JPS61185061A - Structure of electromagnetic joint - Google Patents

Structure of electromagnetic joint

Info

Publication number
JPS61185061A
JPS61185061A JP2407185A JP2407185A JPS61185061A JP S61185061 A JPS61185061 A JP S61185061A JP 2407185 A JP2407185 A JP 2407185A JP 2407185 A JP2407185 A JP 2407185A JP S61185061 A JPS61185061 A JP S61185061A
Authority
JP
Japan
Prior art keywords
winding
rotor
current
excitation
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2407185A
Other languages
Japanese (ja)
Inventor
Fukuo Shibata
柴田 福夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2407185A priority Critical patent/JPS61185061A/en
Publication of JPS61185061A publication Critical patent/JPS61185061A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P15/00Arrangements for controlling dynamo-electric brakes or clutches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

PURPOSE:To facilitate maintenance and to shorten the longitudinal size by flowing a current to a field winding on the basis of a pole formed by flowing a current to the exciting winding of a rotor. CONSTITUTION:An armature winding 24 is provided on one rotor 13 of two rotors 11, 12 which rotates in an opposed manner, and a field winding 25 is provided at the other rotor 11. An exciting current is supplied to the winding 24 to form a pole. This pole is allowed to cross the winding 25 of the rotor 11 to induce an exciting voltage. Currents are flowed to field windings 51, 52, 57, 45, 46, 53 by the exciting voltage to form a field pole.

Description

【発明の詳細な説明】 本発明は電磁継手の構造に関する。特に回転子の中、一
方の回転子に電機子巻線を設け、他方の回転子に界磁巻
線を設けて成る電磁継手に関する発明である。電磁継手
の一方の回転子に電機子巻線。他方の回転子に界磁巻線
を設ける場合、例えば特許出願公告昭54−14400
号にあるように、界磁巻線に直流励磁電流を供給するた
め、界磁巻線が設けられた回転子にもスリツプリングを
設ける必要がある。これは回転電気機械としての電磁継
手を保守する点で好ましくない。電機子巻線に対して回
転子にスリツプリングを例えば3個設けなければならな
いのであるから、更にその上に界磁巻線用のスリツプリ
ングを設け、例えばそれが2個であるとすれば、全スリ
ツプリングが5個にもなり、保守上好ましくない。而も
そのスリツプリングの配列のために、長さ方向に寸法が
増すことにもなる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of an electromagnetic joint. In particular, the invention relates to an electromagnetic joint in which one rotor is provided with an armature winding and the other rotor is provided with a field winding. Armature winding on one rotor of electromagnetic coupling. When a field winding is provided on the other rotor, for example, the patent application publication No. 14400/1983
As mentioned in the above, in order to supply DC excitation current to the field winding, it is necessary to provide a slip ring on the rotor where the field winding is installed. This is undesirable from the viewpoint of maintaining the electromagnetic joint as a rotating electric machine. For example, three slip rings must be provided on the rotor for the armature winding, and if there are two slip rings for the field winding on top of that, for example, The total number of slip rings is five, which is not favorable for maintenance. However, due to the arrangement of the slip rings, the dimension increases in the length direction.

本発明は電磁継手の一方に電機子巻線の装備された回転
子を設け、他方の回転子に界磁巻線を装備される場合、
少なくとも界磁巻線用のスリツプリングを設けないで、
従来公知の電磁継手よりも保守を容易にし、且つ長さ方
向の寸法を短縮するように改善することを目的とする。
In the present invention, when one side of the electromagnetic joint is provided with a rotor equipped with an armature winding, and the other rotor is equipped with a field winding,
At least without providing a slip ring for the field winding,
The purpose of the present invention is to improve maintenance so that it is easier to maintain than conventionally known electromagnetic joints, and the length dimension is shortened.

電機子巻線と界磁巻線をそれぞれ相対向する回転子の一
方及び他方に設ける電磁継手には前述の特許出願公告昭
54−14400号を改善した特許出願公開昭56−2
9500もある。この場合第1図のような配列で電磁継
手13が使われる。
An electromagnetic joint in which armature windings and field windings are provided on one side and the other side of the rotor facing each other is disclosed in Patent Application Publication No. 1987-2, which is an improvement on the aforementioned Patent Application Publication No. 14400-1981.
There are also 9500. In this case, electromagnetic couplings 13 are used in an arrangement as shown in FIG.

