JP6775909B2 - Rotating machine - Google Patents

Rotating machine Download PDF

Info

Publication number
JP6775909B2
JP6775909B2 JP2014012369A JP2014012369A JP6775909B2 JP 6775909 B2 JP6775909 B2 JP 6775909B2 JP 2014012369 A JP2014012369 A JP 2014012369A JP 2014012369 A JP2014012369 A JP 2014012369A JP 6775909 B2 JP6775909 B2 JP 6775909B2
Authority
JP
Japan
Prior art keywords
phase
conductor bar
conductor
bar
bars
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014012369A
Other languages
Japanese (ja)
Other versions
JP2015142392A (en
Inventor
義浩 深山
義浩 深山
秀哲 有田
秀哲 有田
大穀 晃裕
晃裕 大穀
赤津 観
観 赤津
大樹 土方
大樹 土方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Shibaura Institute of Technology
Original Assignee
Mitsubishi Electric Corp
Shibaura Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Shibaura Institute of Technology filed Critical Mitsubishi Electric Corp
Priority to JP2014012369A priority Critical patent/JP6775909B2/en
Publication of JP2015142392A publication Critical patent/JP2015142392A/en
Application granted granted Critical
Publication of JP6775909B2 publication Critical patent/JP6775909B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、運転状態に応じて電機子導体に流れる電流の振幅と位相が切換えられる回転電機に関するものである。 The present invention relates to a rotary electric machine in which the amplitude and phase of a current flowing through an armature conductor are switched according to an operating state.

従来、回転電機の電機子巻線の巻数や巻線間の接続方法を切換えることにより運転領域を拡大し、特性が向上した回転電機が提案されている。
例えば、特許文献1には、n個の部分巻線より構成される電機子巻線の同相コイルの接続を直列と並列に切換えること、相コイル間の結線をY結線とΔ結線とに切替えることにより運転領域が拡大し、また特性が向上した誘導電動機が記載されている。
Conventionally, a rotary electric machine has been proposed in which the operating range is expanded and the characteristics are improved by switching the number of turns of the armature winding of the rotary electric machine and the connection method between the windings.
For example, in Patent Document 1, the connection of in-phase coils of an armature winding composed of n partial windings is switched in series and in parallel, and the connection between phase coils is switched between Y connection and Δ connection. Induction motors with expanded operating range and improved characteristics are described.

特開平11−027987号公報Japanese Unexamined Patent Publication No. 11-027987

ところで、運転領域内において、高速域と低速域、高負荷域と低負荷域では回転電機に求められる特性が異なる。
例えば、低負荷域ではトルクリップルや電流リップルが出力トルクや入出力電流に比べて比較的大きくなり影響が顕著となるためリップルの小さな特性が求められるのに対して、高負荷域では温度の成立性等が求められる。
上記誘導電動機では、相コイルの巻数や直並列切換、Y-Δ結線の変更等によって線間電圧ピーク値や相コイルの電流密度を変化させていたが、切換によって固定子と回転子とのギャップ磁束密度波形自体は変化しないために、トルクリップルや電流リップル等のギャップ磁束波形に起因する特性を変化させることはできなかった。
By the way, in the operating range, the characteristics required for the rotary electric machine are different between the high speed range and the low speed range, and the high load range and the low load range.
For example, in the low load range, the torque ripple and current ripple are relatively large compared to the output torque and input / output current, and the effect is significant. Therefore, a characteristic with small ripple is required, whereas in the high load range, the temperature is established. Gender is required.
In the above induction motor, the line voltage peak value and the current density of the phase coil are changed by changing the number of turns of the phase coil, series-parallel switching, Y-Δ connection, etc., but the gap between the stator and the rotor is changed by switching. Since the magnetic flux density waveform itself does not change, it is not possible to change the characteristics caused by the gap magnetic flux waveform such as torque ripple and current ripple.

一般に、分布巻は集中巻に比べて電機子の作るギャップ磁束分布を正弦波に近づけることができ、さらに短節巻は全節巻に比べてギャップ磁束分布を正弦波に近づけることができる。
このことから短節巻の巻線パターンを採用することによって集中巻の巻線パターンを採用した回転電機に比べてトルクリップルを低減しやすい。
一方で、短節巻は磁束利用率が低くトルクを得るのに電流を多く必要とするため高負荷での温度成立性が難しくなるという問題がある。
全節巻きもしくは短節巻きに巻装された分布巻巻線や集中巻巻線を用い、相コイルに通電する電流の振幅と位相を変えることによって他の磁束波形を再現することができれば上記課題を解決した回転電機を作ることができる。
しかしながら、実際には磁束の合成により相コイルが発生する磁束を相互に打消すような通電をする必要があるために、導体損失を発生させるのみでトルクを発生しないムダ導体が発生し効率が低下するという新たな問題を生じる。
In general, the distributed winding can bring the gap magnetic flux distribution created by the armature closer to the sine wave than the concentrated winding, and the short-node winding can bring the gap magnetic flux distribution closer to the sine wave than the all-node winding.
For this reason, it is easy to reduce the torque ripple by adopting the short-knot winding winding pattern as compared with the rotary electric machine adopting the centralized winding winding pattern.
On the other hand, the short winding has a problem that the magnetic flux utilization rate is low and a large amount of current is required to obtain torque, which makes it difficult to establish a temperature under a high load.
If it is possible to reproduce other magnetic flux waveforms by changing the amplitude and phase of the current energizing the phase coil using distributed winding windings or concentrated winding windings wound in full-node winding or short-node winding, the above problem It is possible to make a rotating electric machine that solves the problem.
However, in reality, since it is necessary to energize the magnetic fluxes generated by the phase coils by synthesizing the magnetic fluxes so as to mutually cancel each other, wasteful conductors that only generate conductor loss and do not generate torque are generated, and the efficiency is lowered. It raises a new problem of doing.

ここで、ムダ導体について簡単に説明する。
図8(a)、(b)は、従来の全節巻、短節巻、集中巻を切替る構成を示す模式図であり、図8(a)はステータコア51に巻装されたコイル50を回転電機の軸線方向に沿って視たときの図、図8(b)は図8(a)の回転電機を径方向に沿って視たときの図である。
図中矢印はコイル50に流れる電流の向きを示している。
図8(a)、(b)において、従来の全節巻,短節巻,集中巻を切替る構造では例えば集中巻のコイル50がステータコア51に巻きつけられている。
分布巻の磁束波形を作る際には、図8に示すように例えば2スロット離れた分布巻とする場合、間に挟まれるコイル50を隣同士結ぶことで2スロット離れた位置のコイル50を接続する。
この場合、同スロットに挿入された2つのコイル50は互いに電流の向きが逆であるため互いに磁束を打ち消し合う。
従って、2スロット離れたコイル50を結ぶ間のコイル50は電流が通電されることによる導体損失を発生するものの有効な磁束を発生させない、所謂ムダ導体となる。
Here, the waste conductor will be briefly described.
8 (a) and 8 (b) are schematic views showing a configuration for switching between conventional full-knot winding, short-knot winding, and concentrated winding, and FIG. 8 (a) shows a coil 50 wound around a stator core 51. FIG. 8 (b) is a view when the rotary electric machine is viewed along the axial direction of the rotary electric machine, and FIG. 8 (b) is a view when the rotary electric machine of FIG. 8 (a) is viewed along the radial direction.
The arrows in the figure indicate the direction of the current flowing through the coil 50.
In FIGS. 8A and 8B, in the conventional structure for switching between full-knot winding, short-knot winding, and concentrated winding, for example, a concentrated winding coil 50 is wound around the stator core 51.
When creating a magnetic flux waveform of a distributed winding, for example, when the distributed winding is separated by 2 slots as shown in FIG. 8, the coils 50 sandwiched between them are connected to each other to connect the coils 50 at positions 2 slots apart. To do.
In this case, the two coils 50 inserted in the same slot cancel each other's magnetic flux because the directions of the currents are opposite to each other.
Therefore, the coil 50 between connecting the coils 50 separated by two slots is a so-called waste conductor that causes a conductor loss due to the current being applied but does not generate an effective magnetic flux.

この発明は、上記課題を解決するものであり、運転領域の拡大と共に上記ギャップ磁束密度波形を任意に操作することで、各運転ポイントに求められる好適な磁束波形を形成し、かつ上記のようなムダ導体による損失のない低損失な回転電機を提供するものである。 The present invention solves the above problems, and by arbitrarily manipulating the gap magnetic flux density waveform while expanding the operating region, a suitable magnetic flux waveform required for each operating point can be formed, and as described above. It provides a low-loss rotary electric machine without loss due to a waste conductor.

