A/en
Publication of JPH03270667A publication Critical patent/JPH03270667A/en
Priority to NO964574A priority patent/NO964574D0/en
Application granted granted Critical
Publication of JP2893353B2 publication Critical patent/JP2893353B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

本発明は同期電動機に関する。 The present invention relates to a synchronous motor.

【従来の技術】[Prior art]

一般に同期電動機は、その回転子を固定子巻線の作る
回転磁界の回転速度すなわち同期速度近くまで加速する
起動機と、回転子巻線の直流励磁が必要である。 この起動機を省略して同期電動機自体に起動トルクを
持たせるように考案されたのが誘導同期電動機で、これ
は起動時には回転子巻線を短絡して誘導電動機として起
動するために起動は必要としないが、同期運転に必要な
回転子巻線の直流励磁のために、ブラシを必要とする。
すなわち、回転子の回転速度が同期速度に近づくと回転
子巻線の短絡を開放して外部の直流電源からブラシを介
して回転子巻線に直流電流を流して回転子に磁極を作
り、この磁極が固定子巻線の作る回転磁界に引張られて
回転子は同期速度で回転する。このブラシは保守点検を
必要とすることから保守費が嵩み、ブラシレス構造の同
期電動機の開発が望まれている。 このブラシレス構造の同期電動機としては、従来から
永久磁石形やリラクタンス形があるが、誘導機起動が不
可能なために起動トルクが小さい欠点があるため小容量
のものに限られている。またランデル形やインダクタ形
の同期電動機は磁路の構成が複雑で大型となる欠点があ
った。また交流励磁器と回転整流器を用いる方法も同様
である。また回転子巻線にダイオードを接続してインバ
ーターの方形波電圧による高調波磁界を利用するブラシ
レス自励形三相同期電動機は回転子の磁界起磁力が不足
で十分な出力が得られない欠点がある。更には三相の固
定子巻線の一相にダイオードを装入して固定子の作る正
相分回転磁界に静止励磁を重畳して、同期速度で回転す
る回転子巻線に静止磁界による交流電圧を誘起させて、
これをダイオードで整流することによって回転子巻線を
直流励磁して、正相分回転磁界を作用させて同期トルク
を発生するブラシレス自励形三相同期電動機があるが、
これは誘導機始動が不可能なために、回転子鉄心の渦電
流による起動となり起動トルクが小さい欠点がある。 また特公昭54−34124には起動を誘導機の原理によっ
て行い、同期運転は軸方向の直流磁界を作ってこれによ
って回転子コアに磁極を形成して行うものがあるが、こ
れは発生トルクが回転軸に対して非対称となるために軸
の振動の原因になる欠点がある。
In general, a synchronous motor requires a starter that accelerates the rotor to near the rotational speed of the rotating magnetic field generated by the stator winding, that is, near the synchronous speed, and DC excitation of the rotor winding. An induction synchronous motor was devised to omit this starter and give the synchronous motor its own starting torque, which requires a start-up to start as an induction motor by short-circuiting the rotor windings at startup. However, a brush is required for DC excitation of the rotor winding required for synchronous operation.
That is, when the rotation speed of the rotor approaches the synchronous speed, the short circuit of the rotor winding is opened, and a DC current is supplied from an external DC power supply to the rotor winding via a brush to create a magnetic pole in the rotor. The magnetic poles are pulled by the rotating magnetic field created by the stator winding, and the rotor rotates at a synchronous speed. Since this brush requires maintenance and inspection, maintenance costs are increased, and development of a brushless synchronous motor is desired. As the synchronous motor having the brushless structure, there are a permanent magnet type and a reluctance type conventionally. However, since the starting torque of the induction motor is small because the induction motor cannot be started, it is limited to a small capacity motor. In addition, the synchronous motor of the Landel type or the inductor type has a drawback that the configuration of the magnetic path is complicated and large. The same applies to a method using an AC exciter and a rotary rectifier. Also, a brushless self-excited three-phase synchronous motor that uses a harmonic magnetic field generated by the inverter square wave voltage by connecting a diode to the rotor winding has the disadvantage that sufficient output cannot be obtained due to insufficient magnetic field magnetomotive force of the rotor. is there. Furthermore, a diode is inserted in one phase of the three-phase stator winding, and static excitation is superimposed on the positive-phase rotating magnetic field generated by the stator, and the alternating current due to the static magnetic field is applied to the rotor winding rotating at the synchronous speed. Induce a voltage,
There is a brushless self-excited three-phase synchronous motor that rectifies this with a diode, excites the rotor windings with direct current, and applies a positive-phase rotating magnetic field to generate synchronous torque.
This is because it is impossible to start the induction machine, so that the rotor is started by the eddy current of the rotor core and the starting torque is small. In Japanese Patent Publication No. 54-34124, starting is performed by the principle of an induction machine, and synchronous operation is performed by creating a DC magnetic field in the axial direction and thereby forming a magnetic pole on a rotor core. There is a disadvantage that the shaft is oscillated because it is asymmetric with respect to the rotating shaft.