すなわち、第1図でデイーゼル機関のような原動機10
によつて電機継手13の一方の回転子11を回転駆動し
、他方の回転子12の負荷側駆動軸31を歯車装置15
の一方の歯車17を経てその駆動軸36に伝えて、プロ
ベラのような負荷16を駆動するように配列する。歯車
装置15は歯車27と歯車17の組み合わせより成り、
歯車27は電動機14により駆動される。原動機10の
出力軸30により回転せしめられる電磁継手13の一方
の回転子に設けられた電機子巻線に誘導された電圧はそ
のスリツプリング7、8、9を通して電動機14に加え
られ、電磁継手13の電気出力が電動機14に與えられ
る。またその機械出力が出力軸31を通して負荷16を
駆動するのに使われる。結局電磁継手13の入力は若干
の損失を除いて、すべて負荷16を駆動するのに使われ
る。従つて電磁継手13はこの場合、一種の減速機構と
して使われることになる。電磁継手は必らずしもこのよ
うな使い方ばかりではないが、第1図は電磁継手の一つ
の使い方を示したもので、図中、矢印35は電磁継手1
3の始動時に他の電源から受ける電力の方向を示したも
のである。
That is, in FIG. 1, a prime mover 10 such as a diesel engine
One rotor 11 of the electrical coupling 13 is rotationally driven, and the load side drive shaft 31 of the other rotor 12 is driven by the gear device 15.
is arranged to drive a load 16 such as a propeller. The gear device 15 consists of a combination of a gear 27 and a gear 17,
Gear 27 is driven by electric motor 14 . The voltage induced in the armature winding provided on one rotor of the electromagnetic coupling 13 rotated by the output shaft 30 of the prime mover 10 is applied to the motor 14 through the slip rings 7, 8, 9, and the electromagnetic coupling 13 is provided to the motor 14. The mechanical output is also used to drive the load 16 through the output shaft 31. In the end, all of the input to the electromagnetic coupling 13 is used to drive the load 16, except for some loss. Therefore, the electromagnetic coupling 13 is used as a kind of speed reduction mechanism in this case. Although electromagnetic couplings are not necessarily used in this way, Figure 1 shows one way to use electromagnetic couplings. In the figure, arrow 35 indicates electromagnetic coupling 1.
3 shows the direction of power received from another power source at the time of starting No. 3.

第2図は第1図に示した電磁継手13の内部接続図例を
示したものである。本発明の前述目的を達成せしめるた
め、具体的な配列例の第1図及び具体的な電気接続図例
の第2図に示すように、相対向して回転する二個の回転
子11と12の中の一方の回転子12に電機子巻線24
を設け、他方の回転子11に界磁巻線25を設けて成る
電磁継手13において、電機子巻線24の或る端子■、
■、■からその回転子12に設けられた励磁巻線部1、
2、3、4、5、6に励磁電流を供給するように電気接
続して、その励磁電流を巻線部に流すことにより造られ
る磁極の極数と電機子巻線24に負荷電流を流して造ら
れる磁極の極数との関係を、その何れか一方が1に対し
て他方が2の関係にあらしめ、その励磁電流により造ら
れる磁極を他方の回転子11にある巻線25が切ること
により、それに励磁電圧を誘導し、その励磁電圧によつ
て界磁巻線部51、52、57、45、46、53に電
流を流し、界磁極を造うように配列するのである。
FIG. 2 shows an example of an internal connection diagram of the electromagnetic coupling 13 shown in FIG. In order to achieve the above-mentioned object of the present invention, two rotors 11 and 12 rotating opposite each other are provided as shown in FIG. 1 of a specific arrangement example and FIG. 2 of a specific electrical connection diagram example. The armature winding 24 is attached to one rotor 12 in the
In the electromagnetic joint 13 in which the other rotor 11 is provided with a field winding 25, a certain terminal (■) of the armature winding 24,
Excitation winding part 1 provided on the rotor 12 from ■ and ■,
2, 3, 4, 5, and 6 to supply an excitation current, and the number of magnetic poles created by passing the excitation current through the windings and the load current flowing through the armature winding 24. The relationship between the number of magnetic poles created by one of them is 1 and the other is 2, and the winding 25 on the other rotor 11 cuts the magnetic pole created by the excitation current. As a result, an excitation voltage is induced therein, and the excitation voltage causes current to flow through the field windings 51, 52, 57, 45, 46, and 53, so that they are arranged to form field poles.