この発明に係る回転電機は、ロータと、
このロータを囲い、軸線方向に延びた48個のステータスロットが形成されたステータコア、及び各前記ステータスロットにそれぞれ2つずつ挿入された導体バーを有するステータと、を備え、
前記ステータスロットは、前記ステータコアの周方向に第1ステータスロットから第48ステータスロットの順に形成され、
前記導体バーの一方の端部は、電流をオン、オフする第1の正極側スイッチを介して直流電源の正極端子に電気的に接続されるとともに、電流を制御する負極側制御部品を介して直流電源の負極端子に電気的に接続され、
前記導体バーの他方の端部は、電流をオン、オフする第1の負極側スイッチを介して前記直流電源の負極端子に電気的に接続されるとともに、電流を制御する正極側制御部品を介して直流電源の正極端子に電気的に接続され、
前記直流電源の数は、前記導体バーと同数あり、一つの前記直流電源に対して一つの前記導体バーが電気的に接続されており、
前記第1の正極側スイッチ、前記負極側制御部品、前記第1の負極側スイッチ及び前記正極側制御部品が、制御装置により制御されることで、単一の前記ステータが有する前記各導体バーに流れる電流の振幅及び位相が制御されることによって、単一の前記ステータに通電される電流を、3相交流と6相交流とのいずれか一方に切り替え、
3相交流電流が前記ステータに通電されるように各前記導体バーについて個別に制御された場合には、集中巻の磁束又は全節巻の磁束を切り替えて前記ステータに発生させるように各前記導体バーについて個別に制御され、各前記導体バーに通電される電流は、それぞれ振幅が等しく位相が120度ずつ順番にずれた3相交流の相であるU+,V+,W+の相と、前記U+,V+,W+に対して位相が反転した状態のU−,V−,W−の相とを有し、
かつ6相交流電流が前記ステータに通電されるように各前記導体バーについて個別に制御された場合には、集中巻の磁束、短節巻の磁束又は全節巻の磁束を切り替えて前記ステータに発生させるように各前記導体バーについて個別に制御され、各前記導体バーに通電される電流は、それぞれ振幅が等しく位相が30度ずつ順番にずれた6相交流の相であるA+,B+,C+,D+,E+,F+の相と、前記A+,B+,C+,D+,E+,F+に対して位相が反転した状態のA−,B−,C−,D−,E−,F−の相とを有し、
前記ロータは周方向に8個の極を有し、
各前記ステータスロットにそれぞれ2つずつ挿入された各前記導体バーは、前記第1,13,25,37ステータスロットの径方向外側に挿入された導体バーa及び径方向内側に挿入された導体バーbと、前記第2,14,26,38ステータスロットの径方向外側に挿入された導体バーc及び径方向内側に挿入された導体バーdと、前記第3,15,27,39ステータスロットの径方向外側に挿入された導体バーe及び径方向内側に挿入された導体バーfと、前記第4,16,28,40ステータスロットの径方向外側に挿入された導体バーg及び径方向内側に挿入された導体バーhと、前記第5,17,29,41ステータスロットの径方向外側に挿入された導体バーi及び径方向内側に挿入された導体バーjと、前記第6,18,30,42ステータスロットの径方向外側に挿入された導体バーk及び径方向内側に挿入された導体バーlと、前記第7,19,31,43ステータスロットの径方向外側に挿入された導体バーm及び径方向内側に挿入された導体バーnと、前記第8,20,32,44ステータスロットの径方向外側に挿入された導体バーo及び径方向内側に挿入された導体バーpと、前記第9,21,33,45ステータスロットの径方向外側に挿入された導体バーq及び径方向内側に挿入された導体バーrと、前記第10,22,34,46ステータスロットの径方向外側に挿入された導体バーs及び径方向内側に挿入された導体バーtと、前記第11,23,35,47ステータスロットの径方向外側に挿入された導体バーu及び径方向内側に挿入された導体バーvと、前記第12,24,36,48ステータスロットの径方向外側に挿入された導体バーw及び径方向内側に挿入された導体バーxとを有し、
各前記導体バーに流れる電流の位相は、3相交流電流が前記ステータに通電されるように且つ前記集中巻の磁束を前記ステータに発生させるように各前記導体バーについて個別に制御される場合には、前記導体バーa,bにU+の相、前記導体バーc,dにU−の相、前記導体バーe,fにV+の相、前記導体バーg,hにV−の相、前記導体バーi,jにW+の相、前記導体バーk,lにW−の相、前記導体バーm,nにU−の相、前記導体バーo,pにU+の相、前記導体バーq,rにV−の相、前記導体バーs,tにV+の相、前記導体バーu,vにW−の相、前記導体バーw,xにW+の相となるように各導体バーについて個別に制御され、
3相交流電流が前記ステータに通電されるように且つ前記全節巻の磁束を前記ステータに発生させるように各前記導体バーについて個別に制御される場合には、前記導体バーa,b,c,dにU+の相、前記導体バーe,f,g,hにV+の相、前記導体バーi,j,k,lにW+の相、前記導体バーm,n,o,pにU−の相、前記導体バーq,r,s,tにV−の相、前記導体バーu,v,w,xにW−の相となるように各導体バーについて個別に制御され、
6相交流電流が前記ステータに通電されるように且つ前記全節巻の磁束を前記ステータに発生させるように各前記導体バーについて個別に制御される場合には、前記導体バーa,bにA+の相、前記導体バーc,dにB+の相、前記導体バーe,fにC+の相、前記導体バーg,hにD+の相、前記導体バーi,jにE+の相、前記導体バーk,lにF+の相、前記導体バーm,nにA−の相、前記導体バーo,pにB−の相、前記導体バーq,rにC−の相、前記導体バーs,tにD−の相、前記導体バーu,vにE−の相、前記導体バーw,xにF−の相となるように各前記導体バーについて個別に制御され、
6相交流電流が前記ステータに通電されるように且つ前記集中巻の磁束を前記ステータに発生させるように各前記導体バーについて個別に制御される場合には、前記導体バーaにA+の相、前記導体バーbにF+の相、前記導体バーcにB+の相、前記導体バーdにA−の相、前記導体バーeにC+の相、前記導体バーfにB−の相、前記導体バーgにD+の相、前記導体バーhにC−の相、前記導体バーiにE+の相、前記導体バーjにD−の相、前記導体バーkにF+の相、前記導体バーlにE−の相、前記導体バーmにA−の相、前記導体バーnにF−の相、前記導体バーoにB−の相、前記導体バーpにA+の相、前記導体バーqにC−の相、前記導体バーrにB+の相、前記導体バーsにD−の相、前記導体バーtにC+の相、前記導体バーuにE−の相、前記導体バーvにD+の相、前記導体バーwにF−の相、前記導体バーxにE+の相となるように各前記導体バーについて個別に制御され、
6相交流電流が前記ステータに通電されるように且つ前記短節巻の磁束を前記ステータに発生させるように各前記導体バーについて個別に制御される場合には、前記導体バーaにA+の相、前記導体バーbにD−の相、前記導体バーcにB+の相、前記導体バーdにE−の相、前記導体バーeにC+の相、前記導体バーfにF−の相、前記導体バーgにD+の相、前記導体バーhにA−の相、前記導体バーiにE+の相、前記導体バーjにB−の相、前記導体バーkにF+の相、前記導体バーlにC−の相、前記導体バーmにA−の相、前記導体バーnにD+の相、前記導体バーoにB−の相、前記導体バーpにE+の相、前記導体バーqにC−の相、前記導体バーrにF+の相、前記導体バーsにD−の相、前記導体バーtにA+の相、前記導体バーuにE−の相、前記導体バーvにB+の相、前記導体バーwにF−の相、前記導体バーxにC+の相となるように各前記導体バーについて個別に制御される。
The rotary electric machine according to the present invention includes a rotor and
It comprises a stator core in which 48 status lots extending in the axial direction are formed surrounding the rotor, and a stator having two conductor bars inserted in each of the status lots.
The status lots are formed in the order of the first status lot to the 48th status lot in the circumferential direction of the stator core.
One end of the conductor bar is electrically connected to the positive electrode terminal of the DC power supply via a first positive electrode side switch that turns on and off the current, and via a negative electrode side control component that controls the current. Electrically connected to the negative electrode terminal of the DC power supply,
The other end of the conductor bar is electrically connected to the negative electrode terminal of the DC power supply via a first negative electrode side switch that turns on and off the current, and via a positive electrode side control component that controls the current. Is electrically connected to the positive electrode terminal of the DC power supply.
The number of the DC power supplies is the same as that of the conductor bars, and one conductor bar is electrically connected to one DC power supply.
The first positive electrode side switch, the negative electrode side control component, the first negative electrode side switch, and the positive electrode side control component are controlled by a control device so that each conductor bar included in the single stator can be formed. By controlling the amplitude and phase of the flowing current, the current energized in the single stator can be switched between three-phase alternating current and six-phase alternating current.
When each conductor bar is individually controlled so that a three-phase alternating current is energized in the stator, each conductor is switched between concentrated winding magnetic flux and all-node winding magnetic flux to be generated in the stator. The currents that are individually controlled for the bars and energized in each of the conductor bars are the U +, V +, and W + phases, which are three-phase alternating current phases with the same amplitude and the phases shifted by 120 degrees, and the U +, It has U-, V-, and W-phases whose phases are inverted with respect to V + and W +.
When each conductor bar is individually controlled so that a 6-phase alternating current is applied to the stator, the magnetic flux of concentrated winding, the magnetic flux of short winding, or the magnetic flux of all node winding is switched to the stator. Each of the conductor bars is individually controlled so as to be generated, and the current applied to each of the conductor bars is A +, B +, C +, which are 6-phase alternating current phases having the same amplitude and the phases shifted by 30 degrees in order. , D +, E +, F + and the phases of A-, B-, C-, D-, E-, F- with the phases inverted with respect to the A +, B +, C +, D +, E +, F +. And have
The rotor has eight poles in the circumferential direction.
Each of the two conductor bars inserted into each of the status lots includes a conductor bar a inserted radially outside and a conductor bar inserted radially inside the first, thirteenth, 25, and 37th status lots. b, the conductor bar c inserted radially outside and the conductor bar d inserted radially inside the second, 14, 26, 38 status lots, and the third, 15, 27, 39 status lots. The conductor bar e inserted on the outer side in the radial direction and the conductor bar f inserted on the inner side in the radial direction, and the conductor bar g inserted on the outer side in the radial direction and the inner side in the radial direction of the fourth, 16, 28, and 40 status lots The inserted conductor bar h, the conductor bar i inserted radially outside and the conductor bar j inserted radially inside the fifth, 17, 29, 41 status lot, and the sixth, 18, 30 , 42 The conductor bar k inserted on the outer side of the status lot and the conductor bar l inserted on the inner side of the radial direction, and the conductor bar m inserted on the outer side of the seventh, 19, 31, and 43 status lots. And the conductor bar n inserted in the radial direction, the conductor bar o inserted in the radial outside and the conductor bar p inserted in the radial inside of the eighth, 20, 32, 44 status lots, and the first. 9,21,33,45 Conductor bar q inserted on the radial outside of the status lot and conductor bar r inserted on the radial inside, and inserted on the radial outside of the 10th, 22, 34, 46 status lots. The conductor bar s and the conductor bar t inserted in the radial direction, the conductor bar u inserted in the radial outside of the 11,23,35,47 status lot and the conductor bar inserted in the radial direction. It has v and a conductor bar w inserted radially outside and a conductor bar x inserted radially inside the 12th, 24, 36, and 48 status lots.
When the phase of the current flowing through each of the conductor bars is individually controlled for each of the conductor bars so that a three-phase alternating current is applied to the stator and a magnetic flux of the concentrated winding is generated in the stator. Is a U + phase on the conductor bars a and b, a U− phase on the conductor bars c and d, a V + phase on the conductor bars e and f, a V− phase on the conductor bars g and h, and the conductor. Bars i and j are W + phases, conductor bars k and l are W− phases, conductor bars m and n are U− phases, conductor bars o and p are U + phases, and conductor bars q and r are V- phase to said conductor bar s, t to V + phase, the conductor bars u, v in the W- phase, the conductor bar w, separately for each conductor bar so that W + phase to x Controlled
When the 3-phase alternating currents are individually controlled and the flux of the entire pitch winding as is energized for each said conductor bars so as to generate the stator to the stator, the conductor bars a, b, C, d are U + phases, conductor bars e, f, g, h are V + phases, conductor bars i, j, k, l are W + phases, and conductor bars m, n, o, p are U. Each conductor bar is individually controlled so as to have a − phase, a V − phase for the conductor bars q, r, s, t, and a W − phase for the conductor bars u, v, w, x.
When the 6-phase AC current is individually controlled for each of the conductor bars so that the stator is energized and the magnetic flux of all the nodes is generated in the stator, A + is applied to the conductor bars a and b. Phase, B + phase on the conductor bars c and d, C + phase on the conductor bars e and f, D + phase on the conductor bars g and h, E + phase on the conductor bars i and j, the conductor bar K, l are F + phases, the conductor bars m and n are A− phases, the conductor bars o and p are B− phases, the conductor bars q and r are C− phases, and the conductor bars s, t. Each of the conductor bars is individually controlled so as to have a D-phase, the conductor bars u and v have an E-phase, and the conductor bars w and x have an F-phase.
When the 6-phase AC current is individually controlled for each of the conductor bars so that the stator is energized and the magnetic flux of the concentrated winding is generated in the stator, the A + phase is applied to the conductor bar a. The conductor bar b has an F + phase, the conductor bar c has a B + phase, the conductor bar d has an A− phase, the conductor bar e has a C + phase, the conductor bar f has a B− phase, and the conductor bar. g is the D + phase, the conductor bar h is the C− phase, the conductor bar i is the E + phase, the conductor bar j is the D− phase, the conductor bar k is the F + phase, and the conductor bar l is E. -Phase, A-phase on the conductor bar m, F-phase on the conductor bar n, B-phase on the conductor bar o, A + phase on the conductor bar p, C-phase on the conductor bar q Phase, B + phase on the conductor bar r, D− phase on the conductor bar s, C + phase on the conductor bar t, E− phase on the conductor bar u, D + phase on the conductor bar v, Each of the conductor bars is individually controlled so that the conductor bar w has an F− phase and the conductor bar x has an E + phase.
When the conductor bar is individually controlled so that the 6-phase AC current is applied to the stator and the magnetic flux of the short winding is generated in the stator, the A + phase is applied to the conductor bar a. , The conductor bar b has a D− phase, the conductor bar c has a B + phase, the conductor bar d has an E− phase, the conductor bar e has a C + phase, the conductor bar f has an F− phase, and the above. The conductor bar g has a D + phase, the conductor bar h has an A− phase, the conductor bar i has an E + phase, the conductor bar j has a B− phase, the conductor bar k has an F + phase, and the conductor bar l. C− phase, A− phase on the conductor bar m, D + phase on the conductor bar n, B− phase on the conductor bar o, E + phase on the conductor bar p, C on the conductor bar q -Phase, F + phase on the conductor bar r, D- phase on the conductor bar s, A + phase on the conductor bar t, E- phase on the conductor bar u, B + phase on the conductor bar v Each of the conductor bars is individually controlled so that the conductor bar w has an F− phase and the conductor bar x has a C + phase.

この発明に係る回転電機によれば、各導体バーに流れる電流の振幅及び位相は、各導体バーごとに制御され、ステータとロータとの間のギャップ磁束密度波形が任意に調整されることで、各運転ポイントに求められる好適な磁束波形を形成し、ムダ導体による損失なく全節巻、短節巻、集中巻の駆動を行うことができる。
従って、運転領域の拡大のみならずトルクリップル等の駆動特性も向上させることができる。
According to the rotary electric machine according to the present invention, the amplitude and phase of the current flowing through each conductor bar are controlled for each conductor bar, and the gap magnetic flux density waveform between the stator and the rotor is arbitrarily adjusted. A suitable magnetic flux waveform required for each operating point can be formed, and full-node winding, short-node winding, and concentrated winding can be driven without loss due to waste conductors.
Therefore, not only the operating range can be expanded but also the driving characteristics such as torque ripple can be improved.

この発明の実施の形態1に係るモータを示す側断面図である。It is a side sectional view which shows the motor which concerns on Embodiment 1 of this invention. 図1のモータの正断面図である。It is a front sectional view of the motor of FIG. 図1のモータの給電回路を示す給電回路図である。It is a power supply circuit diagram which shows the power supply circuit of the motor of FIG. 図2の部分拡大図である。It is a partially enlarged view of FIG. この発明の実施の形態2に係るモータを示す正断面図である。It is a front sectional view which shows the motor which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係るモータを示す正断面図である。It is a front sectional view which shows the motor which concerns on Embodiment 3 of this invention. 図6の部分拡大図である。It is a partially enlarged view of FIG. 従来のコイルの構成を示す模式図である。It is a schematic diagram which shows the structure of the conventional coil.

以下、この発明の各実施の形態について図に基づいて説明するが、各図において同一、または相当部材、部位については、同一符号を付して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the same or corresponding members and parts will be described with the same reference numerals in the drawings.

実施の形態1.
図1はこの発明の実施の形態1に係るモータ1を示す側断面図、図2は図1のモータ1の正断面図である。
このモータ1は、8極48スロットの永久磁石モータである。
回転電機であるモータ1は、円筒形状のフレーム2と、このフレーム2の両側に覆って設けられた負荷側ブラケット3及び反負荷側ブラケット4と、フレーム2の中心軸線上に配置され、負荷側ブラケット3及び反負荷側ブラケット4で負荷側ベアリング5及び反負荷側ベアリング6を介して回転自在に2点支持されたシャフト7と、シャフト7が挿入されてキー等で一体され、フレーム2、負荷側ブラケット3及び反負荷側ブラケット4で構成されたケース10内に収納されたロータ8と、フレーム2の内壁面に圧入や焼バメ等によって固定されロータ8と隙間を介して囲った円環状のステータ9と、を備えている。
負荷側ベアリング5は、ベアリング押さえ11で負荷側ブラケット3に対して軸線方向にボルト等で固定されている。反負荷側ベアリング6は、波ワッシャ12を介して反負荷側ブラケット4に対して軸線方向に自由度を持って固定されている。
ケース10は、フレーム2に対して負荷側ブラケット3及び反負荷側ブラケット4をボルト等で固定することで形成されている。
Embodiment 1.
FIG. 1 is a side sectional view showing the motor 1 according to the first embodiment of the present invention, and FIG. 2 is a normal sectional view of the motor 1 of FIG.
The motor 1 is an 8-pole 48-slot permanent magnet motor.
The motor 1 which is a rotary electric machine is arranged on a cylindrical frame 2, a load side bracket 3 and a non-load side bracket 4 provided so as to cover both sides of the frame 2, and a central axis of the frame 2, and is arranged on the load side. The shaft 7 is rotatably supported at two points by the bracket 3 and the counterload side bracket 4 via the load side bearing 5 and the counterload side bearing 6, and the shaft 7 is inserted and integrated with a key or the like, and the frame 2 and the load are integrated. A rotor 8 housed in a case 10 composed of a side bracket 3 and a counterload side bracket 4, and an annular shape fixed to the inner wall surface of the frame 2 by press fitting or shrink fitting and surrounded by a gap between the rotor 8 and the rotor 8. It includes a stator 9.
The load-side bearing 5 is fixed to the load-side bracket 3 by a bearing retainer 11 with bolts or the like in the axial direction. The counterload side bearing 6 is fixed to the counterload side bracket 4 via a wave washer 12 with a degree of freedom in the axial direction.
The case 10 is formed by fixing the load side bracket 3 and the non-load side bracket 4 to the frame 2 with bolts or the like.