【発明が解決しようとする課題】[Problems to be solved by the invention]

したがって起動トルクが大きく、更に同期トルクも大
きく、しかもブラシを必要とせず、保守点検が容易で構
造が簡単で専用の起動機も必要としない同期電動機の提
供を技術的課題とするものである。
Accordingly, it is a technical object of the present invention to provide a synchronous motor which has a large starting torque, a large synchronous torque, does not require a brush, is easy to maintain and inspect, has a simple structure, and does not require a dedicated starter.

【課題を解決するための手段】[Means for Solving the Problems]

前記課題を解決するために、同一回転軸上に任意の間
隔をおいて設けた2個の回転子コアを永久磁石で構成
し、該回転子コアの外周上に2個の回転子コアに連通し
た複数の導体を設け、その両端を短絡環で連結した回転
子と、前記回転子コアにそれぞれ対向して周設した2個
の固定子と、前記2個の固定子のうち特定の固定子がこ
れに対峙する回転子コアの周囲に生じる回転磁界と、他
の固定子がこれに対峙する回転子コアの周囲に生じる回
転磁界との間に位相差を生じさせる電圧移相装置とによ
り構成し、前記永久磁石で構成した2個の回転子コアの
磁極は、N極とS極とを対にして、一方の回転子コアの
N極と他方の回転子コアのS極とを同一の位置に配置
し、さらに一方の回転子コアのS極と他方の回転子コア
のN極とを同一の位置に配置して構成した。また、永久
磁石で構成した回転子コアは円筒型または突極型で構成
した。更に固定子を励磁する電源は商用周波数の交流電
源か又はインバータを利用した可変周波数電源で、単相
交流電源か又は多相交流電源である。また電圧移相装置
は、2個の固定子の相対位置を機械的に回動するか、あ
るいは固定子巻線の端子をスイッチで切換えて電源に接
続するように構成した。
In order to solve the above-mentioned problem, two rotor cores provided at arbitrary intervals on the same rotation axis are constituted by permanent magnets, and communicate with the two rotor cores on the outer periphery of the rotor core. A plurality of conductors, two ends of which are connected by a short-circuit ring, two stators circumferentially opposed to the rotor core, and a specific stator among the two stators. Is constituted by a voltage phase shifter that generates a phase difference between a rotating magnetic field generated around the rotor core facing the rotating core and a rotating magnetic field generated around the rotor core facing the other stator. The magnetic poles of the two rotor cores constituted by the permanent magnets are paired with the N pole and the S pole, and the N pole of one rotor core and the S pole of the other rotor core are the same. And the S pole of one rotor core and the N pole of the other rotor core are located at the same position. It was constructed by location. In addition, the rotor core composed of a permanent magnet was composed of a cylindrical type or a salient pole type. Further, the power source for exciting the stator is a commercial frequency AC power source or a variable frequency power source using an inverter, and is a single-phase AC power source or a multi-phase AC power source. Further, the voltage phase shifter is configured so that the relative position of the two stators is mechanically rotated, or the terminals of the stator windings are switched by a switch and connected to a power supply.

【作 用】[Operation]