第2図の例では電機子巻線部24を励磁巻線部としても
兼用する。電機子巻線24の外側端子47、48、49
は第1図のスリツプリング7、8、9に接続され、この
スリツプリング7、8、9から外部接続これた電動機1
4へ負荷電流が出てゆくことになる。すなわち24はそ
れを構成する巻線1、2、3、4、5、6から実線矢印
の方向へ流れる負荷電流にとつては電機子巻線として働
らくのであるが、中性点18、19から点線矢印の向き
で流れる励磁電流にとつては励磁巻線部として働らくこ
とになるのである。第2図の電機子巻線端子47、48
、49から変成器21、整流器20を通して中性点18
、19へ励磁電流を供給し、電機子巻線24が励磁巻線
部として働らくとき 例えば4極の磁極を造る。これに
対し電機子巻線24の中を黒色実線矢印の方向の負荷電
流が流れて2極の磁極が造られることになる。変成器2
1の一次巻線22、二次巻線23が示されるが、この変
成器21は通常電圧を低くして整流器20の直流電圧を
低い値にする。電機子巻線24の中を点線矢印の方向に
励磁電流を流して回転子12に4極磁極を造るとき、こ
れを受けて他の回転子11の巻線25に点線矢印の方向
の電圧を誘導し、電流を流す。その場合、巻線25に流
す点線矢印の方向の電流で造られる磁極は上の例による
と、4極磁極となる。巻線25の外側端子32、33、
34から整流器26の交流側端子に電気接続され、その
整流器26の直流側端子が巻線25の中性点28と29
の間に接続され、それによつて巻線25の中へ実線矢印
の方向の直流電流が流れ、界磁極を造ることになる。こ
の界磁極は上の例によると、2極にならなければならな
い。このようにして、回転子11の巻線25も点線矢印
の方向の電流に対しては励磁巻線として働らき、実線矢
印の方向の電流に対しては界磁巻線として働らくことに
なる。
In the example shown in FIG. 2, the armature winding section 24 also serves as an excitation winding section. Outer terminals 47, 48, 49 of armature winding 24
are connected to the slip rings 7, 8, and 9 in FIG.
The load current will flow to 4. In other words, 24 acts as an armature winding for the load current flowing in the direction of the solid arrow from the windings 1, 2, 3, 4, 5, and 6 that constitute it, but the neutral points 18 and 19 For the excitation current flowing in the direction of the dotted arrow, it functions as an excitation winding. Armature winding terminals 47, 48 in Fig. 2
, 49 to the neutral point 18 through the transformer 21 and the rectifier 20.
, 19, and when the armature winding 24 functions as an excitation winding section, for example, four magnetic poles are created. On the other hand, a load current flows in the direction of the solid black arrow in the armature winding 24, creating two magnetic poles. Transformer 2
The primary winding 22 and secondary winding 23 of the transformer 21 are shown, and the transformer 21 normally lowers the voltage to bring the DC voltage of the rectifier 20 to a lower value. When an excitation current is passed through the armature winding 24 in the direction of the dotted arrow to create four magnetic poles in the rotor 12, in response to this, a voltage is applied to the winding 25 of the other rotor 11 in the direction of the dotted arrow. Induction and current flow. In that case, the magnetic poles created by the current flowing through the winding 25 in the direction of the dotted arrow will be four magnetic poles according to the above example. Outer terminals 32, 33 of winding 25,
34 to the AC side terminals of the rectifier 26, and the DC side terminals of the rectifier 26 are electrically connected to the neutral points 28 and 29 of the winding 25.
A direct current flows into the winding 25 in the direction of the solid arrow, creating a field pole. This field pole must be two poles according to the above example. In this way, the winding 25 of the rotor 11 also acts as an excitation winding for the current in the direction of the dotted arrow, and as a field winding for the current in the direction of the solid arrow. .

第2図において回転子12に装備された電機子巻線24
の中性点18と19に対して二重星形接続された各相の
巻線はその中の一相分だけ逆の順になつた巻線を中性点
18と19に接続される。
In FIG. 2, the armature winding 24 installed on the rotor 12
The windings of each phase connected in a double star pattern with respect to the neutral points 18 and 19 are connected to the neutral points 18 and 19 by windings in the opposite order for one phase.