ステータ9は、円環状のヨーク13の内周側から径方向内側に等分間隔で突出した48個のティース14を有するステータコア15と、ティース14間に形成された軸線方向に延びた各ステータスロット16に、径方向に2個ずつ並んで挿入された導体バー17と、ステータコア15と各導体バー17との間に介在したインシュレータ18と、を備えている。
ステータコア15は、両面が絶縁処理された薄板鋼板を複数枚積層して形成される。
各導体バー17は、インシュレータ18で一体モールドされており、インシュレータ18で被覆された各導体バー17は、各ステータスロット16に圧入されることでステータコア15に固定される。
各導体バー17は、その両端部にそれぞれ負荷側リード23及び反負荷側リード24の各一端部が接続されている。各負荷側リード23及び反負荷側リード24は、それぞれフレーム2に形成された引出し口25を通ってモータ1の外部に引出されている。
The stator 9 has a stator core 15 having 48 teeth 14 projecting radially inward from the inner peripheral side of the annular yoke 13 at equal intervals, and each status lot formed between the teeth 14 in the axial direction. The 16 is provided with two conductor bars 17 inserted side by side in the radial direction, and an insulator 18 interposed between the stator core 15 and each conductor bar 17.
The stator core 15 is formed by laminating a plurality of thin steel plates whose both sides are insulated.
Each conductor bar 17 is integrally molded with an insulator 18, and each conductor bar 17 coated with the insulator 18 is fixed to the stator core 15 by being press-fitted into each status lot 16.
Each conductor bar 17 is connected to both ends of each of the load side lead 23 and the unload side lead 24, respectively. Each load-side lead 23 and anti-load-side lead 24 are drawn out of the motor 1 through a drawer port 25 formed in the frame 2, respectively.

ロータ8は、周方向等分間隔に全部で8個形成され軸線方向に延びた磁石スロット20を有する円柱形状のロータコア19と、各磁石スロット20にN極とS極とが交互に外径側を位置するように挿入された永久磁石21と、ロータコア19の軸線方向の両端に固定され磁石スロット20の両側を塞ぐ端板22と、を備えている。
端板22は、非磁性材料で製作されるのが望ましい。
The rotor 8 has a columnar rotor core 19 having a total of eight magnet slots 20 formed at equal intervals in the circumferential direction and extending in the axial direction, and north and south poles alternately in the outer diameter side of each magnet slot 20. A permanent magnet 21 inserted so as to position the magnet slot 20 and end plates 22 fixed to both ends of the rotor core 19 in the axial direction and closing both sides of the magnet slot 20 are provided.
The end plate 22 is preferably made of a non-magnetic material.

図3は図1のモータ1の給電回路を示す給電回路図である。
負荷側リード23は、電流をオン、オフする第1の正極側スイッチ26を介して直流電源27の正極端子31に電気的に接続されているとともに、電流をオン、オフ制御する負荷側制御部品である第2の負極側スイッチ28を介して直流電源27の負極端子32に電気的に接続されている。
反負荷側リード24は、電流をオン、オフする第1の負極側スイッチ29を介して直流電源27の負極端子32に電気的に接続されているとともに、電流をオン、オフ制御する正極側制御部品である第2の正極側スイッチ30を介して直流電源27の正極端子31に電気的に接続されている。
このように、このモータ1の給電回路は、第1の正極側スイッチ26、第2の負極側スイッチ28、第1の負極側スイッチ29及び第2の正極側スイッチ30により、所謂Hブリッジ回路を構成している。
なお、図3において図示されていないが、各スイッチ26,30,29,28の駆動を制御する制御装置により各導体バー17に流す電流の振幅及び位相は個別に調整される。 この制御装置は、各スイッチ26,30,29,28につき一つずつ設けられている。
FIG. 3 is a power supply circuit diagram showing a power supply circuit of the motor 1 of FIG.
The load-side lead 23 is electrically connected to the positive electrode terminal 31 of the DC power supply 27 via a first positive electrode-side switch 26 that turns the current on and off, and is a load-side control component that controls the current on and off. It is electrically connected to the negative electrode terminal 32 of the DC power supply 27 via the second negative electrode side switch 28.
The counterload side lead 24 is electrically connected to the negative electrode terminal 32 of the DC power supply 27 via the first negative electrode side switch 29 that turns the current on and off, and the positive electrode side control that controls the current on and off. It is electrically connected to the positive electrode terminal 31 of the DC power supply 27 via the second positive electrode side switch 30, which is a component.
As described above, the power supply circuit of the motor 1 is a so-called H-bridge circuit by the first positive electrode side switch 26, the second negative electrode side switch 28, the first negative electrode side switch 29, and the second positive electrode side switch 30. It is configured.
Although not shown in FIG. 3, the amplitude and phase of the current flowing through each conductor bar 17 are individually adjusted by a control device that controls the drive of each of the switches 26, 30, 29, and 28. This control device is provided one for each switch 26, 30, 29, 28.

第1の正極側スイッチ26、第2の正極側スイッチ30、第1の負極側スイッチ29、第2の負極側スイッチ28は、シリコン半導体を用いた絶縁ゲートバイポーラトランジスタ(IGBT)により構成されるが,電界効果型トランジスタ(MOS−FET)で構成してもよい。
また,炭化珪素(SiC)や窒化ガリウム(GaN)などのワイドバンドギャップ半導体などを用いた半導体スイッチにより構成されてもよい。
図示していないが、第1の正極側スイッチ26、第2の正極側スイッチ30、第1の負極側スイッチ29、第2の負極側スイッチ28は、それぞれ各スイッチ26,30,29,28と並列に還流ダイオードを挿入されている。
直流電源27は、鉛バッテリやリチウムイオンバッテリ等で構成される。
個々の導体バー17に対してHブリッジ回路が構成され、また各Hブリッジ回路に対して直流電源27がそれぞれ個別に設けられており、一つのモータ1に対して、全部で96個のHブリッジ回路、96個の導体バー17が用いられている。
The first positive electrode side switch 26, the second positive electrode side switch 30, the first negative electrode side switch 29, and the second negative electrode side switch 28 are composed of an insulated gate bipolar transistor (IGBT) using a silicon semiconductor. , It may be composed of a field effect transistor (MOS-FET).
Further, it may be composed of a semiconductor switch using a wide bandgap semiconductor such as silicon carbide (SiC) or gallium nitride (GaN).
Although not shown, the first positive electrode side switch 26, the second positive electrode side switch 30, the first negative electrode side switch 29, and the second negative electrode side switch 28 are the switches 26, 30, 29, and 28, respectively. A freewheeling diode is inserted in parallel.
The DC power supply 27 is composed of a lead battery, a lithium ion battery, or the like.
An H-bridge circuit is configured for each conductor bar 17, and a DC power supply 27 is individually provided for each H-bridge circuit. A total of 96 H-bridges are provided for one motor 1. A circuit, 96 conductor bars 17 are used.

図3において、制御装置の駆動により、第1の正極側スイッチ26及び第1の負極側スイッチ29がオンされ、第2の負極側スイッチ28及び第2の正極側スイッチ30がオフされると、負荷側リード23の端部は、正極側の電位となり、反負荷側リード24の端部は、負極側の電位となる。
その結果、導体バー17には負荷側リード23から反負荷側リード24に向けて電流が流れる。
一方、制御装置の駆動により、第1の正極側スイッチ26及び第1の負極側スイッチ29がオフされ、第2の負極側スイッチ28及び第2の正極側スイッチ30がオンされると、負荷側リード23の端部は、負極側の電位となり、反負荷側リード24の端部は、正極側の電位となる。
その結果、導体バー17には反負荷側リード24から負荷側リード23に向けて電流が流れる。
また、Hブリッジ回路の4つのスイッチ26,30,29,28の全てをOFFとすると、導体バー17は、直流電源27から切り離されて電流は流れない。
このように、制御装置により、各スイッチ26,30,29,28のオン、オフの切り換えと、オン時間及びオフ時間の比をそれぞれ変化させることによって、各導体バー17には任意の振幅と位相の電流を通電することができる。
In FIG. 3, when the control device is driven, the first positive electrode side switch 26 and the first negative electrode side switch 29 are turned on, and the second negative electrode side switch 28 and the second positive electrode side switch 30 are turned off. The end of the load-side lead 23 has a potential on the positive electrode side, and the end of the unload-side lead 24 has a potential on the negative electrode side.
As a result, a current flows through the conductor bar 17 from the load side lead 23 toward the unload side lead 24.
On the other hand, when the control device is driven, the first positive electrode side switch 26 and the first negative electrode side switch 29 are turned off, and the second negative electrode side switch 28 and the second positive electrode side switch 30 are turned on, the load side. The end of the lead 23 has a potential on the negative electrode side, and the end of the lead 24 on the counterload side has a potential on the positive electrode side.
As a result, a current flows through the conductor bar 17 from the unloaded side lead 24 toward the load side lead 23.
Further, when all the four switches 26, 30, 29, and 28 of the H-bridge circuit are turned off, the conductor bar 17 is disconnected from the DC power supply 27 and no current flows.
In this way, the control device switches the switches 26, 30, 29, and 28 on and off, and changes the ratio of the on-time and the off-time, respectively, so that each conductor bar 17 has an arbitrary amplitude and phase. The current can be energized.

次に、上記構成の6相モータ1の動作について説明する。
図4は、図2の部分拡大図である。
図4において、各導体バー17には周方向に沿ってそれぞれaからxまでの番号が割り当てられている。
A+,B+,C+,D+,E+,F+はそれぞれ振幅が等しく位相が30度ずつ順番にずれた6相交流の相とし、A−,B−,C−,D−,E−,F−はそれぞれA+,B+,C+,D+,E+,F+に対して位相が反転した状態を表すものとする。
モータ1が全節分布巻の駆動を行なうには、通電する各導体バー17に次のように電流位相を調節する。
即ち、番号a,bの各導体バー17にA+の相、番号c,dの各導体バー17にB+の相、番号e,fの各導体バー17にC+の相、番号g,hの各導体バー17にD+の相、番号i,jの各導体バー17にE+の相、番号k,lの各導体バー17にF+の相、番号m,nの各導体バー17にA−の相、番号o,pの各導体バー17にB−の相、番号q,rの各導体バー17にC−の相、番号s,tの各導体バー17にD−の相、番号u,vの各導体バー17にE−の相、番号w,xの各導体バー17にF−の相となるように各導体バー17に通電する電流位相を調整することで、8極48スロット毎極毎相1の6相全節分布巻の電機子磁束を構成することができる。
なお,回転方向の図示していない部位については回転偶対称の構成となる。
Next, the operation of the 6-phase motor 1 having the above configuration will be described.
FIG. 4 is a partially enlarged view of FIG.
In FIG. 4, each conductor bar 17 is assigned a number from a to x along the circumferential direction.
A +, B +, C +, D +, E +, and F + are 6-phase AC phases with the same amplitude and 30 degrees out of phase, and A-, B-, C-, D-, E-, and F- are It is assumed that the phases are inverted with respect to A +, B +, C +, D +, E +, and F +, respectively.
In order for the motor 1 to drive the all-node distributed winding, the current phase of each of the conductor bars 17 to be energized is adjusted as follows.
That is, each of the conductor bars 17 of numbers a and b has an A + phase, each of the conductor bars 17 of numbers c and d has a phase of B +, each of the conductor bars 17 of numbers e and f has a phase of C +, and each of the numbers g and h. The conductor bar 17 has a D + phase, the conductor bars 17 with numbers i and j have an E + phase, the conductor bars 17 with numbers k and l have an F + phase, and the conductor bars 17 with numbers m and n have an A− phase. , B-phase on each conductor bar 17 of numbers o and p, C-phase on each conductor bar 17 of numbers q and r, D-phase on each conductor bar 17 of numbers s and t, numbers u, v By adjusting the current phase of energizing each conductor bar 17 so that each conductor bar 17 has an E-phase and each conductor bar 17 of numbers w and x has an F- phase, 8 poles and 48 slots per pole. It is possible to construct an armature magnetic flux of 6-phase all-node distribution winding of each phase 1.
Note that the parts not shown in the direction of rotation have a rotational even symmetry.