二固定子誘導電動機の電圧移相装置の作用について本
出願人は特願昭61−128314号においてその詳細を説明し
ている。 本発明によると、まず同一回転軸上に永久磁石で構成
した2個の回転子コアを有し、該2個の回転子コアに連
通する導体を複数個設けその両端を短絡してかご形導体
とした回転子と、前記2個の回転子コアに対向して周設
した2個の固定子より構成されたものにおいては、起動
時には2個の固定子の作る回転磁界によって複数個の回
転子導体に誘起される電圧が同相になるように、すなわ
ち回転子導体間を電流が還流するように、電圧移相装置
を作動させて一般の誘導電動機として起動する。 このとき永久磁石で構成した2個の回転子コアの磁極
はN極とS極とを対にして、一方の回転子コアのN極と
他方の回転子コアのS極とを同一の位置に配置し、更に
一方の回転子コアのS極と他方の回転子コアのN極とを
同一の位置に配置してあり、また2つの固定子によって
2つの回転子コアの周囲に生じる回転磁界はその位相差
θがθ=0゜(同相)であるから、回転子コアの磁極と
回転磁界の間の反撥と吸引の作用が同一回転軸上で相殺
されて回転子コアを形成する永久磁石は起動の障害には
ならない。 起動後、回転子の回転速度が上昇して回転磁界の回転
速度すなわち同期速度に近づくと、回転磁界による回転
子導体の誘起電圧は小さくなる。ここまでは誘導電動機
としての動作であるが、すべりSがS=0.05に近づいた
時に同期運転に入る。これは次のようにして行う。 先ず2個の固定のうち一方の固定子がこれに対峙する
回転子コアの周囲に生じる回転磁界と他方の固定子がこ
れに対峙する回転子コアの周囲に生じる回転磁界との間
に180度の位相差を生じさせるように電圧移相装置を作
動させる。このようにすると今まで回転子導体間を環流
して流れていた電流が流れなくなる。 一方、永久磁石で構成した回転子コアの磁極は、180
゜位相差のある2つの回転磁界の作る磁極とすべて吸引
し合って同期速度に至るものである。従って、本発明の
誘導同期電動機は1つの回転子と2つの固定子で構成し
ているが、2つの固定子にそれぞれ対向する2つの回転
子コアを有するので1固定子と1回転子で構成する同期
電動機の2倍の容量と同等となる。 以上のように、本発明の二固定子誘導同期電動機は、
起動時には従来の誘導電動機の原理で起動するから起動
トルクが大きく、従って他の特別の起動機を必要としな
い。また同期速度においては回転子コアの永久磁石が回
転磁界に吸引されるので回転子コアの磁極を強くすれば
同期トルクが大きく、ブラシなどの保守を必要としない
同期電動機を提供することが可能となった。 なお、電圧移相装置としては本出願人が特願昭61−12
8314号において固定子の位置を回転軸のまわりに機械的
に回動させることによって変える方法と、固定子巻線の
接続をスイッチによって切換えて行う方法の2つを説明
している。 以上のような構成よって、起動トルクが大きく、さら
に同期トルクも大きく、しかもブラシを必要とせず、保
守点検が容易で構成が簡単で専用の起動機を必要としな
い同期電動機を提供することが可能となった。 ところで、前記固定子巻線を励磁する電源は、商用周
波数の交流電源かまたはインバータを利用した可変周波
数電源を利用できる。また単相においても多相において
も利用できるものである。上記可変周波数電源を利用す
ると、同期速度の変更が容易に可能となり、その場合で
も通常の誘導電動機の始動トルクで起動可能であり、利
用分野は大きく拡大し、安価な同期電動機の提供が可能
となった。
The applicant of the present invention has described in detail in Japanese Patent Application No. 61-128314 the operation of the voltage phase shifter of a two-stator induction motor. According to the present invention, a cage-shaped conductor is first provided with two rotor cores formed of permanent magnets on the same rotation axis, a plurality of conductors communicating with the two rotor cores, and both ends short-circuited. And the two stators circumferentially opposed to the two rotor cores, a plurality of rotors are activated by a rotating magnetic field generated by the two stators at the time of startup. The voltage phase shifter is operated to start up as a general induction motor so that the voltage induced in the conductors is in phase, that is, the current flows between the rotor conductors. At this time, the magnetic poles of the two rotor cores composed of permanent magnets are paired with the N pole and the S pole, and the N pole of one rotor core and the S pole of the other rotor core are located at the same position. In addition, the S pole of one rotor core and the N pole of the other rotor core are arranged at the same position, and the rotating magnetic field generated around the two rotor cores by the two stators is Since the phase difference θ is θ = 0 ° (in-phase), the repulsion and the attraction between the magnetic poles of the rotor core and the rotating magnetic field are canceled on the same rotation axis, so that the permanent magnet forming the rotor core is Does not interfere with startup. After startup, when the rotation speed of the rotor increases and approaches the rotation speed of the rotating magnetic field, that is, the synchronous speed, the induced voltage of the rotor conductor due to the rotating magnetic field decreases. Up to this point, the operation is as an induction motor, but when the slip S approaches S = 0.05, the synchronous operation starts. This is performed as follows. First, of the two stators, one stator has a rotation angle of 180 degrees between the rotating magnetic field generated around the rotor core facing the same and the other stator generated between the rotating magnetic field generated around the rotor core facing the same. The voltage phase shifter is operated so as to generate a phase difference of In this way, the current that has been flowing between the rotor conductors so far does not flow. On the other hand, the magnetic pole of the rotor core composed of permanent magnets is 180
す べ て All magnetic poles created by two rotating magnetic fields having a phase difference are attracted to each other to reach a synchronous speed. Therefore, the induction synchronous motor of the present invention is constituted by one rotor and two stators, but is constituted by one stator and one rotor since it has two rotor cores facing each other. This is equivalent to twice the capacity of a synchronous motor. As described above, the two-stator induction synchronous motor of the present invention
At the time of starting, since the starting is performed based on the principle of the conventional induction motor, the starting torque is large, so that no other special starting machine is required. In addition, at the synchronous speed, the permanent magnet of the rotor core is attracted to the rotating magnetic field, so if the magnetic pole of the rotor core is strengthened, the synchronous torque is large and it is possible to provide a synchronous motor that does not require maintenance such as brushes. became. As a voltage phase shifter, the present applicant has filed Japanese Patent Application No. 61-12 / 1986.
No. 8314 describes two methods, a method of changing the position of the stator by mechanically rotating it around a rotation axis, and a method of switching the connection of the stator winding by a switch. With the above configuration, it is possible to provide a synchronous motor that has a large starting torque, a large synchronous torque, and does not require a brush, is easy to maintain and inspect, has a simple configuration, and does not require a dedicated starting device. It became. Incidentally, as a power supply for exciting the stator winding, an AC power supply having a commercial frequency or a variable frequency power supply using an inverter can be used. It can be used in a single phase or in a multiphase. The use of the above-mentioned variable frequency power supply makes it possible to easily change the synchronous speed, and in that case, it is possible to start with the starting torque of a normal induction motor, thereby greatly expanding the field of use and providing an inexpensive synchronous motor. became.