各相の巻線を巻き順に云えば、巻線1、巻線2、巻線3
の順である。又これらと並列に接続された巻線は巻線4
、巻線5、巻線6の順となる。実際に中性点18には巻
線1と2が接続されるが、巻線3の代りに巻線6を接続
する。一方中性点19には巻線4と5が接続されるが、
巻線6の代りに巻線3を接続する。このような接続と同
様な接続が第2図の回転子11における界磁巻線25に
ついてもおこなわれる。これらの接続は界磁極が強く造
られるようにするためである。第2図では回転子12に
は変成器21と整流器20も回転するように装備される
。又回転子11には整流器26が装備され、回転子11
と共に回転する。第3図も電機子巻線24を装備した回
転子24における内部接続を示した電気接続図例である
。電機子巻線24は中性点40を中心に二重星形に接続
され、三相の各巻線37、38、39にはそれぞれ外部
接続用端子47、48、49が設けられると同時に、そ
れぞれ中間端子a1、a2、b1、b2、c1、c2が
図のように設けられる。この外部接続用端子47、48
、49はスリツプリング7、8、9に接続されるべきで
あるが、第3図にけ示されていない。同時にこの外部接
続用端子47、48、49は変成器21に接続される。
Speaking of the windings of each phase in the order of winding, winding 1, winding 2, winding 3
The order is The winding connected in parallel with these is winding 4.
, winding 5, and winding 6 in this order. Actually, windings 1 and 2 are connected to the neutral point 18, but winding 6 is connected instead of winding 3. On the other hand, windings 4 and 5 are connected to the neutral point 19,
Connect winding 3 instead of winding 6. Connections similar to these connections are also made for the field winding 25 in the rotor 11 of FIG. These connections are to ensure that the field poles are made strong. In FIG. 2, the rotor 12 is also equipped for rotation with a transformer 21 and a rectifier 20. Further, the rotor 11 is equipped with a rectifier 26, and the rotor 11 is equipped with a rectifier 26.
rotates with. FIG. 3 is also an example of an electrical connection diagram showing the internal connections in the rotor 24 equipped with the armature winding 24. The armature windings 24 are connected in a double star shape around a neutral point 40, and each of the three-phase windings 37, 38, 39 is provided with external connection terminals 47, 48, 49, respectively. Intermediate terminals a1, a2, b1, b2, c1, c2 are provided as shown. These external connection terminals 47, 48
, 49 should be connected to the slip rings 7, 8, 9, but are not shown in FIG. At the same time, these external connection terminals 47, 48, and 49 are connected to the transformer 21.

変成器21けその一次側巻線22と二次側23があるが
。この二次側は六相にしてあり、その端子a1、b1、
c1、a2、b2、c2はそれぞれ同符号の電機子巻線
中間端子に接続されるものとする。このように接続した
場合、電機子巻線24の各相巻線には或る瞬間図に示す
ような二種類の電流が流れる。すなわち、実線矢印で示
す電流は外部接続端子47、48、49から外へ出る電
力の電流で、これによつて造られる磁極の極数は前述の
例で云うと、2極であり、点線矢印の電流は中間端子a
1、a2、b1、b2、c1、c2から入る電流で、こ
のような励磁電流から見た場合、電機子巻線は励磁巻線
として動作する。前例にならうと、この励磁電流により
造られる磁極の極数は4極となる。
The transformer 21 has a primary winding 22 and a secondary winding 23. This secondary side has six phases, and its terminals a1, b1,
It is assumed that c1, a2, b2, and c2 are connected to armature winding intermediate terminals having the same symbol. When connected in this way, two types of currents flow through each phase winding of the armature winding 24 at a certain instant, as shown in the diagram. That is, the current indicated by the solid line arrow is the electric current flowing out from the external connection terminals 47, 48, and 49, and the number of magnetic poles created by this is 2 poles in the above example, and the dotted line arrow The current at intermediate terminal a
1, a2, b1, b2, c1, and c2, and when viewed from the excitation current, the armature winding operates as an excitation winding. Following the example, the number of magnetic poles created by this exciting current is four.

第4図は電機子巻線24と励磁巻線44が完全に分離さ
れている場合が示される。電機子巻線24は星形接続と
し、中性点40を中心に接続された各相巻線1、2、3
の中間端子41、42、43から整流器20を経て励磁
巻線44に励磁電流を供給するように配列する。電機子
巻線24から負荷電流をスリツプリング7、8、9を経
て流す場合、この負荷電流が流れることによつて電機子
巻線24が造る磁極の極数は前の例で云えば2極であり
、励磁巻線44がその中の励磁電流によつて造る磁極の
極数は前の例で云うと4極である。
FIG. 4 shows a case where the armature winding 24 and the excitation winding 44 are completely separated. The armature winding 24 has a star-shaped connection, and each phase winding 1, 2, 3 is connected around the neutral point 40.
The arrangement is such that an excitation current is supplied to the excitation winding 44 from intermediate terminals 41 , 42 , 43 of the excitation winding 44 via the rectifier 20 . When the load current flows from the armature winding 24 through the slip rings 7, 8, and 9, the number of magnetic poles created by the armature winding 24 due to the flow of this load current is 2 in the previous example. In the previous example, the number of magnetic poles created by the excitation winding 44 by the excitation current therein is four.