また、モータ1が短節分布巻の駆動を行なうには、通電する各導体バー17に次のように電流位相を調節する。
即ち、番号aの導体バー17にA+の相、番号bの導体バー17にD−の相、番号cの導体バー17にB+の相、番号dの導体バー17にE−の相、番号eの導体バー17にC+の相、番号fの導体バー17にF−の相、番号gの導体バー17にD+の相、番号hの導体バー17にA−の相、番号iの導体バー17にE+の相、番号jの導体バー17にB−の相、番号kの導体バー17にF+の相、番号lの導体バー17にC−の相、番号mの導体バー17にA−の相、番号nの導体バー17にD+の相、番号oの導体バー17にB−の相、番号pの導体バー17にE+の相、番号qの導体バー17にC−の相、番号rの導体バー17にF+の相、番号sの導体バー17にD−の相、番号tの導体バー17にA+の相、番号uの導体バー17にE−の相、番号vの導体バー17にB+の相、番号wの導体バー17にF−の相、番号xの導体バー17にC+の相となるように各導体バー17に通電する電流位相を調整することで、8極48スロット毎極毎相1の6相短節分布巻の電機子磁束を構成することができる。
なお,回転方向の図示していない部位については前述と同様に回転偶対称となる。
Further, in order for the motor 1 to drive the short-section distribution winding, the current phase of each of the conducting bar 17s to be energized is adjusted as follows.
That is, the conductor bar 17 of the number a has the A + phase, the conductor bar 17 of the number b has the D− phase, the conductor bar 17 of the number c has the B + phase, the conductor bar 17 of the number d has the E− phase, and the number e. The conductor bar 17 has a C + phase, the number f conductor bar 17 has an F− phase, the number g conductor bar 17 has a D + phase, the number h conductor bar 17 has an A− phase, and the number i conductor bar 17. E + phase, number j conductor bar 17 is B- phase, number k conductor bar 17 is F + phase, number l conductor bar 17 is C- phase, number m conductor bar 17 is A-. Phase, number n conductor bar 17 has D + phase, number o conductor bar 17 has B- phase, number p conductor bar 17 has E + phase, number q conductor bar 17 has C-phase, number r F + phase on the conductor bar 17, number s on the D- phase, number t on the conductor bar 17 on the A + phase, number u on the conductor bar 17 on the E-phase, number v on the conductor bar 17 By adjusting the current phase that energizes each conductor bar 17 so that the B + phase, the number w conductor bar 17 has the F- phase, and the number x conductor bar 17 has the C + phase, there are 8 poles and 48 slots. It is possible to construct an armature magnetic field of 6-phase short-node distribution winding with 1 pole and 1 phase.
Note that the parts not shown in the rotation direction are rotationally even-symmetrical as described above.

また、モータ1が集中巻の駆動を行なうには、通電する各導体バー17に次のように電
流位相を調節する。
即ち、番号aの導体バー17にA+の相、番号bの導体バー17にF+の相、番号cの
導体バー17にB+の相、番号dの導体バー17にA−の相、番号eの導体バー17にC
+の相、番号fの導体バー17にB−の相、番号gの導体バー17にD+の相、番号hの
導体バー17にC−の相、番号iの導体バー17にE+の相、番号jの導体バー17にD
−の相、番号kの導体バー17にF+の相、番号lの導体バー17にE−の相、番号mの
導体バー17にA−の相、番号nの導体バー17にF−の相、番号oの導体バー17にB
−の相、番号pの導体バー17にA+の相、番号qの導体バー17にC−の相、番号rの
導体バー17にB+の相、番号sの導体バー17にD−の相、番号tの導体バー17にC
+の相、番号uの導体バー17にE−の相、番号vの導体バー17にD+の相、番号wの
導体バー17にF−の相、番号xの導体バー17にE+の相となるように各導体バー17
に通電する電流位相を調整することで、8極48スロット毎極毎相1の6相集中巻の電機
子磁束を構成することができる。
回転方向の図示していない部位については前述と同様に回転偶対称となる。
Further, in order for the motor 1 to drive the centralized winding, the current phase of each of the conductor bars 17 to be energized is adjusted as follows.
That is, the conductor bar 17 of the number a has the A + phase, the conductor bar 17 of the number b has the F + phase, the conductor bar 17 of the number c has the B + phase, the conductor bar 17 of the number d has the A− phase, and the number e. C on conductor bar 17
+ Phase, number f conductor bar 17 with B- phase, number g conductor bar 17 with D + phase, number h conductor bar 17 with C- phase, number i conductor bar 17 with E + phase, D on the conductor bar 17 of number j
-Phase, number k conductor bar 17 has F + phase, number l conductor bar 17 has E-phase, number m conductor bar 17 has A-phase, number n conductor bar 17 has F- phase. , B on the conductor bar 17 of number o
-Phase, A + phase on the number p conductor bar 17, C-phase on the number q conductor bar 17, B + phase on the number r conductor bar 17, D-phase on the number s conductor bar 17, C on the conductor bar 17 of number t
+ Phase, number u conductor bar 17 with E-phase, number v conductor bar 17 with D + phase, number w conductor bar 17 with F- phase, number x conductor bar 17 with E + phase Each conductor bar 17
By adjusting the phase of the current energized in, it is possible to form an armature magnetic flux of 6-phase concentrated winding with 8 poles and 48 slots and 1 pole and 1 phase.
Parts not shown in the rotation direction are rotationally even-symmetrical as described above.

このように各導体バー17に通電することで、モータ1は、6相の全節巻、短節巻、集中巻の駆動をそれぞれ行うことができる。 By energizing each conductor bar 17 in this way, the motor 1 can drive the six-phase full-node winding, short-node winding, and concentrated winding, respectively.

次に、3相モータ1の動作について説明する。
3相についても同様に、U+,V+,W+をそれぞれ振幅が等しく位相が120度ずつ順番にずれた3相交流の相とし、U−,V−,W−はそれぞれU+,V+,W+に対して位相が反転した状態を表すものとする。
モータ1が全節巻の駆動を行なうには、通電する各導体バー17に次のように電流位相を調節する。
即ち、番号a,b,c,dの各導体バー17にU+の相、番号e,f,g,hの各導体バー17にV+の相、番号i,j,k,lの各導体バー17にW+の相、番号m,n,o,pの各導体バー17にU−の相、番号q,r,s,tの各導体バー17にV−の相、番号u,v,w,xの各導体バー17にW−の相関係となるように通電する電流位相を調整することで、8極48スロットの3相全節巻の電機子磁束を構成することができる。
Next, the operation of the three-phase motor 1 will be described.
Similarly for the three phases, U +, V +, and W + are regarded as three-phase AC phases having the same amplitude and the phases are shifted by 120 degrees in order, and U−, V−, and W− are relative to U +, V +, and W +, respectively. It is assumed that the phase is inverted.
In order for the motor 1 to drive all the nodes, the current phase of each of the conducting bar 17s is adjusted as follows.
That is, each conductor bar 17 of numbers a, b, c, d has a U + phase, each conductor bar 17 of numbers e, f, g, h has a V + phase, and each conductor bar of numbers i, j, k, l has. 17 is the W + phase, each conductor bar 17 with numbers m, n, o, p is the U- phase, and each conductor bar 17 with numbers q, r, s, t is the V- phase, numbers u, v, w. By adjusting the current phase in which the conductor bars 17 of, and x are energized so as to have a W-phase relationship, an armature magnetic flux of three-phase full-node winding of eight poles and 48 slots can be formed.

また、モータ1が集中巻の駆動を行なうには、通電する各導体バー17に次のように電流位相を調節する。
即ち、番号a,bの各導体バー17にU+の相、番号c,dの各導体バー17にU−の相、番号e,fの各導体バー17にV+の相、番号g,hの各導体バー17にV−の相、番号i,jの各導体バー17にW+の相、番号k,lの各導体バー17にW−の相、番号m,nの各導体バー17にU−の相、番号o,pの各導体バー17にU+の相、番号q,rの各導体バー17にV−の相、番号s,tの各導体バー17にV+の相、番号u,vの各導体バー17にW−の相、番号w,xの各導体バー17にW+の相となるように通電する電流位相を調整することで、8極48スロットの3相集中巻の電機子磁束を構成することができる。
Further, in order for the motor 1 to drive the centralized winding, the current phase of each of the conductor bars 17 to be energized is adjusted as follows.
That is, the conductor bars 17 of numbers a and b have a U + phase, the conductor bars 17 of numbers c and d have a U− phase, and the conductor bars 17 of numbers e and f have a V + phase, and the conductor bars 17 have numbers g and h. Each conductor bar 17 has a V- phase, each of the conductor bars 17 of numbers i and j has a W + phase, each of the conductor bars 17 of numbers k and l has a phase of W-, and each of the conductor bars 17 of numbers m and n has a U. -Phase, U + phase in each conductor bar 17 of numbers o and p, V- phase in each conductor bar 17 of numbers q and r, V + phase in each conductor bar 17 of numbers s and t, number u, By adjusting the current phase that energizes each conductor bar 17 of v so that it becomes the W- phase and each conductor bar 17 of numbers w and x becomes the W + phase, a three-phase concentrated winding electric machine with 8 poles and 48 slots A child magnetic flux can be formed.

このように各導体バー17に通電することで、モータ1は、3相の全節巻,集中巻の駆動をそれぞれ行うことができる。 By energizing each conductor bar 17 in this way, the motor 1 can drive the three-phase full-node winding and the centralized winding, respectively.

この実施の形態のモータ1では、第1の正極側スイッチ26、第2の負極側スイッチ28、第1の負極側スイッチ29及び第2の正極側スイッチ30の動作を制御装置により制御することで、各導体バー17に流れる電流の振幅及び位相は、各導体バー17毎に制御され、ステータ9とロータ8との間のギャップ磁束密度波形が任意に調整され、各運転ポイントに求められる好適な磁束波形を形成し、ムダ導体による損失なく全節巻、短節巻、集中巻の駆動を行うことができる。
従って、運転領域の拡大のみならずトルクリップル等の駆動特性も向上させることができる。
In the motor 1 of this embodiment, the operation of the first positive electrode side switch 26, the second negative electrode side switch 28, the first negative electrode side switch 29, and the second positive electrode side switch 30 is controlled by the control device. The amplitude and phase of the current flowing through each conductor bar 17 are controlled for each conductor bar 17, and the gap magnetic flux density waveform between the stator 9 and the rotor 8 is arbitrarily adjusted, which is suitable for each operating point. A magnetic flux waveform can be formed, and all-node winding, short-node winding, and concentrated winding can be driven without loss due to waste conductors.
Therefore, not only the operating range can be expanded but also the driving characteristics such as torque ripple can be improved.

また,電機子は、2次元断面上の全導体バー17に流れる電流の振幅と位相を直接的に制御することができるため、ステータコア15に対し導線が巻きつけられたものを電流のベクトル合成により実現するものと異なり、余分な電流を流す必要が無く損失を低減することができる。 Further, since the armature can directly control the amplitude and phase of the current flowing through all the conductor bars 17 on the two-dimensional cross section, the conductor is wound around the stator core 15 by vector synthesis of the current. Unlike what is realized, it is not necessary to pass an extra current and the loss can be reduced.

また、ロータ8は、軸線方向に延びた磁石スロット20に永久磁石21が収納されたロータコア19を有し、複数の導体バー17のうち、図4において反時計方向に回転するロータ8の回転方向の遅れ側の永久磁石21の端部に対向する導体バー17(図4において、番号m,n,o,p)に流れる電流の振幅は、通常正弦波電流を流した際の電流振幅と比較して小さくなるように制御装置により調整されている。そして、他の位置の導体バー17に流れる電流の振幅を大きくすることで出力するトルクが保たれる。
従って、永久磁石21がもっとも減磁しやすい位置の励磁を弱めることで同じ磁石量に対してトルクを向上させることができる。
Further, the rotor 8 has a rotor core 19 in which a permanent magnet 21 is housed in a magnet slot 20 extending in the axial direction, and among a plurality of conductor bars 17, the rotation direction of the rotor 8 rotating counterclockwise in FIG. The amplitude of the current flowing through the conductor bar 17 (numbers m, n, o, p in FIG. 4) facing the end of the permanent magnet 21 on the lagging side is compared with the current amplitude when a normal sinusoidal current is passed. It is adjusted by the control device so that it becomes smaller. Then, the output torque is maintained by increasing the amplitude of the current flowing through the conductor bar 17 at another position.
Therefore, the torque can be improved for the same amount of magnet by weakening the excitation at the position where the permanent magnet 21 is most likely to be demagnetized.

なお、各導体バー17に流す電流を調整して、各スイッチ26,30,29,28を制御する制御装置を1つのスイッチ26,30,29,28につき一つ設けられているが、第1の正極側スイッチ26と第1の負極側スイッチ29、第2の負極側スイッチ28と第2の正極側スイッチ30とは常に同期してオン,オフを行うので、第1の正極側スイッチ26と第1の負極側スイッチ29とを同じ一つの制御装置で制御し、第2の負極側スイッチ28と第2の正極側スイッチ30とを同じ一つの制御装置で制御してもよい。
このようにすると制御装置の数を半分にすることができる。
さらに、上記構成のモータ1は、上述の通り1極対対称で導体バー17に通電される。 そこで1極対分ずつずれた位置にあるスイッチ26,30,29,28を1つの制御装置で制御してもよい。このようにすると制御装置の数を4分の1にすることができる。
A control device for controlling each of the switches 26, 30, 29, 28 by adjusting the current flowing through each conductor bar 17 is provided for each switch 26, 30, 29, 28. The positive electrode side switch 26 and the first negative electrode side switch 29, and the second negative electrode side switch 28 and the second positive electrode side switch 30 are always turned on and off in synchronization with the first positive electrode side switch 26. The first negative electrode side switch 29 may be controlled by the same one control device, and the second negative electrode side switch 28 and the second positive electrode side switch 30 may be controlled by the same one control device.
In this way, the number of control devices can be halved.
Further, the motor 1 having the above configuration is energized to the conductor bar 17 in a one-pole pair symmetry as described above. Therefore, the switches 26, 30, 29, and 28 located at positions offset by one pole pair may be controlled by one control device. In this way, the number of control devices can be reduced to one-fourth.

なお、上記実施の形態のモータ1では、各ステータスロット16に挿入される導体バー17は2つずつであったが、2つ以上の複数の導体バー17を挿入してもよい。
このようにすれば各相のインダクタンスのばらつきを小さくすることができる。
同様に,上記実施の形態ではステータスロット16に挿入されている2つの導体バー17は、径方向に並べられているが、周方向に配置してもよい。
この場合にも各相のインダクタンスのばらつきを小さくすることができる。
In the motor 1 of the above embodiment, two conductor bars 17 are inserted into each status lot 16, but two or more conductor bars 17 may be inserted.
In this way, the variation in the inductance of each phase can be reduced.
Similarly, in the above embodiment, the two conductor bars 17 inserted in the status lot 16 are arranged in the radial direction, but may be arranged in the circumferential direction.
In this case as well, the variation in inductance of each phase can be reduced.