【実施例】【Example】

第1図乃至第3図により本発明の実施例を説明する。
まず第1図において符号20は二固定子誘導同期電動機の
固定子側を示す。また符号30は同じく回転子側を示す。
固定子側20はスター結線した2つの固定子巻線21,22が
並列に3相交流電源R,S,Tに接続されている。 一方回転子側20の回転軸10に2つの回転子コア81,82
が設けてあり、この回転子コア81,82はN極とS極を対
とする永久磁石で構成されている。更に2つの回転子コ
ア81,82の外周上に装着した複数個の回転子導体31,32の
それぞれを連通状に連結してその両端部において導体を
短絡する短絡環33を設けて回転子導体をカゴ状に構成す
る。 第2図は円筒形回転子コアの断面図、第3図は突極形
回転子コアの断面図を示す。 第2図、第3図に示すように2つの回転子コア81,82
の磁極は、N極とS極を対にして、特定の回転子コア82
のN極(又はS極)と他方の回転子コア81のS極(又は
N極)が同一の位置に配置されている。 ここで固定子巻線21に対峙する回転子導体31に誘起す
る電圧を第1図の図示の方向にEとし、固定子巻線22に
対峙する回転子導体32に誘起する電圧を同図示の方向に
Eεjθとする。ここでθは電圧の位相差角である。 以上の構成による作用を説明する。まず、起動時に
は、回転子導体31,32の回転磁界による誘起電圧の位相
差角θがθ=0゜になるように固定子巻線21,22が結線
された状態で電源に投入して起動する。このようにする
と固定子巻線21,22に電源から3相電流が流れて、それ
ぞれ同相の回転磁界が生じ、回転子導体31,32に電圧が
誘起されるが、この場合の誘起電圧の位相差角θ=0゜
であるから、回転子導体に流れる電流は回転子導体31か
ら回転子導体32へ還流するように流れる。この回転子導
体31,32に流れる電流と固定子巻線21,22の作る回転磁界
によるトルクは従来の誘導電動機のトルクと同一であ
る。ここで永久磁石で構成された2つの回転子コア81,8
2の磁極と固定子巻線21,22の作る回転磁界の磁極との間
の相互作用を考察してみる。 第4図は2つの回転子コア81,82と固定子21,22の断面
図を示したもので、2つの回転子コア81,82は回転軸10
で連結されている。また図示のように回転子コア81のN
極と回転子コア82のS極が同一の位置に配置され、同じ
く回転子コア81のS極と回転子コア82のN極が同一の位
置に配置されている。 また図示のように固定子巻線21の作る回転磁界の磁極
N,Sと固定子巻線22の作る回転磁界の磁極N,Sは共に同期
速度で同一方向に回転するが、2つの固定子巻線21,22
の作る2つの回転磁界の位相差角θは起動時にはθ=0
゜であるから、固定子巻線21の作る回転磁界の磁極N
(又はS)と固定子巻線22の作る回転磁界の磁極N(又
はS)は常に同一の位置にある。 従って、回転子コア81のN極と固定子巻線21の作る回
転磁界のN極と中心角をある瞬時においてαとすると、
回転子コア82のS極と固定子巻線22の作る回転磁界のN
極との中心角もαとなる。従って回転子コア81に作用す
るN極N極との反撥力と回転子コア82に作用するS極と
N極の吸引力は等しい。従ってこの反撥力と吸引力が打
消されて回転子コアの磁極は回転磁界の影響を受けな
い。すなわち回転子コアの磁極は回転磁界の拘束を受け
ない。従って本発明の2固定子誘導同期電動機は従来の
誘導電動機と同一のトルク特性で起動する。従って起動
トルクは大きく、特別の別個の起動機を必要としない。 起動後、回転速度が上昇して、すべりSがS=0.05に
近づいた時に同期運転に引入れる。これは次のようにし
て行う。 先ず電圧移相装置によって2つの固定子巻線21,22の
一方、例えば固定子巻線22の位置を、回転軸のまわりに
回動させることによって変えて、2つの固定子巻線21,2
2の作る2つの回転磁界の位相差角θ=180゜になるよう
にする。 このようにすると、2つの回転子導体31,32の誘導電
圧の位相差角θ=180゜となり、回転子導体31,32の誘起
電圧の総和は E+EεPjθ=E−E=0 となって、回転子導体31,32に電流は流れなくなる。 ここで永久磁石で構成された2つの回転子コア81,82
の磁極と固定子巻線21,22の作る回転磁界の磁極との間
の相互作用を考察してみる。 同期運転時には2つの固定子巻線21,22の作る2つの
回転磁界の位相差角θはθ=180゜であるから、第5図
に示すように固定子巻線21の作る回転磁界の磁極N(又
はS)と固定子巻線22の作る回転磁界の磁極N(又は
S)は常に電気角で180゜異なった位置にある。換言す
れば固定子巻線21の作る回転磁界のN極と固定子巻線22
の作る回転磁界のS極が常に同一の位置にある。 従って回転子コア81のN極と固定子巻線21の作る回転
磁界のN極とが反撥し、同様に回転子82のS極と固定子
巻線22の作る回転磁界のS極とが反撥し、回転子コア8
1,82の位置が第6図の位置に引込まれてすべてのN,Sが
吸引する状態で安定する。すなわち回転子コア81,82の
磁極が固定子巻線21,22の作る回転磁界の磁極に引張ら
れて、回転子は回転磁界の回転速度と同一の速度すなわ
ち同期速度で回転する。 この方法は構造が簡単で、起動トルクが大きく、回転
子コアの永久磁石を強力にすれば大きい同期トルクが得
られ効率が良い利点がある。また本発明の同期電動機の
起動を誘導機作用で行うので、一般的に誘導電動機で使
用される電源を利用できる。つまり商用周波数の交流電
源やインバータを利用した可変周波数電源を利用でき
る。また単相、多相においても利用できるものである。
以上の実施例においては2つの固定子巻線を並列にして
電源に接続したが、これは直列接続であってもよい。ま
た磁極数は2極としたが2極に限定されずこれ以上でも
よい。
An embodiment of the present invention will be described with reference to FIGS.
First, in FIG. 1, reference numeral 20 denotes a stator side of a two-stator induction synchronous motor. Reference numeral 30 also indicates the rotor side.
On the stator side 20, two star-connected stator windings 21, 22 are connected in parallel to three-phase AC power supplies R, S, T. On the other hand, two rotor cores 81 and 82 are attached to the rotation shaft 10 on the rotor side 20.
The rotor cores 81 and 82 are constituted by permanent magnets having a pair of N pole and S pole. Further, a plurality of rotor conductors 31 and 32 mounted on the outer periphery of the two rotor cores 81 and 82 are connected to each other in a communicating manner, and short-circuit rings 33 for short-circuiting the conductors at both ends thereof are provided. Are formed in a basket shape. FIG. 2 is a sectional view of a cylindrical rotor core, and FIG. 3 is a sectional view of a salient pole type rotor core. As shown in FIGS. 2 and 3, two rotor cores 81 and 82 are provided.
Magnetic poles are paired with north and south poles,
The N pole (or S pole) of the other rotor core 81 and the S pole (or N pole) of the other rotor core 81 are arranged at the same position. Here, the voltage induced on the rotor conductor 31 facing the stator winding 21 is denoted by E in the direction shown in FIG. 1, and the voltage induced on the rotor conductor 32 facing the stator winding 22 is shown in FIG. Let Eε be in the direction. Here, θ is the phase difference angle of the voltage. The operation of the above configuration will be described. First, at the time of start-up, the power is supplied to the power supply with the stator windings 21 and 22 connected so that the phase difference angle θ of the induced voltage due to the rotating magnetic field of the rotor conductors 31 and 32 becomes θ = 0 °. I do. In this way, three-phase currents flow from the power supply to the stator windings 21 and 22, and in-phase rotating magnetic fields are generated, respectively, and voltages are induced in the rotor conductors 31 and 32. Since the phase difference angle θ = 0 °, the current flowing through the rotor conductor flows from the rotor conductor 31 back to the rotor conductor 32. The current flowing through the rotor conductors 31 and 32 and the torque due to the rotating magnetic field generated by the stator windings 21 and 22 are the same as the torque of the conventional induction motor. Here, two rotor cores 81, 8 composed of permanent magnets