一般的表現をすれば、電機子巻線24が造る磁極と励磁
巻線44が造る磁極の極数比は1対2又は2対1となる
のである。この電機子巻線と鎖交する磁気回路と励磁巻
線が鎖交する磁気回路とは兼用されるのである。
In general terms, the pole number ratio between the magnetic poles formed by the armature winding 24 and the magnetic poles formed by the excitation winding 44 is 1:2 or 2:1. The magnetic circuit interlinked with this armature winding and the magnetic circuit interlinked with the excitation winding are used together.

第5図は電機子巻線24の各相巻線1、2、34、5、
6の巻線中間端子50、55、59、54、56、58
から図のように整流器20の交流側端子に接続される。
FIG. 5 shows each phase winding 1, 2, 34, 5 of the armature winding 24,
6 winding intermediate terminals 50, 55, 59, 54, 56, 58
is connected to the AC side terminal of the rectifier 20 as shown in the figure.

電機子巻線24の中性点18と19の間は直流電圧が加
えられ、その電圧は低い値で充分大きい励磁電流が流れ
るのであるから、整流器20の交流側端子に加えられる
電圧は低い値で良い。従つてこのように電機子巻線の各
相の中間端子を接続して良いことになる。
A DC voltage is applied between the neutral points 18 and 19 of the armature winding 24, and since a sufficiently large excitation current flows at a low voltage, the voltage applied to the AC side terminal of the rectifier 20 is a low value. That's fine. Therefore, it is possible to connect the intermediate terminals of each phase of the armature winding in this way.

第6図は電機子巻線24と整流器20との関係を示した
一例であるが、二重星形接続をした巻線の外側端子をU
VWとし、UVWから回転整流器20の交流側端子に到
るまでにコンデンサー60、61、62を通すように接
続する。中性点18と19の間に整流器20の直流側電
圧が印加されるのであるが、その電圧は低いので、高い
端子電圧のUVW間電圧がコンデンサー60、61、6
2と整流器20を直列にした回路に加えられる場合、適
当な電圧が中性点18と19の間に加えられることにな
るのである。
FIG. 6 is an example showing the relationship between the armature winding 24 and the rectifier 20.
VW, and connect so that capacitors 60, 61, and 62 are passed from UVW to the AC side terminal of the rotary rectifier 20. The DC side voltage of the rectifier 20 is applied between the neutral points 18 and 19, but since that voltage is low, the voltage across the UVW of the high terminal voltage is applied to the capacitors 60, 61, 6.
2 and rectifier 20 in series, the appropriate voltage will be applied between neutral points 18 and 19.

第6図の電機子巻線24を具体的に展開例を示したのが
第9図である。その各相の巻線に中性点側の端子U1、
U2、V1、V2、W1、W2があるが、中性点18、
19に対する端子の接続から判るように中性点18に対
してはU2、V1、W2が接続され、中性点19に対し
てはU1、V2、W1が接続される。このように一相の
巻線のみ接続順が逆にされるのは中性点18、19から
流入する直流で造られる磁界の強さを強めるためである
。第6図で黒色矢印と白色矢印が示されるが、前者は外
側端子U、V、Wから出る負荷電流に対応する電流の方
向を示し、後者は外側端子U、V、Wから出る電力を整
流器20を通して中性点18、19より流入させる電流
の方向を示したものである。前者は交流であり、その瞬
時の方向を示したものである。これに対応して第9図の
矢印が示されるが、黒色矢印の電流により4極磁極を造
り、白色矢印の電流により2極磁極が造られる例が示さ
れる。
FIG. 9 shows a concrete development example of the armature winding 24 of FIG. 6. Terminal U1 on the neutral point side of each phase winding,
There are U2, V1, V2, W1, W2, but the neutral point is 18,
As can be seen from the connection of the terminals to 19, U2, V1, and W2 are connected to the neutral point 18, and U1, V2, and W1 are connected to the neutral point 19. The reason why the connection order of only one phase winding is reversed in this way is to strengthen the strength of the magnetic field created by the direct current flowing from the neutral points 18 and 19. In Figure 6, black arrows and white arrows are shown, the former indicating the direction of the current corresponding to the load current coming out of the outer terminals U, V, W, and the latter indicating the direction of the current corresponding to the load current coming out of the outer terminals U, V, W. 20 shows the direction of current flowing from the neutral points 18 and 19 through the neutral points 18 and 19. The former is alternating current and indicates its instantaneous direction. Corresponding to this, the arrows in FIG. 9 are shown, and an example is shown in which a four-pole magnetic pole is created by the current shown by the black arrow, and a two-pole magnetic pole is created by the current shown by the white arrow.