また、上記実施の形態のモータ1では、直流電源27は、各Hブリッジ回路に対して1つずつ配置されているが、1極対ずつずれた位置にある導体バー17が1つの直流電源27を共用するように配置されてもよい。
このようにすれば直流電源27の数を減らすことができる。
Further, in the motor 1 of the above embodiment, one DC power supply 27 is arranged for each H-bridge circuit, but one DC power supply 27 has a conductor bar 17 at a position deviated by one pole pair. May be arranged to share.
In this way, the number of DC power supplies 27 can be reduced.

実施の形態2.
図5はこの発明の実施の形態2に係るモータ1を示す正断面図である。
この実施の形態では、それぞれのステータスロット16には、導体バー17Aが1つずつ全部で48本挿入されている。
そして、個々の導体バー17Aに対してHブリッジ回路が構成され、また各Hブリッジ回路に対して直流電源27が個別に設けられており、一つのモータ1に対して、48個のHブリッジ回路、48個の導体バー17Aが設けられる。
その他の構造は実施の形態1のモータ1と同様である。
Embodiment 2.
FIG. 5 is a front sectional view showing the motor 1 according to the second embodiment of the present invention.
In this embodiment, a total of 48 conductor bars 17A are inserted into each status lot 16.
An H-bridge circuit is configured for each conductor bar 17A, and a DC power supply 27 is individually provided for each H-bridge circuit. For each motor 1, 48 H-bridge circuits are provided. , 48 conductor bars 17A are provided.
Other structures are the same as those of the motor 1 of the first embodiment.

この実施の形態2によるモータ1では、各導体バー17Aには実施の形態1の同ステータスロット16に挿入されていた2つの導体バー17の電流を合成したものが通電される。
このようにすると直流電源27の数、スイッチ26,30,29,28の数、制御装置の数を半分にすることが出来るためを小型化できる。
また、各ステータスロット16内では、導体バー17Aにモールド成形されたインシュレータ18が1つになるため、ステータスロット16内の導体バー17Aの占積率が向上し高効率化を図ることができる。
In the motor 1 according to the second embodiment, each conductor bar 17A is energized by combining the currents of the two conductor bars 17 inserted in the status lot 16 of the first embodiment.
By doing so, the number of DC power supplies 27, the number of switches 26, 30, 29, 28, and the number of control devices can be halved, so that the size can be reduced.
Further, since the insulator 18 molded into the conductor bar 17A is one in each status lot 16, the space factor of the conductor bar 17A in the status lot 16 can be improved and the efficiency can be improved.

実施の形態3.
図6はこの発明の実施の形態3に係るモータ1を示す正断面図、図7は図6の部分拡大図である。
この実施の形態によるモータ1では、ステータスロット16のそれぞれに2つずつ、全部で90個の導体バー17が挿入されている。
また、ロータコア19は、周方向に等分間隔で10個の磁石スロット20が形成され、それぞれの磁石スロット20に永久磁石21がそれぞれに挿入されている。
その他の構成は、実施の形態1のモータ1と同じである。
Embodiment 3.
FIG. 6 is a front sectional view showing the motor 1 according to the third embodiment of the present invention, and FIG. 7 is a partially enlarged view of FIG.
In the motor 1 according to this embodiment, a total of 90 conductor bars 17 are inserted, two in each of the status lots 16.
Further, in the rotor core 19, ten magnet slots 20 are formed at equal intervals in the circumferential direction, and permanent magnets 21 are inserted into the respective magnet slots 20.
Other configurations are the same as those of the motor 1 of the first embodiment.

各導体バー17は、周方向にそれぞれaからrまでの番号が割り当てられている。
A+,B+,C+,D+,E+,F+,G+,H+,I+をそれぞれ振幅が等しく位相が40度ずつ順番にずれた9相交流の相とし、A−,B−,C−,D−,E−,F−,G−,H−,I−をそれぞれA+,B+,C+,D+,E+,F+,G+,H+,I+に対して位相が反転した状態を表すものとする。
このとき、番号aの導体バー17にA+の相、番号bの導体バー17にF−の相、番号cの導体バー17にB+の相、番号dの導体バー17にG−の相、番号eの導体バー17にC+の相、番号fの導体バー17にH−の相、番号gの導体バー17にD+の相、番号hの導体バー17にI−の相、番号iの導体バー17にE+の相、番号jの導体バー17にA−の相、番号kの導体バー17にF+の相、番号lの導体バー17にB−の相、番号mの導体バー17にG+の相、番号nの導体バー17にC−の相、番号oの導体バー17にH+の相、番号pの導体バー17にD−の相、番号qの導体バー17にI+の相、番号rの導体バー17にE−の相となるように各導体バー17に通電する電流位相を調整することで、10極45スロット毎極毎相2分の1の9相短節分布巻の電機子磁束を構成することができる。
なお、回転方向図示していない部位については回転偶対称の構成となる。
Each conductor bar 17 is assigned a number from a to r in the circumferential direction.
A +, B +, C +, D +, E +, F +, G +, H +, and I + are 9-phase AC phases with the same amplitude and 40 degrees out of phase, and A-, B-, C-, D-, It is assumed that E-, F-, G-, H-, and I- represent a state in which the phases are inverted with respect to A +, B +, C +, D +, E +, F +, G +, H +, and I +, respectively.
At this time, the conductor bar 17 of the number a has the A + phase, the conductor bar 17 of the number b has the F− phase, the conductor bar 17 of the number c has the B + phase, and the conductor bar 17 of the number d has the G− phase. The conductor bar 17 of e has a C + phase, the conductor bar 17 of number f has an H− phase, the conductor bar 17 of number g has a D + phase, the conductor bar 17 of number h has an I− phase, and the conductor bar of number i has. 17 is the E + phase, the number j conductor bar 17 is the A- phase, the number k conductor bar 17 is the F + phase, the number l conductor bar 17 is the B- phase, and the number m conductor bar 17 is the G + phase. Phase, number n conductor bar 17 is C- phase, number o conductor bar 17 is H + phase, number p conductor bar 17 is D- phase, number q conductor bar 17 is I + phase, number r By adjusting the current phase of energizing each conductor bar 17 so that the conductor bar 17 is in the E-phase, an armor with a 9-phase short-node distribution winding of 10 poles and 45 slots per pole and half of each phase. A magnetic flux can be constructed.
Note that the parts not shown in the direction of rotation have a rotational even-symmetrical configuration.

また,番号aの導体バー17にI−の相、番号bの導体バー17にA+の相、番号cの導体バー17にA−の相、番号dの導体バー17にB+の相、番号eの導体バー17にB−の相、番号fの導体バー17にC+の相、番号gの導体バー17にC−の相、番号hの導体バー17にD+の相、番号iの導体バー17にD−の相、番号jの導体バー17にE+の相、番号kの導体バー17にE−の相、番号lの導体バー17にF+の相、番号mの導体バー17にF−の相、番号nの導体バー17にG+の相、番号oの導体バー17にG−の相、番号pの導体バー17にH+の相、番号qの導体バー17にH−の相、番号rの導体バー17にI+の相となるように各導体バー17に通電する電流位相を調整することで10極45スロット9相集中巻の電機子磁束を構成することができる。
この場合も、回転方向図示していない部位については回転偶対称の構成となる。
Further, the conductor bar 17 of the number a has the I− phase, the conductor bar 17 of the number b has the A + phase, the conductor bar 17 of the number c has the A− phase, the conductor bar 17 of the number d has the B + phase, and the number e. B-phase on the conductor bar 17, number f C + phase, number g conductor bar 17 C-phase, number h conductor bar 17 D + phase, number i conductor bar 17 D- phase, number j conductor bar 17 has E + phase, number k conductor bar 17 has E-phase, number l conductor bar 17 has F + phase, number m conductor bar 17 has F-. Phase, number n conductor bar 17 is G + phase, number o conductor bar 17 is G- phase, number p conductor bar 17 is H + phase, number q conductor bar 17 is H- phase, number r By adjusting the current phase of energizing each conductor bar 17 so as to have an I + phase in the conductor bar 17, a 10-pole 45-slot 9-phase concentrated winding armature magnetic flux can be configured.
Also in this case, the rotation direction is not shown, and the rotation even symmetry is used.

続いて,3相についても同様に、U+の相、V+の相、W+の相をそれぞれ振幅が等しく位相が120度ずつ順番にずれた3相交流の相とし、U−の相、V−の相、W−の相はぞれぞれU+の相、V+の相、W+の相に対して位相が反転した状態を表すものとする。このとき、番号a,b,cの各導体バー17にU+の相、番号d,e,fの各導体バー17にW−の相、番号g,h,iの各導体バー17にV+の相、番号j,k,lの各導体バー17にU−の相、番号m,n,oの各導体バー17にW+の相、番号p,q,rの各導体バー17にV−の相となるように各導体バー17に通電する電流位相を調整することで10極45スロット3相短節分布巻の電機子磁束を構成することができる。 Subsequently, similarly for the three phases, the U + phase, the V + phase, and the W + phase are set as the three-phase alternating current phases having the same amplitude and the phases shifted by 120 degrees in order, and the U− phase and the V− phase. It is assumed that the phase and the W− phase represent a state in which the phases are inverted with respect to the U + phase, the V + phase, and the W + phase, respectively. At this time, each conductor bar 17 of numbers a, b, and c has a U + phase, each conductor bar 17 of numbers d, e, and f has a W-phase, and each conductor bar 17 of numbers g , h, and i has V +. Phase, U-phase in each conductor bar 17 of numbers j, k, l, W + phase in each conductor bar 17 of numbers m, n, o, V- in each conductor bar 17 of numbers p, q, r By adjusting the current phase of energizing each conductor bar 17 so as to be in phase, an armature magnetic flux of 10 poles, 45 slots, and 3-phase short-node distribution winding can be formed.

同様に,番号aの導体バー17にV+の相、番号bの導体バー17にU+の相、番号cの導体バー17にU−の相、番号dの導体バー17にU+の相、番号eの導体バー17にU−の相、番号fの導体バー17にW−の相、番号gの導体バー17にW+の相、番号hの導体バー17にV+の相、番号iの導体バー17にV−の相、番号jの導体バー17にV+の相、番号kの導体バー17にV−の相、番号lの導体バー17にU−の相、番号mの導体バー17にU+の相、番号nの導体バー17にW+の相、番号oの導体バー17にW−の相、番号pの導体バー17にW+の相、番号qの導体バー17のW−の相、番号rの導体バー17にV−の相となるように各導体バー17に通電する電流位相を調整することで10極45スロットの3相集中巻の電機子磁束を構成することができる。 Similarly, the conductor bar 17 of number a has a V + phase, the conductor bar 17 of number b has a U + phase, the conductor bar 17 of number c has a U− phase, the conductor bar 17 of number d has a U + phase, and the number e. The conductor bar 17 has a U- phase, the conductor bar 17 has a W- phase, the conductor bar 17 has a W + phase, the conductor bar 17 has a V + phase, and the conductor bar 17 has a number i. V- phase, number j conductor bar 17 has V + phase, number k conductor bar 17 has V- phase, number l conductor bar 17 has U- phase, number m conductor bar 17 has U +. Phase, W + phase on the number n conductor bar 17, W-phase on the number o conductor bar 17, W + phase on the number p conductor bar 17, W-phase on the number q conductor bar 17, number r By adjusting the current phase of energizing each conductor bar 17 so as to have a V-phase in the conductor bar 17, a 3-phase concentrated winding armature magnetic flux of 10 poles and 45 slots can be formed.

また、この場合、3分の2の導体バー17を休止させて、番号aの導体バー17にW−の相、番号bの導体バー17にU+の相、番号gの導体バー17にU−の相、番号hの導体バー17にV+の相、番号mの導体バー17にV−の相、番号nの導体バー17にW+の相となるように通電することで、休止しているステータスロットをダミースロットとみなした10極15スロットの3相集中巻の電機子磁束を構成することができる。
このような構成としても実施の形態1と同様の効果を奏する。
Further, in this case, the two-thirds of the conductor bar 17 is suspended, the conductor bar 17 of the number a has the W− phase, the conductor bar 17 of the number b has the U + phase, and the conductor bar 17 of the number g has the U− phase. Phase, the number h conductor bar 17 has a V + phase, the number m conductor bar 17 has a V-phase, and the number n conductor bar 17 has a W + phase. It is possible to form a three-phase concentrated winding armature magnetic field of 10 poles and 15 slots in which the lot is regarded as a dummy slot.
Even with such a configuration, the same effect as that of the first embodiment is obtained.

なお,上記各実施の形態では、負極側制御部品として第2の負極側スイッチ28を用い、正極側制御部品として第2の正極側スイッチ30を用いた場合について説明したが、勿論このものに限定されない。
例えば、電流を制御する、負極側制御部品である第2の負荷側スイッチ28、正極側制御部品である第2の正極側スイッチ30の代わりに、それぞれダイオードを用い、第1の正極側スイッチ26、第1の負極側スイッチ29とともにHブリッジ回路を構成するようにしてもよい。
また、モータ1は、ロータ8に永久磁石21を有する永久磁石モータで説明したが、ロータ8は、突極を持つロータコアで構成されたスイッチトリラクタンスモータや、ロータコアの突極に巻線を施されて磁極を構成する巻線界磁型のモータ、ロータコアに設けた複数の溝に導体バーを挿入し、軸線方向両端で該導体バーがリング状導体により短絡されたインダクションモータ、略円形のロータコア内側に複数の空隙を設けられたシンクロナスリラクタンスモータなどに構成されても同様の効果を奏する。
また、上記各実施の形態のモータ1について、ロータを平面に展開した構造であるリニアモータに対しても同様の効果を奏する。
また、回転電機である発電機にも、この発明は適用できる。
In each of the above embodiments, the case where the second negative electrode side switch 28 is used as the negative electrode side control component and the second positive electrode side switch 30 is used as the positive electrode side control component has been described, but of course, it is limited to this. Not done.
For example, instead of the second load side switch 28, which is a negative electrode side control component, and the second positive electrode side switch 30, which is a positive electrode side control component, which controls the current, a diode is used, and the first positive electrode side switch 26 is used. , The H-bridge circuit may be formed together with the first negative electrode side switch 29.
Further, the motor 1 has been described as a permanent magnet motor having a permanent magnet 21 in the rotor 8, but the rotor 8 is a switch trilatance motor composed of a rotor core having a salient pole, or a winding is applied to the salient pole of the rotor core. A field-wound motor that forms a magnetic pole, an induction motor in which conductor bars are inserted into a plurality of grooves provided in the rotor core, and the conductor bars are short-circuited by ring-shaped conductors at both ends in the axial direction, a substantially circular rotor core. The same effect can be obtained even if it is configured in a synchronous reluctance motor or the like provided with a plurality of voids inside.
Further, with respect to the motor 1 of each of the above-described embodiments, the same effect can be obtained for a linear motor having a structure in which the rotor is developed in a plane.
The present invention can also be applied to a generator which is a rotating electric machine.