Consider the interaction between the two magnetic poles and the magnetic poles of the rotating magnetic field created by the stator windings 21 and 22. FIG. 4 is a sectional view of two rotor cores 81 and 82 and stators 21 and 22. The two rotor cores 81 and 82 are
Are connected by Also, as shown in FIG.
The pole and the S pole of the rotor core 82 are arranged at the same position, and the S pole of the rotor core 81 and the N pole of the rotor core 82 are arranged at the same position. The magnetic poles of the rotating magnetic field created by the stator winding 21 as shown in the figure.
N and S and the magnetic poles N and S of the rotating magnetic field created by the stator winding 22 both rotate in the same direction at a synchronous speed, but the two stator windings 21 and 22
The phase difference angle θ between the two rotating magnetic fields created by
゜, the magnetic pole N of the rotating magnetic field generated by the stator winding 21
(Or S) and the magnetic pole N (or S) of the rotating magnetic field generated by the stator winding 22 are always at the same position. Therefore, when the N pole of the rotor core 81 and the N pole and the central angle of the rotating magnetic field generated by the stator winding 21 are α at a certain moment,
N of the rotating magnetic field generated by the S pole of the rotor core 82 and the stator winding 22
The central angle with the pole is also α. Accordingly, the repulsive force of the N pole and N pole acting on the rotor core 81 is equal to the attractive force of the S pole and N pole acting on the rotor core 82. Therefore, the repulsive force and the attractive force are canceled, and the magnetic pole of the rotor core is not affected by the rotating magnetic field. That is, the magnetic poles of the rotor core are not restricted by the rotating magnetic field. Therefore, the two-stator induction synchronous motor of the present invention starts with the same torque characteristics as the conventional induction motor. Thus, the starting torque is high and does not require a special separate starter. After start-up, when the rotation speed increases and slip S approaches S = 0.05, synchronous operation is started. This is performed as follows. First, the position of one of the two stator windings 21, 22, for example, the stator winding 22, is changed by rotating it around a rotation axis by a voltage phase shifter to change the two stator windings 21, 2.
2 so that the phase difference angle θ between the two rotating magnetic fields created by the method 2 becomes 180 °. In this way, the phase difference angle θ of the induced voltages of the two rotor conductors 31 and 32 becomes 180 °, and the sum of the induced voltages of the rotor conductors 31 and 32 becomes E + EεP = E−E = 0. No current flows through the rotor conductors 31,32. Here, two rotor cores 81 and 82 composed of permanent magnets
And the magnetic poles of the rotating magnetic field created by the stator windings 21 and 22 will be considered. During the synchronous operation, the phase difference angle θ between the two rotating magnetic fields formed by the two stator windings 21 and 22 is θ = 180 °, and therefore, as shown in FIG. N (or S) and the magnetic pole N (or S) of the rotating magnetic field generated by the stator winding 22 are always at positions 180 ° different in electrical angle. In other words, the N pole of the rotating magnetic field generated by the stator winding 21 and the stator winding 22
Are always at the same position. Accordingly, the N pole of the rotor core 81 repels the N pole of the rotating magnetic field generated by the stator winding 21, and similarly, the S pole of the rotor 82 repels the S pole of the rotating magnetic field generated by the stator winding 22. And rotor core 8
The position 1,82 is retracted to the position shown in FIG. 6, and all the N and S are stabilized in the suction state. That is, the magnetic poles of the rotor cores 81 and 82 are pulled by the magnetic poles of the rotating magnetic field formed by the stator windings 21 and 22, and the rotor rotates at the same speed as the rotating speed of the rotating magnetic field, that is, at the synchronous speed. This method has the advantages that the structure is simple, the starting torque is large, and if the permanent magnet of the rotor core is made strong, a large synchronous torque can be obtained and the efficiency is good. In addition, since the synchronous motor of the present invention is activated by an induction motor, a power source generally used for the induction motor can be used. In other words, a commercial frequency AC power supply or a variable frequency power supply using an inverter can be used. It can also be used in single-phase and multi-phase.
In the above embodiment, the two stator windings are connected in parallel to the power supply, but they may be connected in series. Although the number of magnetic poles is two, the number is not limited to two and may be more.