第7図は界磁巻線64が装備される回転子11の巻線接
続の一例が示される。励磁巻線として働らくべく電機子
巻線24に流す電流によつて造られる磁極の極数と同一
の極数を持つた励磁巻線63に電圧を誘導して、その誘
導電圧により整流器26を経て界磁巻線64に電流を流
し、励磁巻線63によつて造られる磁極の極数の1/2
又は2倍の極数の磁極を造る。この極数と同一極数の磁
極を造る電機子巻線24との間で作用させる。第7図は
このようにして回転子11に励磁巻線63と界磁巻線6
4を別々に装備する場合が示される。界磁巻線64は三
相巻線より成り、その中の二相65と66の巻線に直流
が供給され、他の一相67の巻線には図のように短絡さ
れた電流を流し、制動巻線として働らかす。
FIG. 7 shows an example of the winding connection of the rotor 11 equipped with the field winding 64. A voltage is induced in the excitation winding 63, which acts as an excitation winding and has the same number of magnetic poles as the number of magnetic poles created by the current flowing through the armature winding 24, and the induced voltage drives the rectifier 26. Then, a current is passed through the field winding 64, and the number of magnetic poles created by the excitation winding 63 is 1/2.
Or create magnetic poles with twice the number of poles. It acts between this number of poles and the armature winding 24 that creates magnetic poles with the same number of poles. FIG. 7 shows how the rotor 11 is connected to the excitation winding 63 and the field winding 6.
The case where 4 are equipped separately is shown. The field winding 64 consists of a three-phase winding, in which direct current is supplied to two-phase windings 65 and 66, and a short-circuited current is supplied to the other one-phase winding 67 as shown in the figure. , to act as a brake winding.

第8図は界磁巻線の他の例を示す。溝数20が1より2
0までの数で示され、その溝中に導体が単層状に設けら
れる。図のように4回路になつたそれぞれの巻線回路6
8、69、70、71が■ずつ整流器72、73、74
、75を経て短絡されている。電機子巻線24を設けた
回転子に造られた励磁電流により造られる磁極に対応し
て巻線68、69、70、71に誘導される起電力と整
流器72、73、74、75により、巻線回路中には矢
印に示したような電流が流れる。それによつて造られる
磁極は励磁巻線として誘導される電圧そのものの示す極
数の1/2又は2倍の極数を持つ。第8図の例では励磁
巻線としては4極、界磁巻線としては2極を呈する。
FIG. 8 shows another example of the field winding. Number of grooves 20 is 2 than 1
It is indicated by a number up to 0, and a conductor is provided in a single layer in the groove. Each winding circuit 6 has become 4 circuits as shown in the figure.
8, 69, 70, 71 are rectifiers 72, 73, 74
, 75 and are short-circuited. Due to the electromotive force induced in the windings 68, 69, 70, 71 and the rectifiers 72, 73, 74, 75 in response to the magnetic poles created by the excitation current created in the rotor equipped with the armature winding 24, A current as shown by the arrow flows in the winding circuit. The magnetic poles thus produced have a number of poles that is 1/2 or twice as large as that represented by the voltage itself induced in the excitation winding. In the example shown in FIG. 8, the excitation winding has four poles and the field winding has two poles.

第10図はこのような電磁継手を使うとき装置全体とし
てブラシレスの構造が得られる場合を示す。電磁継手の
回転子11と12に対し、同期機93を結合し、同期機
93の回転子88に同期機93の電機子巻線90を設け
て、電磁継手と同期機の電機子巻線間を電気接続線94
で接続すると、ブラシレス構造となる。同期機93の固
定子89にはその界磁巻線91が設けられ、その端子9
2を通して直流励磁電流が供給される。始動時には同期
機93の界磁巻線91に励磁電流を供給して、電磁継手
も電圧が確立される。
FIG. 10 shows a case where a brushless structure can be obtained as a whole of the device when such an electromagnetic coupling is used. A synchronous machine 93 is coupled to the rotors 11 and 12 of the electromagnetic joint, and an armature winding 90 of the synchronous machine 93 is provided to the rotor 88 of the synchronous machine 93, so that the armature winding of the synchronous machine The electrical connection wire 94
When connected with , it becomes a brushless structure. A stator 89 of a synchronous machine 93 is provided with its field winding 91, and its terminal 9
A DC excitation current is supplied through 2. At the time of starting, an exciting current is supplied to the field winding 91 of the synchronous machine 93, and a voltage is also established at the electromagnetic joint.