1 モータ、2 フレーム、3 負荷側ブラケット、4 反負荷側ブラケット、5 負荷側ベアリング、6 反負荷側ベアリング、7 シャフト、8 ロータ、9 ステータ、10 ケース、11 ベアリング押さえ、12 波ワッシャ、13 ヨーク、14 ティース、15 ステータコア、16 ステータスロット、17,17A 導体バー、18 インシュレータ、19 ロータコア、20 磁石スロット、21 永久磁石、22 端板、23 負荷側リード、24 反負荷側リード、25 引出し口、26 第1の正極側スイッチ、27 直流電源、28 第2の負極側スイッチ(負極側制御部品)、29 第1の負極側スイッチ、30 第2の正極側スイッチ(正極側制御部品)、31 正極端子、32 負極端子。 1 motor, 2 frames, 3 load side brackets, 4 non-load side brackets, 5 load side bearings, 6 non-load side bearings, 7 shafts, 8 rotors, 9 stators, 10 cases, 11 bearing holders, 12 wave washers, 13 yokes. , 14 teeth, 15 stator cores, 16 status lots, 17, 17A conductor bars, 18 insulators, 19 rotor cores, 20 magnet slots, 21 permanent magnets, 22 end plates, 23 load side leads, 24 counterload side leads, 25 outlets, 26 1st positive electrode side switch, 27 DC power supply, 28 2nd negative electrode side switch (negative electrode side control component), 29 1st negative electrode side switch, 30 2nd positive electrode side switch (positive electrode side control component), 31 Positive electrode Terminal, 32 Negative terminal.

Claims (9)