【効 果】[Effect]

以上の構成から本発明の2固定子誘導同期電動機は、
起動時は従来の誘導電動機と同様のトルク特性で行い、
すべりSがたとえばS=0.05付近から同期速度に移行し
て同期電動機のトルク特性で運転するものである。この
2固定子誘導同期電動機は、起動機やブラシを必要とし
ないからその構造、構成が簡単となるだけでなく、従来
の誘導電動機と同様のトルク特性で起動できるので重負
荷がかかったままで起動と同期運転が可能となる。 ところで、本発明の2固定子誘導同期電動機は、誘導
電動機と同期電動機との両方のトルク特性を備えるか
ら、どちらかの電動機のトルク特性でも使用可能であ
る。このことは、同期速度で運転中、何らかの原因で脱
調した場合でも、同期電動機トルク特性から誘導電動機
のトルク特性に切換え可能であるから、一般の同期電動
機のように電動機が急激に停止することがない。以上の
ようにブラシがなく複雑な構成を必要としないから保守
点検も容易であり、起動トルクが大きく同期トルクも大
きい同期電動機の提供が可能となった。
From the above configuration, the two-stator induction synchronous motor of the present invention
At the time of starting, it performs with the same torque characteristics as the conventional induction motor,
The slip S shifts from, for example, around S = 0.05 to the synchronous speed, and the operation is performed with the torque characteristics of the synchronous motor. This two-stator induction synchronous motor does not require a starter or a brush, so its structure and configuration are simple. In addition, it can be started with the same torque characteristics as a conventional induction motor, so that it can be started with a heavy load applied. And synchronous operation becomes possible. By the way, the two-stator induction synchronous motor of the present invention has both the torque characteristics of the induction motor and the synchronous motor, and therefore can be used with the torque characteristics of either motor. This means that even if the motor loses synchronism for some reason during operation at the synchronous speed, the torque characteristic of the induction motor can be switched from the torque characteristic of the induction motor to the torque characteristic of the induction motor. There is no. As described above, since there is no brush and no complicated structure is required, maintenance and inspection are easy, and a synchronous motor having a large starting torque and a large synchronous torque can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の固定子巻線側と回転子側の簡単な構成
図、第2図は円筒形回転子コアの断面図、第3図は突極
形回転子コアの断面図、第4図は起動時の2つの回転子
コアと2つの固定子コアの作用を断面で簡略に示した
図、第5図は同期速度に吸引する一例を示した図、第6
図は同期速度の2つの回転子コアと2つの固定子コアを
断面で簡略に示した図である。 10……回転軸、20……固定子側、21……固定子巻線、22
……固定子巻線、30……回転子側、31……回転子導体、
32……回転子導体、33……短絡環、81,82……回転子コ
ア。
FIG. 1 is a simplified structural view of the stator winding side and the rotor side of the present invention, FIG. 2 is a sectional view of a cylindrical rotor core, FIG. 3 is a sectional view of a salient pole type rotor core, FIG. FIG. 4 is a diagram schematically showing the action of two rotor cores and two stator cores at the time of startup in a cross section, FIG. 5 is a diagram showing an example of suction at a synchronous speed, and FIG.
The figure is a diagram schematically showing a cross section of two rotor cores and two stator cores of synchronous speed. 10 ... rotating shaft, 20 ... stator side, 21 ... stator winding, 22
... stator winding, 30 ... rotor side, 31 ... rotor conductor,
32: rotor conductor, 33: short-circuit ring, 81, 82: rotor core.