第11図は電磁継手に対して巻線形誘導電動機76を組
み合わせた場合、電磁継手自身をブラシレス構造となし
うることを示す。第11図では巻線形誘導電動機76に
はスリツプリング75を設けるけれども、電磁継手には
スリツプリングを設ける必要なく、電磁継手の構造は簡
略化される。
FIG. 11 shows that when a wound induction motor 76 is combined with the electromagnetic coupling, the electromagnetic coupling itself can have a brushless structure. In FIG. 11, the wound induction motor 76 is provided with a slip ring 75, but the electromagnetic joint does not need to be provided with a slip ring, and the structure of the electromagnetic joint is simplified.

電気接続線94で電磁継手と巻線形誘導電動機76の電
機子巻線相互間を接続する。巻線形誘導電動機76の二
次巻線78にはインバーター81、リアクトル80、コ
ンバーター79を経てスリツプリング95が接続される
。83、84は開閉装置である。巻線形誘導電動機76
を同期回転速度近くで回転せしめるには開閉装置84を
開き、開閉装置83を閉ぢれば良い。その場合にはスリ
ツプリング95は電流が流れず、使われていない状况と
なる。巻線形誘導電動機76を同期回転速度で回転せし
めるためにはその二次巻線78に直流電流を流せば良い
。第11図では一次巻線77が回転子上に設けられ、二
次巻線78が固定子87の上にある、一次巻線回転子を
逆回転、すなわち原動機10の回転方向と反対に回転さ
せるには開閉装置83を開き、開閉装置84を閉じて、
スリツプリング95からコンバーター79、リアクトル
80、インバーター81を経て、電力を二次巻線78へ
與えれは良い。インバーター81は他励式として使え、
確実な動作をする。インバーター81はその整流器85
の制御素子86を制御装置82で制御する。
An electrical connection wire 94 connects the electromagnetic joint and the armature windings of the wound induction motor 76. A slip ring 95 is connected to the secondary winding 78 of the wound induction motor 76 via an inverter 81, a reactor 80, and a converter 79. 83 and 84 are opening/closing devices. Wound induction motor 76
To rotate near the synchronous rotational speed, the opening/closing device 84 should be opened and the opening/closing device 83 should be closed. In that case, no current flows through the slip ring 95 and it is not used. In order to rotate the wound induction motor 76 at a synchronous rotational speed, a direct current may be passed through its secondary winding 78. In FIG. 11, the primary winding 77 is provided on the rotor and the secondary winding 78 is on the stator 87. The primary winding rotor is rotated in the opposite direction, that is, in the opposite direction to the direction of rotation of the prime mover 10. To open the opening/closing device 83 and close the opening/closing device 84,
It is convenient to give power from the slip ring 95 to the secondary winding 78 via the converter 79, the reactor 80, and the inverter 81. The inverter 81 can be used as a separately excited type,
Operate reliably. The inverter 81 is its rectifier 85
A control device 82 controls a control element 86 .

以上説明した本発明の作用効果をまとめると、次のよう
になる。
The effects of the present invention explained above can be summarized as follows.

(1)電磁継手の構造において、一方の回転子に電機子
巻線を、又他方の回転子に界磁巻線を設ける場合、界磁
巻線を設ける回転子にスリツプリング及びブラシを設け
る必要なく、構造的に簡略化し、造りやすく、又保守が
容易となる。
(1) In the structure of an electromagnetic joint, if one rotor is provided with an armature winding and the other rotor is provided with a field winding, it is necessary to provide a slip ring and brushes on the rotor where the field winding is provided. It is structurally simple, easy to build, and easy to maintain.