ロータと、
このロータを囲い、軸線方向に延びた48個のステータスロットが形成されたステータコア、及び各前記ステータスロットにそれぞれ2つずつ挿入された導体バーを有するステータと、を備え、
前記ステータスロットは、前記ステータコアの周方向に第1ステータスロットから第48ステータスロットの順に形成され、
前記導体バーの一方の端部は、電流をオン、オフする第1の正極側スイッチを介して直流電源の正極端子に電気的に接続されるとともに、電流を制御する負極側制御部品を介して直流電源の負極端子に電気的に接続され、
前記導体バーの他方の端部は、電流をオン、オフする第1の負極側スイッチを介して前記直流電源の負極端子に電気的に接続されるとともに、電流を制御する正極側制御部品を介して直流電源の正極端子に電気的に接続され、
前記直流電源の数は、前記導体バーと同数あり、一つの前記直流電源に対して一つの前記導体バーが電気的に接続されており、
前記第1の正極側スイッチ、前記負極側制御部品、前記第1の負極側スイッチ及び前記正極側制御部品が、制御装置により制御されることで、単一の前記ステータが有する前記各導体バーに流れる電流の振幅及び位相が制御されることによって、単一の前記ステータに通電される電流を、3相交流と6相交流とのいずれか一方に切り替え、
3相交流電流が前記ステータに通電されるように各前記導体バーについて個別に制御された場合には、集中巻の磁束又は全節巻の磁束を切り替えて前記ステータに発生させるように各前記導体バーについて個別に制御され、各前記導体バーに通電される電流は、それぞれ振幅が等しく位相が120度ずつ順番にずれた3相交流の相であるU+,V+,W+の相と、前記U+,V+,W+に対して位相が反転した状態のU−,V−,W−の相とを有し、
かつ6相交流電流が前記ステータに通電されるように各前記導体バーについて個別に制御された場合には、集中巻の磁束、短節巻の磁束又は全節巻の磁束を切り替えて前記ステータに発生させるように各前記導体バーについて個別に制御され、各前記導体バーに通電される電流は、それぞれ振幅が等しく位相が30度ずつ順番にずれた6相交流の相であるA+,B+,C+,D+,E+,F+の相と、前記A+,B+,C+,D+,E+,F+に対して位相が反転した状態のA−,B−,C−,D−,E−,F−の相とを有し、
前記ロータは周方向に8個の極を有し、
各前記ステータスロットにそれぞれ2つずつ挿入された各前記導体バーは、前記第1,13,25,37ステータスロットの径方向外側に挿入された導体バーa及び径方向内側に挿入された導体バーbと、前記第2,14,26,38ステータスロットの径方向外側に挿入された導体バーc及び径方向内側に挿入された導体バーdと、前記第3,15,27,39ステータスロットの径方向外側に挿入された導体バーe及び径方向内側に挿入された導体バーfと、前記第4,16,28,40ステータスロットの径方向外側に挿入された導体バーg及び径方向内側に挿入された導体バーhと、前記第5,17,29,41ステータスロットの径方向外側に挿入された導体バーi及び径方向内側に挿入された導体バーjと、前記第6,18,30,42ステータスロットの径方向外側に挿入された導体バーk及び径方向内側に挿入された導体バーlと、前記第7,19,31,43ステータスロットの径方向外側に挿入された導体バーm及び径方向内側に挿入された導体バーnと、前記第8,20,32,44ステータスロットの径方向外側に挿入された導体バーo及び径方向内側に挿入された導体バーpと、前記第9,21,33,45ステータスロットの径方向外側に挿入された導体バーq及び径方向内側に挿入された導体バーrと、前記第10,22,34,46ステータスロットの径方向外側に挿入された導体バーs及び径方向内側に挿入された導体バーtと、前記第11,23,35,47ステータスロットの径方向外側に挿入された導体バーu及び径方向内側に挿入された導体バーvと、前記第12,24,36,48ステータスロットの径方向外側に挿入された導体バーw及び径方向内側に挿入された導体バーxとを有し、
各前記導体バーに流れる電流の位相は、3相交流電流が前記ステータに通電されるように且つ前記集中巻の磁束を前記ステータに発生させるように各前記導体バーについて個別に制御される場合には、前記導体バーa,bにU+の相、前記導体バーc,dにU−の相、前記導体バーe,fにV+の相、前記導体バーg,hにV−の相、前記導体バーi,jにW+の相、前記導体バーk,lにW−の相、前記導体バーm,nにU−の相、前記導体バーo,pにU+の相、前記導体バーq,rにV−の相、前記導体バーs,tにV+の相、前記導体バーu,vにW−の相、前記導体バーw,xにW+の相となるように各導体バーについて個別に制御され、
3相交流電流が前記ステータに通電されるように且つ前記全節巻の磁束を前記ステータに発生させるように各前記導体バーについて個別に制御される場合には、前記導体バーa,b,c,dにU+の相、前記導体バーe,f,g,hにV+の相、前記導体バーi,j,k,lにW+の相、前記導体バーm,n,o,pにU−の相、前記導体バーq,r,s,tにV−の相、前記導体バーu,v,w,xにW−の相となるように各導体バーについて個別に制御され、
6相交流電流が前記ステータに通電されるように且つ前記全節巻の磁束を前記ステータに発生させるように各前記導体バーについて個別に制御される場合には、前記導体バーa,bにA+の相、前記導体バーc,dにB+の相、前記導体バーe,fにC+の相、前記導体バーg,hにD+の相、前記導体バーi,jにE+の相、前記導体バーk,lにF+の相、前記導体バーm,nにA−の相、前記導体バーo,pにB−の相、前記導体バーq,rにC−の相、前記導体バーs,tにD−の相、前記導体バーu,vにE−の相、前記導体バーw,xにF−の相となるように各前記導体バーについて個別に制御され、
6相交流電流が前記ステータに通電されるように且つ前記集中巻の磁束を前記ステータに発生させるように各前記導体バーについて個別に制御される場合には、前記導体バーaにA+の相、前記導体バーbにF+の相、前記導体バーcにB+の相、前記導体バーdにA−の相、前記導体バーeにC+の相、前記導体バーfにB−の相、前記導体バーgにD+の相、前記導体バーhにC−の相、前記導体バーiにE+の相、前記導体バーjにD−の相、前記導体バーkにF+の相、前記導体バーlにE−の相、前記導体バーmにA−の相、前記導体バーnにF−の相、前記導体バーoにB−の相、前記導体バーpにA+の相、前記導体バーqにC−の相、前記導体バーrにB+の相、前記導体バーsにD−の相、前記導体バーtにC+の相、前記導体バーuにE−の相、前記導体バーvにD+の相、前記導体バーwにF−の相、前記導体バーxにE+の相となるように各前記導体バーについて個別に制御され、
6相交流電流が前記ステータに通電されるように且つ前記短節巻の磁束を前記ステータに発生させるように各前記導体バーについて個別に制御される場合には、前記導体バーaにA+の相、前記導体バーbにD−の相、前記導体バーcにB+の相、前記導体バーdにE−の相、前記導体バーeにC+の相、前記導体バーfにF−の相、前記導体バーgにD+の相、前記導体バーhにA−の相、前記導体バーiにE+の相、前記導体バーjにB−の相、前記導体バーkにF+の相、前記導体バーlにC−の相、前記導体バーmにA−の相、前記導体バーnにD+の相、前記導体バーoにB−の相、前記導体バーpにE+の相、前記導体バーqにC−の相、前記導体バーrにF+の相、前記導体バーsにD−の相、前記導体バーtにA+の相、前記導体バーuにE−の相、前記導体バーvにB+の相、前記導体バーwにF−の相、前記導体バーxにC+の相となるように各前記導体バーについて個別に制御される回転電機。
With the rotor
It comprises a stator core in which 48 status lots extending in the axial direction are formed surrounding the rotor, and a stator having two conductor bars inserted in each of the status lots.
The status lots are formed in the order of the first status lot to the 48th status lot in the circumferential direction of the stator core.
One end of the conductor bar is electrically connected to the positive electrode terminal of the DC power supply via a first positive electrode side switch that turns on and off the current, and via a negative electrode side control component that controls the current. Electrically connected to the negative electrode terminal of the DC power supply,
The other end of the conductor bar is electrically connected to the negative electrode terminal of the DC power supply via a first negative electrode side switch that turns on and off the current, and via a positive electrode side control component that controls the current. Is electrically connected to the positive electrode terminal of the DC power supply.
The number of the DC power supplies is the same as that of the conductor bars, and one conductor bar is electrically connected to one DC power supply.
The first positive electrode side switch, the negative electrode side control component, the first negative electrode side switch, and the positive electrode side control component are controlled by a control device so that each conductor bar included in the single stator can be formed. By controlling the amplitude and phase of the flowing current, the current applied to the single stator can be switched between three-phase alternating current and six-phase alternating current.
When each conductor bar is individually controlled so that a three-phase alternating current is energized in the stator, each conductor is switched between concentrated winding magnetic flux and all-node winding magnetic flux to be generated in the stator. The currents that are individually controlled for the bars and energized in each of the conductor bars are the U +, V +, and W + phases, which are three-phase alternating current phases with the same amplitude and the phases shifted by 120 degrees, and the U +, It has U-, V-, and W-phases whose phases are inverted with respect to V + and W +.
When each conductor bar is individually controlled so that a 6-phase alternating current is applied to the stator, the magnetic flux of concentrated winding, the magnetic flux of short winding, or the magnetic flux of all node winding is switched to the stator. Each of the conductor bars is individually controlled so as to be generated, and the current applied to each of the conductor bars is A +, B +, C +, which are 6-phase alternating current phases having the same amplitude and the phases shifted by 30 degrees in order. , D +, E +, F + and the phases of A-, B-, C-, D-, E-, F- with the phases inverted with respect to the A +, B +, C +, D +, E +, F +. And have
The rotor has eight poles in the circumferential direction.
Each of the two conductor bars inserted into each of the status lots includes a conductor bar a inserted radially outside and a conductor bar inserted radially inside the first, thirteenth, 25, and 37th status lots. b, the conductor bar c inserted radially outside and the conductor bar d inserted radially inside the second, 14, 26, 38 status lots, and the third, 15, 27, 39 status lots. The conductor bar e inserted on the outer side in the radial direction and the conductor bar f inserted on the inner side in the radial direction, and the conductor bar g inserted on the outer side in the radial direction and the inner side in the radial direction of the fourth, 16, 28, and 40 status lots. The inserted conductor bar h, the conductor bar i inserted radially outside and the conductor bar j inserted radially inside the fifth, 17, 29, 41 status lot, and the sixth, 18, 30 , 42 The conductor bar k inserted on the outer side of the status lot and the conductor bar l inserted on the inner side of the radial direction, and the conductor bar m inserted on the outer side of the seventh, 19, 31, and 43 status lots. And the conductor bar n inserted in the radial direction, the conductor bar o inserted in the radial outside and the conductor bar p inserted in the radial inside of the eighth, 20, 32, 44 status lots, and the first. 9,21,33,45 Conductor bar q inserted on the radial outside of the status lot and conductor bar r inserted on the radial inside, and inserted on the radial outside of the 10th, 22, 34, 46 status lots. The conductor bar s and the conductor bar t inserted in the radial direction, the conductor bar u inserted in the radial outside of the 11,23,35,47 status lot and the conductor bar inserted in the radial direction. It has v and a conductor bar w inserted radially outside and a conductor bar x inserted radially inside the 12th, 24, 36, and 48 status lots.
When the phase of the current flowing through each of the conductor bars is individually controlled for each of the conductor bars so that a three-phase alternating current is applied to the stator and a magnetic flux of the concentrated winding is generated in the stator. Is a U + phase on the conductor bars a and b, a U− phase on the conductor bars c and d, a V + phase on the conductor bars e and f, a V− phase on the conductor bars g and h, and the conductor. Bars i and j are W + phases, conductor bars k and l are W− phases, conductor bars m and n are U− phases, conductor bars o and p are U + phases, and conductor bars q and r are V- phase to said conductor bar s, t to V + phase, the conductor bars u, v in the W- phase, the conductor bar w, separately for each conductor bar so that W + phase to x Controlled
When the 3-phase alternating currents are individually controlled and the flux of the entire pitch winding as is energized for each said conductor bars so as to generate the stator to the stator, the conductor bars a, b, C, d are U + phases, conductor bars e, f, g, h are V + phases, conductor bars i, j, k, l are W + phases, and conductor bars m, n, o, p are U. Each conductor bar is individually controlled so as to have a − phase, a V − phase for the conductor bars q, r, s, t, and a W − phase for the conductor bars u, v, w, x.
When the 6-phase AC current is individually controlled for each of the conductor bars so that the stator is energized and the magnetic flux of all the nodes is generated in the stator, A + is applied to the conductor bars a and b. Phase, B + phase on the conductor bars c and d, C + phase on the conductor bars e and f, D + phase on the conductor bars g and h, E + phase on the conductor bars i and j, the conductor bar K, l are F + phases, the conductor bars m and n are A− phases, the conductor bars o and p are B− phases, the conductor bars q and r are C− phases, and the conductor bars s, t. Each of the conductor bars is individually controlled so as to have a D-phase, the conductor bars u and v have an E-phase, and the conductor bars w and x have an F-phase.
When the 6-phase AC current is individually controlled for each of the conductor bars so that the stator is energized and the magnetic flux of the concentrated winding is generated in the stator, the A + phase is applied to the conductor bar a. The conductor bar b has an F + phase, the conductor bar c has a B + phase, the conductor bar d has an A− phase, the conductor bar e has a C + phase, the conductor bar f has a B− phase, and the conductor bar. g is the D + phase, the conductor bar h is the C− phase, the conductor bar i is the E + phase, the conductor bar j is the D− phase, the conductor bar k is the F + phase, and the conductor bar l is E. -Phase, A-phase on the conductor bar m, F-phase on the conductor bar n, B-phase on the conductor bar o, A + phase on the conductor bar p, C-phase on the conductor bar q Phase, B + phase on the conductor bar r, D− phase on the conductor bar s, C + phase on the conductor bar t, E− phase on the conductor bar u, D + phase on the conductor bar v, Each of the conductor bars is individually controlled so that the conductor bar w has an F− phase and the conductor bar x has an E + phase.
When each of the conductor bars is individually controlled so that a 6-phase AC current is applied to the stator and a magnetic flux of the short winding is generated in the stator, the A + phase is applied to the conductor bar a. , The conductor bar b has a D− phase, the conductor bar c has a B + phase, the conductor bar d has an E− phase, the conductor bar e has a C + phase, the conductor bar f has an F− phase, and the above. The conductor bar g has a D + phase, the conductor bar h has an A− phase, the conductor bar i has an E + phase, the conductor bar j has a B− phase, the conductor bar k has an F + phase, and the conductor bar l. C− phase, A− phase on the conductor bar m, D + phase on the conductor bar n, B− phase on the conductor bar o, E + phase on the conductor bar p, C on the conductor bar q -Phase, F + phase on the conductor bar r, D- phase on the conductor bar s, A + phase on the conductor bar t, E- phase on the conductor bar u, B + phase on the conductor bar v A rotary electric machine that is individually controlled for each of the conductor bars so that the conductor bar w has an F− phase and the conductor bar x has a C + phase.
ロータと、
このロータを囲い、軸線方向に延びた45個のステータスロットが形成されたステータコア、及び各前記ステータスロットにそれぞれ2つずつ挿入された導体バーを有するステータと、を備え、
前記ステータスロットは、前記ステータコアの周方向に第1ステータスロットから第45ステータスロットの順に形成され、
前記導体バーの一方の端部は、電流をオン、オフする第1の正極側スイッチを介して直流電源の正極端子に電気的に接続されるとともに、電流を制御する負極側制御部品を介して直流電源の負極端子に電気的に接続され、
前記導体バーの他方の端部は、電流をオン、オフする第1の負極側スイッチを介して前記直流電源の負極端子に電気的に接続されるとともに、電流を制御する正極側制御部品を介して直流電源の正極端子に電気的に接続され、
前記直流電源の数は、前記導体バーと同数あり、一つの前記直流電源に対して一つの前記導体バーが電気的に接続されており、
前記第1の正極側スイッチ、前記負極側制御部品、前記第1の負極側スイッチ及び前記正極側制御部品が、制御装置により制御されることで、単一の前記ステータが有する前記各導体バーに流れる電流の振幅及び位相が制御されることによって、単一の前記ステータに通電される電流を、3相交流と9相交流とのいずれか一方に切り替え、
3相交流電流が前記ステータに通電されるように各前記導体バーについて個別に制御された場合には、短節巻の磁束を前記ステータに発生させるように各前記導体バーについて個別に制御され、各前記導体バーに通電される電流は、それぞれ振幅が等しく位相が120度ずつ順番にずれた3相交流の相であるU+,V+,W+の相と、前記U+,V+,W+に対して位相が反転した状態のU−,V−,W−の相とを有し、
かつ9相交流電流が前記ステータに通電されるように各前記導体バーについて個別に制御された場合には、集中巻の磁束又は短節巻の磁束を切り替えて前記ステータに発生させるように各前記導体バーについて個別に制御され、各前記導体バーに通電される電流は、それぞれ振幅が等しく位相が40度ずつ順番にずれた9相交流の相であるA+,B+,C+,D+,E+,F+,G+,H+,I+の相と、前記A+,B+,C+,D+,E+,F+,G+,H+,I+に対して位相が反転した状態のA−,B−,C−,D−,E−,F−,G−,H−,I−の相とを有し、
前記ロータは周方向に10個の極を有し、
各前記ステータスロットにそれぞれ2つずつ挿入された各前記導体バーは、前記第1,10,19,28,37ステータスロットの径方向外側に挿入された導体バーa及び径方向内側に挿入された導体バーbと、前記第2,11,20,29,38ステータスロットの径方向外側に挿入された導体バーc及び径方向内側に挿入された導体バーdと、前記第3,12,21,30,39ステータスロットの径方向外側に挿入された導体バーe及び径方向内側に挿入された導体バーfと、前記第4,13,22,31,40ステータスロットの径方向外側に挿入された導体バーg及び径方向内側に挿入された導体バーhと、前記第5,14,23,32,41ステータスロットの径方向外側に挿入された導体バーi及び径方向内側に挿入された導体バーjと、前記第6,15,24,33,42ステータスロットの径方向外側に挿入された導体バーk及び径方向内側に挿入された導体バーlと、前記第7,16,25,34,43ステータスロットの径方向外側に挿入された導体バーm及び径方向内側に挿入された導体バーnと、前記第8,17,26,35,44ステータスロットの径方向外側に挿入された導体バーo及び径方向内側に挿入された導体バーpと、前記第9,18,27,36,45ステータスロットの径方向外側に挿入された導体バーq及び径方向内側に挿入された導体バーrとを有し、
各前記導体バーに流れる電流の位相は、3相交流電流が前記ステータに通電されるように且つ前記短節巻の磁束を前記ステータに発生させるように各前記導体バーについて個別に制御される場合には、前記導体バーa,b,cにU+の相、前記導体バーd,e,fにW−の相、前記導体バーg,h,iにV+の相、前記導体バーj,k,lにU−の相、前記導体バーm,n,oにW+の相、前記導体バーp,q,rにV−の相となるように各導体バーについて個別に制御され、
9相交流電流が前記ステータに通電されるように且つ前記集中巻の磁束を前記ステータに発生させるように各前記導体バーについて個別に制御される場合には、前記導体バーaにI−の相、前記導体バーbにA+の相、前記導体バーcにA−の相、前記導体バーdにB+の相、前記導体バーeにB−の相、前記導体バーfにC+の相、前記導体バーgにC−の相、前記導体バーhにD+の相、前記導体バーiにD−の相、前記導体バーjにE+の相、前記導体バーkにE−の相、前記導体バーlにF+の相、前記導体バーmにF−の相、前記導体バーnにG+の相、前記導体バーoにG−の相、前記導体バーpにH+の相、前記導体バーqにH−の相、前記導体バーrにI+の相になるように各導体バーについて個別に制御され、
9相交流電流が前記ステータに通電されるように且つ前記短節巻の磁束を前記ステータに発生させるように各前記導体バーについて個別に制御される場合には、前記導体バーaにA+の相、前記導体バーbにF−の相、前記導体バーcにB+の相、前記導体バーdにG−の相、前記導体バーeにC+の相、前記導体バーfにH−の相、前記導体バーgにD+の相、前記導体バーhにI−の相、前記導体バーiにE+の相、前記導体バーjにA−の相、前記導体バーkにF+の相、前記導体バーlにB−の相、前記導体バーmにG+の相、前記導体バーnにC−の相、前記導体バーoにH+の相、前記導体バーpにD−の相、前記導体バーqにI+の相、前記導体バーrにE−の相となるように各導体バーについて個別に制御される回転電機。
With the rotor
It comprises a stator core in which 45 status lots extending in the axial direction are formed surrounding the rotor, and a stator having two conductor bars inserted in each of the status lots.
The status lots are formed in the order of the first status lot to the 45th status lot in the circumferential direction of the stator core.
One end of the conductor bar is electrically connected to the positive electrode terminal of the DC power supply via a first positive electrode side switch that turns on and off the current, and via a negative electrode side control component that controls the current. Electrically connected to the negative electrode terminal of the DC power supply,
The other end of the conductor bar is electrically connected to the negative electrode terminal of the DC power supply via a first negative electrode side switch that turns on and off the current, and via a positive electrode side control component that controls the current. Is electrically connected to the positive electrode terminal of the DC power supply.
The number of the DC power supplies is the same as that of the conductor bars, and one conductor bar is electrically connected to one DC power supply.
The first positive electrode side switch, the negative electrode side control component, the first negative electrode side switch, and the positive electrode side control component are controlled by a control device so that each conductor bar included in the single stator can be formed. By controlling the amplitude and phase of the flowing current, the current applied to the single stator can be switched between three-phase alternating current and nine-phase alternating current.
When each conductor bar is individually controlled so that a three-phase alternating current is energized in the stator, each conductor bar is individually controlled so as to generate a short-running magnetic flux in the stator. The current applied to each of the conductor bars has a phase of U +, V +, W +, which is a three-phase alternating current phase having the same amplitude and a phase shift of 120 degrees in order, and a phase with respect to the U +, V +, W +. Has U-, V-, and W-phases in an inverted state.
When each conductor bar is individually controlled so that a 9-phase alternating current is applied to the stator, the magnetic flux of the concentrated winding or the magnetic flux of the short winding is switched and generated in the stator. The currents that are individually controlled for the conductor bars and are energized in each of the conductor bars are A +, B +, C +, D +, E +, and F +, which are 9-phase alternating current phases with the same amplitude and 40 degrees out of phase. , G +, H +, I + and A-, B-, C-, D-, E in a state where the phases are inverted with respect to the A +, B +, C +, D +, E +, F +, G +, H +, I +. Has phases of-, F-, G-, H-, I-, and has
The rotor has 10 poles in the circumferential direction.
Each of the two conductor bars inserted into each of the status lots was inserted into the conductor bar a inserted radially outside and the conductor bar a inserted radially inside the first, ten, 19, 28, and 37 status lots. The conductor bar b, the conductor bar c inserted radially outside and the conductor bar d inserted radially inside the second, 11, 20, 29, 38 status lot, and the third, 12, 21, The conductor bar e inserted radially outside and the conductor bar f inserted radially inside the 30,39 status lot, and the conductor bar f inserted radially outside the fourth, thirteenth, 22, 31, and 40 status lots. The conductor bar g and the conductor bar h inserted in the radial direction, the conductor bar i inserted in the radial outside of the fifth, 14, 23, 32, 41 status lot and the conductor bar inserted in the radial inside. j, the conductor bar k inserted radially outside and the conductor bar l inserted radially inside the 6,15,24,33,42 status lot, and the seventh,16,25,34, 43 Conductor bar m inserted radially outside the status lot, conductor bar n inserted radially inside, and conductor bars inserted radially outside the eighth, 17, 26, 35, 44 status lots. o and the conductor bar p inserted in the radial direction, the conductor bar q inserted in the radial outside of the ninth, 18, 27, 36, 45 status lot and the conductor bar r inserted in the radial inside. Have,
When the phase of the current flowing through each of the conductor bars is individually controlled for each of the conductor bars so that a three-phase alternating current is applied to the stator and a magnetic flux of the short winding is generated in the stator. The conductor bars a, b, c are U + phases, the conductor bars d, e, f are W− phases, the conductor bars g, h, i are V + phases, and the conductor bars j, k, Each conductor bar is individually controlled so that l has a U− phase, the conductor bars m, n, and o have a W + phase, and the conductor bars p, q, and r have a V− phase.
When the 9-phase AC current is individually controlled for each of the conductor bars so that the stator is energized and the magnetic flux of the concentrated winding is generated in the stator, the I-phase is applied to the conductor bar a. , The conductor bar b has an A + phase, the conductor bar c has an A− phase, the conductor bar d has a B + phase, the conductor bar e has a B− phase, the conductor bar f has a C + phase, and the conductor. The bar g is the C− phase, the conductor bar h is the D + phase, the conductor bar i is the D− phase, the conductor bar j is the E + phase, the conductor bar k is the E− phase, and the conductor bar l. F + phase, the conductor bar m the F− phase, the conductor bar n the G + phase, the conductor bar o the G− phase, the conductor bar p the H + phase, the conductor bar q the H− Phase, each conductor bar is individually controlled so that the conductor bar r has an I + phase.
When each conductor bar is individually controlled so that a 9-phase AC current is applied to the stator and a short-winding magnetic flux is generated in the stator, the A + phase is applied to the conductor bar a. , The conductor bar b has an F− phase, the conductor bar c has a B + phase, the conductor bar d has a G− phase, the conductor bar e has a C + phase, the conductor bar f has an H− phase, and the above. The conductor bar g has a D + phase, the conductor bar h has an I− phase, the conductor bar i has an E + phase, the conductor bar j has an A− phase, the conductor bar k has an F + phase, and the conductor bar l. B− phase, G + phase on the conductor bar m, C− phase on the conductor bar n, H + phase on the conductor bar o, D− phase on the conductor bar p, I + on the conductor bar q Phase, a rotary electric machine that is individually controlled for each conductor bar so that the conductor bar r has an E-phase.
ロータと、
このロータを囲い、軸線方向に延びた45個のステータスロットが形成されたステータコア、及び各前記ステータスロットにそれぞれ2つずつ挿入された導体バーを有するステータと、を備え、
前記ステータスロットは、前記ステータコアの周方向に第1ステータスロットから第45ステータスロットの順に形成され、
前記導体バーの一方の端部は、電流をオン、オフする第1の正極側スイッチを介して直流電源の正極端子に電気的に接続されるとともに、電流を制御する負極側制御部品を介して直流電源の負極端子に電気的に接続され、
前記導体バーの他方の端部は、電流をオン、オフする第1の負極側スイッチを介して前記直流電源の負極端子に電気的に接続されるとともに、電流を制御する正極側制御部品を介して直流電源の正極端子に電気的に接続され、
前記直流電源の数は、前記導体バーと同数あり、一つの前記直流電源に対して一つの前記導体バーが電気的に接続されており、
前記第1の正極側スイッチ、前記負極側制御部品、前記第1の負極側スイッチ及び前記正極側制御部品が、制御装置により制御されることで、単一の前記ステータが有する前記各導体バーに流れる電流の振幅及び位相が制御され、
3相交流電流が前記ステータに通電されるように各前記導体バーについて個別に制御され、集中巻の磁束を前記ステータに発生させるように各前記導体バーについて個別に制御され、各前記導体バーに通電される電流は、それぞれ振幅が等しく位相が120度ずつ順番にずれた3相交流の相であるU+,V+,W+の相と、前記U+,V+,W+に対して位相が反転した状態のU−,V−,W−の相とを有し、
前記ロータは周方向に10個の極を有し、
各前記ステータスロットにそれぞれ2つずつ挿入された各前記導体バーは、前記第1,10,19,28,37ステータスロットの径方向外側に挿入された導体バーa及び径方向内側に挿入された導体バーbと、前記第2,11,20,29,38ステータスロットの径方向外側に挿入された導体バーc及び径方向内側に挿入された導体バーdと、前記第3,12,21,30,39ステータスロットの径方向外側に挿入された導体バーe及び径方向内側に挿入された導体バーfと、前記第4,13,22,31,40ステータスロットの径方向外側に挿入された導体バーg及び径方向内側に挿入された導体バーhと、前記第5,14,23,32,41ステータスロットの径方向外側に挿入された導体バーi及び径方向内側に挿入された導体バーjと、前記第6,15,24,33,42ステータスロットの径方向外側に挿入された導体バーk及び径方向内側に挿入された導体バーlと、前記第7,16,25,34,43ステータスロットの径方向外側に挿入された導体バーm及び径方向内側に挿入された導体バーnと、前記第8,17,26,35,44ステータスロットの径方向外側に挿入された導体バーo及び径方向内側に挿入された導体バーpと、前記第9,18,27,36,45ステータスロットの径方向外側に挿入された導体バーq及び径方向内側に挿入された導体バーrとを有し、
各前記導体バーに流れる電流の位相は、3相交流電流が前記ステータに通電されるように且つ前記集中巻の磁束を前記ステータに発生させるように各前記導体バーについて個別に制御され、前記導体バーaにW−の相、前記導体バーbにU+の相、前記導体バーgにU−の相、前記導体バーhにV+の相、前記導体バーmにV−の相、前記導体バーnにW+の相となるように且つ前記導体バーc,d,e,f,i,j,k,l,o,p,q,rには電流が流れないように各導体バーについて個別に制御される回転電機。
With the rotor
It comprises a stator core in which 45 status lots extending in the axial direction are formed surrounding the rotor, and a stator having two conductor bars inserted in each of the status lots.
The status lots are formed in the order of the first status lot to the 45th status lot in the circumferential direction of the stator core.
One end of the conductor bar is electrically connected to the positive electrode terminal of the DC power supply via a first positive electrode side switch that turns on and off the current, and via a negative electrode side control component that controls the current. Electrically connected to the negative electrode terminal of the DC power supply,
The other end of the conductor bar is electrically connected to the negative electrode terminal of the DC power supply via a first negative electrode side switch that turns on and off the current, and via a positive electrode side control component that controls the current. Is electrically connected to the positive electrode terminal of the DC power supply.
The number of the DC power supplies is the same as that of the conductor bars, and one conductor bar is electrically connected to one DC power supply.
The first positive electrode side switch, the negative electrode side control component, the first negative electrode side switch, and the positive electrode side control component are controlled by a control device to form each conductor bar of the single stator. The amplitude and phase of the flowing current are controlled,
Each of the conductor bars is individually controlled so that a three-phase alternating current is energized in the stator, and each conductor bar is individually controlled so as to generate a concentrated winding magnetic flux in the stator. The energized currents are the U +, V +, and W + phases, which are three-phase alternating current phases with the same amplitude and the phases shifted by 120 degrees, and the states in which the phases are inverted with respect to the U +, V +, and W +. It has U-, V-, and W- phases, and has U-, V-, and W- phases.
The rotor has 10 poles in the circumferential direction.
Each of the two conductor bars inserted into each of the status lots was inserted into the conductor bar a inserted radially outside and the conductor bar a inserted radially inside the first, ten, 19, 28, and 37 status lots. The conductor bar b, the conductor bar c inserted radially outside and the conductor bar d inserted radially inside the second, 11, 20, 29, 38 status lot, and the third, 12, 21, The conductor bar e inserted radially outside and the conductor bar f inserted radially inside the 30,39 status lot, and the conductor bar f inserted radially outside the fourth, thirteenth, 22, 31, and 40 status lots. The conductor bar g and the conductor bar h inserted in the radial direction, the conductor bar i inserted in the radial outside of the fifth, 14, 23, 32, 41 status lot and the conductor bar inserted in the radial inside. j, the conductor bar k inserted radially outside and the conductor bar l inserted radially inside the 6,15,24,33,42 status lot, and the seventh,16,25,34, 43 Conductor bar m inserted radially outside the status lot, conductor bar n inserted radially inside, and conductor bars inserted radially outside the eighth, 17, 26, 35, 44 status lots. o and the conductor bar p inserted in the radial direction, the conductor bar q inserted in the radial outside of the ninth, 18, 27, 36, 45 status lot and the conductor bar r inserted in the radial inside. Have,
The phase of the current flowing through each of the conductor bars is individually controlled for each of the conductor bars so that a three-phase alternating current is applied to the stator and a magnetic flux of the concentrated winding is generated in the stator. W- phase on bar a, U + phase on conductor bar b, U- phase on conductor bar g, V + phase on conductor bar h, V-phase on conductor bar m, conductor bar n Each conductor bar is individually controlled so that it has a W + phase and no current flows through the conductor bars c, d, e, f, i, j, k, l, o, p, q, and r. Rotating electric machine to be done.
前記負極側制御部品は、電流をオン、オフする第2の負極側スイッチであり、前記正極側制御部品は、電流をオン、オフする第2の正極側スイッチである請求項1〜3の何れか1項に記載の回転電機。 The negative electrode side control component is a second negative electrode side switch that turns on and off the current, and the positive electrode side control component is a second positive electrode side switch that turns on and off the current. The rotary electric machine according to item 1. 前記制御装置は、前記第1の正極側スイッチ、前記負極側制御部品、前記第1の負極側スイッチ及び前記正極側制御部品にそれぞれ個別に設けられている請求項1〜4の何れか1項に記載の回転電機。 The control device is any one of claims 1 to 4, which are individually provided for the first positive electrode side switch, the negative electrode side control component, the first negative electrode side switch, and the positive electrode side control component. The rotary electric machine described in. 前記制御装置は、前記第1の正極側スイッチ及び前記第1の負極側スイッチで一個、前記負極側制御部品及び前記正極側制御部品で一個設けられている請求項1〜4の何れか1項に記載の回転電機。 The control device is any one of claims 1 to 4, wherein one is provided for the first positive electrode side switch and the first negative electrode side switch, and one is provided for the negative electrode side control component and the positive electrode side control component. The rotary electric machine described in. 前記ロータは、軸線方向に延びた磁石スロットに永久磁石が収納されたロータコアを有し、前記導体バーは、回転する前記ロータの回転方向の遅れ側の前記永久磁石の端部に対向するときに流れる電流の前記振幅が前記端部に対向する前に流れる電流の前記振幅と比較して小さい請求項1〜の何れか1項に記載の回転電機。 The rotor has a rotor core in which a permanent magnet is housed in a magnet slot extending in the axial direction, and when the conductor bar faces an end portion of the permanent magnet on the lagging side of the rotating direction of the rotor. The rotary electric machine according to any one of claims 1 to 6 , wherein the amplitude of the flowing current is smaller than the amplitude of the current flowing before facing the end portion. 前記第1の正極側スイッチ、前記負極側制御部品、前記第1の負極側スイッチ及び前記正極側制御部品によりHブリッジ回路が構成されている請求項1〜の何れか1項に記載の回転電機。 The rotation according to any one of claims 1 to 7 , wherein the H-bridge circuit is composed of the first positive electrode side switch, the negative electrode side control component, the first negative electrode side switch, and the positive electrode side control component. Electric. 回転電機は、モータである請求項1〜の何れか1項に記載の回転電機。 The rotary electric machine according to any one of claims 1 to 8 , wherein the rotary electric machine is a motor.
JP2014012369A 2014-01-27 2014-01-27 Rotating machine Active JP6775909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014012369A JP6775909B2 (en) 2014-01-27 2014-01-27 Rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014012369A JP6775909B2 (en) 2014-01-27 2014-01-27 Rotating machine