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】同一回転軸上に任意の間隔をおいて設けた
2個の回転子コアを永久磁石で構成し、該回転子コアの
外周上に2個の回転子コアに連通した複数の導体を設
け、その両端を短絡環で連結した回転子と、前記回転子
コアにそれぞれ対向して周設した2個の固定子と、前記
2個の固定子のうち特定の固定子がこれに対峙する回転
子コアの周囲に生じる回転磁界と、他の固定子がこれに
対峙する回転子コアの周囲に生じる回転磁界との間に位
相差を生じさせる電圧移相装置とにより構成したことを
特徴とする二固定子誘導同期電動機。
1. Two rotor cores provided at arbitrary intervals on the same rotation axis are constituted by permanent magnets, and a plurality of rotor cores communicated with the two rotor cores on the outer periphery of the rotor core. A rotor provided with a conductor, both ends of which are connected by a short-circuit ring, two stators circumferentially opposed to the rotor core, and a specific stator among the two stators A rotating magnetic field generated around the confronting rotor core and a voltage phase shifter for generating a phase difference between the rotating magnetic field generated around the opposing rotor core by another stator. Features two stator induction synchronous motor.
【請求項2】請求項(1)記載の二固定子誘導同期電動
機であって、永久磁石で構成した2個の回転子コアの磁
極は、N極とS極とを対にして、一方の回転子コアのN
極と他方の回転子コアのS極とを同一の位置に配置し、
さらに一方の回転子コアのS極と他方の回転子コアのN
極とを同一の位置に配置したことを特徴とする二固定子
誘導同期電動機。
2. The two-stator induction synchronous motor according to claim 1, wherein the magnetic poles of the two rotor cores constituted by permanent magnets are paired with an N pole and an S pole. N of rotor core
The pole and the S pole of the other rotor core are arranged at the same position,
Further, the S pole of one rotor core and the N pole of the other rotor core
A two-stator induction synchronous motor, wherein the poles are arranged at the same position.
【請求項3】請求項(1)または(2)記載の二固定子
誘導同期電動機であって、永久磁石で構成した回転子コ
アは円筒型であることを特徴とする二固定子誘導同期電
動機。
3. A two-stator induction synchronous motor according to claim 1, wherein the rotor core comprising a permanent magnet is cylindrical. .
【請求項4】請求項(1)または(2)記載の二固定子
誘導同期電動機であって、永久磁石で構成した回転子コ
アは突極型であることを特徴とする二固定子誘導同期電
動機。
4. A two-stator induction synchronous motor according to claim 1, wherein the rotor core comprising a permanent magnet is of a salient pole type. Electric motor.
【請求項5】請求項(1)から(4)のいずれかに記載
の二固定子誘導同期電動機であって、固定子を励磁する
電源は商用周波数の交流電源かまたはインバータを利用
した可変周波数電源であることを特徴とする二固定子誘
導同期電動機。
5. A two-stator induction synchronous motor according to claim 1, wherein a power source for exciting the stator is a commercial frequency AC power source or a variable frequency power source using an inverter. A two-stator induction synchronous motor characterized by being a power supply.
【請求項6】請求項(1)から(4)のいずれかに記載
の二固定子誘導同期電動機であって、固定子を励磁する
電源は単相交流電源かまたは多相交流電源であることを
特徴とする二固定子誘導同期電動機。
6. A two-stator induction synchronous motor according to claim 1, wherein a power supply for exciting the stator is a single-phase AC power supply or a multi-phase AC power supply. A two-stator induction synchronous motor.
【請求項7】請求項(1)から(6)のいずれかに記載
の二固定子誘導同期電動機であって、電圧移相装置は、
2個の固定子の相対位置を定期的に回動するか、あるい
は固定子巻線の端子をスイッチで切換えて電源に接続す
るようにしたことを特徴とする二固定子誘導同期電動
機。
7. A two-stator induction synchronous motor according to claim 1, wherein the voltage phase shifter comprises:
A two-stator induction synchronous motor characterized in that a relative position of two stators is periodically rotated or a terminal of a stator winding is switched by a switch to be connected to a power source.