(2)電機継手そのものの長さ方向の寸法を短縮しうる
(2) The lengthwise dimension of the electrical joint itself can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電磁継手を用いた装置の結合図例であ
る、第2図は本発明の電磁継手の回転子に設けられた巻
線の接続図例を示した具体図例である。第3図は本発明
の電磁継手の一方の回転子に設けた電機子巻線に関する
電気接続図例であり、第4図、第5図も本発明の電機子
巻線に関連した電気接続図例である。第6図は本発明の
電機子巻線と整流器との間の接続を示した一例図である
が、第7図及び第8図は本発明の界磁巻線を設けた回転
子における巻線接続図例を示す。第9図は第6図に示し
た電機子巻線の展開図例を示す。第10図及び第11図
は本発明の電磁継手と他の回転電機を結合した電気接続
図例を示す。 つぎに図面の主要な部分を示す符号には以下のようなも
のがある。
FIG. 1 is an example of a connection diagram of a device using the electromagnetic coupling of the present invention. FIG. 2 is a specific diagram showing an example of a connection diagram of the windings provided on the rotor of the electromagnetic coupling of the present invention. . FIG. 3 is an example of an electrical connection diagram related to the armature winding provided on one rotor of the electromagnetic joint of the present invention, and FIGS. 4 and 5 are also electrical connection diagrams related to the armature winding of the present invention. This is an example. FIG. 6 is an example diagram showing the connection between the armature winding and the rectifier of the present invention, while FIGS. 7 and 8 show the windings in the rotor provided with the field winding of the present invention. An example connection diagram is shown. FIG. 9 shows an example of a developed view of the armature winding shown in FIG. FIGS. 10 and 11 show examples of electrical connection diagrams in which the electromagnetic joint of the present invention is coupled to another rotating electric machine. Next, there are the following symbols that indicate the main parts of the drawings.

Claims (1)

【特許請求の範囲】[Claims] 相対向して回転する二個の回転子の中の一方の回転子に
電機子巻線を設け、他方の回転子に界磁巻線を設けて成
る電磁継手において、電機子巻線の或る端子からその回
転子に設けられた励磁巻線部に励磁電流を供給するよう
に電気接続して、その励磁電流を巻線部に流すことによ
り造られる磁極の極数と電機子巻線に負荷電流を流して
造られる磁極の極数との関係を、その何れか一方が1に
対し他方が2の関係にあらしめ、その励磁電流により造
られる磁極を他方の回転子にある巻線が切ることにより
、それに励磁電圧を誘導し、その励磁電圧によって界磁
巻線部に電流を流し、界磁極を造るように配列した電磁
継手の構造
In an electromagnetic joint consisting of two rotors rotating oppositely, one rotor is provided with an armature winding, and the other rotor is provided with a field winding, in which a certain part of the armature winding is Electrical connection is made to supply excitation current from the terminal to the excitation winding section provided on the rotor, and the number of magnetic poles created by passing the excitation current through the winding section and the load on the armature winding are determined. The relationship between the number of magnetic poles created by passing an electric current is such that one of them is 1 and the other is 2, and the winding on the other rotor cuts the magnetic poles created by the excitation current. The structure of an electromagnetic joint is arranged in such a way that an excitation voltage is induced in it, and the excitation voltage causes a current to flow through the field winding, creating a field pole.
JP2407185A 1985-02-11 1985-02-11 Structure of electromagnetic joint Pending JPS61185061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2407185A JPS61185061A (en) 1985-02-11 1985-02-11 Structure of electromagnetic joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2407185A JPS61185061A (en) 1985-02-11 1985-02-11 Structure of electromagnetic joint

Publications (1)

Publication Number Publication Date
JPS61185061A true JPS61185061A (en) 1986-08-18

Family

ID=12128192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2407185A Pending JPS61185061A (en) 1985-02-11 1985-02-11 Structure of electromagnetic joint

Country Status (1)

Country Link
JP (1) JPS61185061A (en)

Similar Documents

Publication Publication Date Title
EP0467517B1 (en) Dual-stator induction synchronous motor
Hunt 406 HUNT: THE" CASCADE" INDUCTION MOTOR.
US5796233A (en) Multiple-stator induction synchronous motor
US4656410A (en) Construction of single-phase electric rotating machine
JPS61185061A (en) Structure of electromagnetic joint
JP3413816B2 (en) Synchronous motor
JPH06335271A (en) Synchronous motor
JPH01264551A (en) Brushless self-excited synchronous generator
JPS5967858A (en) Structure of rotary electric machine
JPS6022450A (en) Structure of rotary electric machine
JP3062231B2 (en) Brushless single-phase induction synchronous motor
JPS63144744A (en) Brushless axial field rotary electric machine without exciter
JPS62221847A (en) Structure of rotary electric machine
JPS63186592A (en) Structure of rotary electric machine driven by single-phase power source
JPH10108425A (en) Motor that can be operated at two different voltage levels
JPH06253513A (en) Synchronuous motor
JPH0218038B2 (en)
JPS59110356A (en) Structure of rotary electric machine
SU1234923A1 (en) Synchronous-asynchronous electric machine
JPS58224549A (en) Structure of rotary electric machine
JPH06245450A (en) Synchronous motor
JPS61189200A (en) Structure of rotary electric machine
JPS61273196A (en) Structure of single-phase motor controller
JPS6066655A (en) Structure of rotary electric machine
JPS583554A (en) Brushless synchronous machine structure