Publications (2)

Publication Number Publication Date
JP2015142392A JP2015142392A (en) 2015-08-03
JP6775909B2 true JP6775909B2 (en) 2020-10-28

Family

ID=53772427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014012369A Active JP6775909B2 (en) 2014-01-27 2014-01-27 Rotating machine

Country Status (1)

Country Link
JP (1) JP6775909B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6879884B2 (en) * 2017-10-26 2021-06-02 三菱電機株式会社 Drive system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990013313A (en) * 1998-02-11 1999-02-25 이이수 Variable Voltage Outputless Rectifier DC Motor
JP2000270506A (en) * 1999-03-19 2000-09-29 Honda Motor Co Ltd Stator structure for motor
JP2001136695A (en) * 1999-11-02 2001-05-18 Honda Motor Co Ltd Brushless motor
US7057371B2 (en) * 2004-04-19 2006-06-06 General Motors Corporation Inverter for electric and hybrid powered vehicles and associated system and method
JP4984472B2 (en) * 2005-09-30 2012-07-25 日本精工株式会社 Control device for electric power steering device
JP2008283782A (en) * 2007-05-10 2008-11-20 Mitsuba Corp Motor driving device
JP2010035293A (en) * 2008-07-28 2010-02-12 Shimadzu Corp Ac load drive control circuit
JP5515310B2 (en) * 2009-02-05 2014-06-11 リコーイメージング株式会社 Linear actuator
JP5685847B2 (en) * 2010-07-26 2015-03-18 日産自動車株式会社 Electric motor system

Also Published As

Publication number Publication date
JP2015142392A (en) 2015-08-03

Similar Documents

Publication Publication Date Title
US7911107B2 (en) AC electric motor
US7816822B2 (en) Motor and control unit thereof
Owen et al. Hybrid excited flux-switching permanent magnet machines
Ibrahim et al. An improved torque density synchronous reluctance machine with a combined star–delta winding layout
JP6388611B2 (en) Hybrid field double gap synchronous machine
JP3466591B2 (en) Rotating electric machine
JP2015509697A (en) Synchronous electrical machine
Dajaku et al. An improved fractional slot concentrated winding for low-poles induction machines
JP2012095410A (en) Permanent-magnet synchronous motor and method of operating the same
JP2004343903A (en) Rotary linear synchronous motor
JP2010136523A (en) Drive control device for rotary electric machine
JP2010028957A (en) Inductor and inductor pole-number switching system
JP5885423B2 (en) Permanent magnet rotating electric machine
JP6775909B2 (en) Rotating machine
TW201242220A (en) High efficiency power generator
US10236756B2 (en) Rotating electric machine
JP6335523B2 (en) Rotating electric machine
Reddy et al. Distributed short-pitch winding for multi-phase pole-phase modulated induction motor drives
JP2008178187A (en) Polyphase induction machine
JP2017526334A (en) Electric machine
JP6432778B2 (en) Rotating electric machine
JP6879884B2 (en) Drive system
WO2017017769A1 (en) Rotating electric machine
JP7461018B2 (en) Permanent magnet motor
WO2013105137A1 (en) Electric machine

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190220

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190227

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201007

R150 Certificate of patent or registration of utility model

Ref document number: 6775909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250