JP6764990A 1990-03-16 1990-03-16 Two stator induction synchronous motor Expired - Fee Related JP2893353B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP6764990A JP2893353B2 (en) 1990-03-16 1990-03-16 Two stator induction synchronous motor
DK91302245.5T DK0447257T3 (en) 1990-03-16 1991-03-15 Induction synchronous motor with 2 stators
EP91302245A EP0447257B1 (en) 1990-03-16 1991-03-15 Two-stator induction synchronous motor
DE69102911T DE69102911T2 (en) 1990-03-16 1991-03-15 Synchronous motors with two stators.
KR1019910004209A KR910017709A (en) 1990-03-16 1991-03-16 2 stator induction synchronous motor
MYPI91000435A MY105310A (en) 1990-03-16 1991-03-16 Two-stator induction synchronous motor.
AU73541/91A AU639191B2 (en) 1990-03-16 1991-03-18 Two-stator induction synchronous motor
CA002038480A CA2038480C (en) 1990-03-16 1991-03-18 Two-stator induction synchronous motor
NO911070A NO303478B1 (en) 1990-03-16 1991-03-18 Synchronous induction motor with two stators
FI911306A FI911306A (en) 1990-03-16 1991-03-18 SYNCHRONOUS MOTOR WITH TV STATORER.
US07/671,116 US5144180A (en) 1990-03-16 1991-03-18 Two-stator induction synchronous motor
NO964574A NO964574D0 (en) 1990-03-16 1996-10-28 Synchronous induction motor with two stators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6764990A JP2893353B2 (en) 1990-03-16 1990-03-16 Two stator induction synchronous motor

Publications (2)

Publication Number Publication Date
JPH03270667A JPH03270667A (en) 1991-12-02
JP2893353B2 true JP2893353B2 (en) 1999-05-17

Family

ID=13351084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6764990A Expired - Fee Related JP2893353B2 (en) 1990-03-16 1990-03-16 Two stator induction synchronous motor

Country Status (1)

Country Link
JP (1) JP2893353B2 (en)

Also Published As

Publication number Publication date
JPH03270667A (en) 1991-12-02

Similar Documents

Publication Publication Date Title
JP3063229B2 (en) Synchronous motor
KR100215534B1 (en) Dual-stator induction synchronous motor
US10749390B2 (en) Line-start synchronous reluctance motor with improved performance
US20150008777A1 (en) Synchronous electric machine
JP3033621B2 (en) Brushless induction synchronous motor
EP0447257B1 (en) Two-stator induction synchronous motor
CA2071542C (en) Multiple-stator induction synchronous motor
KR102315932B1 (en) Motor
JP2893353B2 (en) Two stator induction synchronous motor
JP2989881B2 (en) 2 stator induction synchronous motor
JP2927855B2 (en) Multiple stator induction synchronous motor
JP6775909B2 (en) Rotating machine
JP2893352B2 (en) Two stator induction synchronous motor
JP3062231B2 (en) Brushless single-phase induction synchronous motor
JP3115310B2 (en) 2 stator induction synchronous motor
JP2828319B2 (en) Two stator induction synchronous motor
JPH09135545A (en) Electric motor
JP2982307B2 (en) Synchronous motor
JP2975400B2 (en) 2 stator induction synchronous motor
JPH06335271A (en) Synchronous motor
JPH05336716A (en) Brushless single-phase half speed synchronous motor
Ayub et al. Wide Speed-range Operation of a Dual-mode Wound Field Synchronous Machine
JP3358666B2 (en) Synchronous motor
JPH06245450A (en) Synchronous motor
JP2004140882A (en) Bearingless rotary machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees