JPH03261135A - Apparatus for forming thin film of aluminum - Google Patents

Apparatus for forming thin film of aluminum

Info

Publication number
JPH03261135A
JPH03261135A JP5787690A JP5787690A JPH03261135A JP H03261135 A JPH03261135 A JP H03261135A JP 5787690 A JP5787690 A JP 5787690A JP 5787690 A JP5787690 A JP 5787690A JP H03261135 A JPH03261135 A JP H03261135A
Authority
JP
Japan
Prior art keywords
sputtering
semiconductor substrate
aluminum
thin film
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5787690A
Other languages
Japanese (ja)
Inventor
Kazuo Tsunoda
一夫 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5787690A priority Critical patent/JPH03261135A/en
Publication of JPH03261135A publication Critical patent/JPH03261135A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress stress migration by depositing a thin aluminum film on an insulating film of a semiconductor substrate by sputtering, and immediately quenching the aluminum film at a specific quenching rate. CONSTITUTION:A thin aluminum film 5 for interconnections is deposited on an insulating film of a semiconductor substrate 4 by sputtering and immediately quenched at 80 deg.C/sec. The quenching is carried out by a base cooled forcibly with coolant 2 and/or a spray for spouting inactive cooling gas, which are provided near a support for the semiconductor substrate 4 in a sputtering device. According to this method, the grain size is smaller than in the case of slow cooling, and the grain boundary is less clear. Therefore, the density of voids is low, and thus stress migration is reduced.

Description

【発明の詳細な説明】 〔概要] 半導体装置の製造に関し、より詳しくは、電極配線用ア
ルミニウム系薄膜の形成方法および形成装置に関し、 従来よりもストレスマイグレーションを抑制した、即ち
、ストレス(応力)に強いアルミニウム系薄膜を形成す
る方法およびそのための形成装置を提供することを目的
とし、 半導体装置の電極配線のためのアルミニウム系薄膜をス
パッタリング法によって半導体基板の絶縁膜上に堆積形
成し、スパッタリング後すくに80°C/秒以上の冷却
速度で急冷するように構成する。
[Detailed Description of the Invention] [Summary] Regarding the manufacturing of semiconductor devices, more specifically, regarding a method and a forming apparatus for forming an aluminum thin film for electrode wiring, the present invention suppresses stress migration more than conventional methods, that is, reduces stress. The purpose of the present invention is to provide a method for forming a strong aluminum-based thin film and a forming apparatus therefor, in which an aluminum-based thin film for electrode wiring of a semiconductor device is deposited on an insulating film of a semiconductor substrate by a sputtering method, and is then thinned after sputtering. The structure is configured to perform rapid cooling at a cooling rate of 80°C/sec or more.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体装置の製造に関し、より詳しくは、電
極配線用アルミニウム系薄膜の形成方法および形成装置
に関する。
The present invention relates to the manufacture of semiconductor devices, and more particularly to a method and apparatus for forming an aluminum-based thin film for electrode wiring.

〔従来の技術〕[Conventional technology]

近年、IC,LSI等の半導体装置の高集積化に伴って
、構成要素である個々のトランジースタの微小化、さら
には、電極配線の微細化が進んできている。
In recent years, as semiconductor devices such as ICs and LSIs have become highly integrated, individual transistors, which are constituent elements, have become smaller, and electrode wiring has also become smaller.

電極配線のサイズ(厚さ、幅)を小さくすることは、特
に、アルミニウム(AI)およびその合金(AI−Cu
、 Al−5i+ Al−5i−Cuなと)のアルミニ
ウム系材料での電極配線の場合には、ストレスマイグレ
ーションやエレクトロマイグレーシランによる信頼性低
下(断線)という問題がある。
Reducing the size (thickness, width) of electrode wiring is especially important for aluminum (AI) and its alloys (AI-Cu).
, Al-5i+Al-5i-Cu), there is a problem of reduced reliability (disconnection) due to stress migration and electromigration silane.

従来のアルミニウム系配線用薄膜はスパッタリング法に
よって半導体基板の絶縁膜上全面に形成れさるのが、−
1的である。このスパッタリングによる形成では、半導
体基板を150〜300°Cに余熱しておいてスパッタ
リング処理し、スパッタリング時のアルミニウム系材料
の飛着による付加加熱(約50°C程度)されて200
〜350 ’Cの温度になっている。そして、スパッタ
リング後に搬送されている間に半導体基板は自然と冷め
る(徐冷される)。スパッタリングは真空下で行われる
ものであり、スパッタリング装置から取り出すまでの真
空下での搬送では半導体基板冷却は徐冷となるわけであ
る。
Conventional aluminum-based wiring thin films are formed entirely on the insulating film of a semiconductor substrate by sputtering.
It is unique. In this sputtering process, the semiconductor substrate is preheated to 150 to 300°C and then subjected to sputtering treatment, and additionally heated (about 50°C) due to the flying of aluminum material during sputtering.
It has a temperature of ~350'C. After sputtering, the semiconductor substrate naturally cools down (slowly cools down) while being transported. Sputtering is performed under vacuum, and during transportation under vacuum until the semiconductor substrate is taken out from the sputtering apparatus, cooling of the semiconductor substrate is performed slowly.

(発明が解決しようとする課題) このような徐冷では、形成したアルミニウム系薄膜のグ
レイン(結晶)が成長して、グレインバンダリーが際立
つ&Il織になる。このために、アルミニウム系薄膜を
バターニングして配線としたときには、グレインバンダ
リーに沿って配線のエッヂが欠けたり、ボイドが生じ易
くなり、ストレスマイグレーションに弱い配線になりや
すい。なお、ストレスマイグレーションでの断線に至る
アルミニウム系配線に生しる応力としては、配線幅が細
いほどアルミニウム系配線とその上下の絶縁膜との熱膨
張係数の差によって生じる熱応力が主なものである。
(Problems to be Solved by the Invention) In such slow cooling, the grains (crystals) of the formed aluminum-based thin film grow, resulting in an &Il texture with prominent grain boundaries. For this reason, when an aluminum-based thin film is patterned to form a wiring, the edges of the wiring are likely to be chipped or voids may occur along the grain boundary, resulting in a wiring that is susceptible to stress migration. Note that the stress that occurs in aluminum interconnects that can lead to wire breakage due to stress migration is mainly caused by thermal stress caused by the difference in thermal expansion coefficient between the aluminum interconnects and the insulating films above and below them, as the interconnect width becomes narrower. be.

本発明の目的は、従来よりもストレスマイグレーション
を抑制した、即ち、ストレス(応力)に強いアルミニウ
ム系薄膜を形成する方法およびそのための形成装置を提
供することである。
An object of the present invention is to provide a method for forming an aluminum-based thin film that suppresses stress migration more than conventional methods, that is, is strong against stress, and a forming apparatus therefor.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的が、半導体装置の電極配線のためのアルミニ
ウム系薄膜をスパッタリング法によって半導体基板の絶
縁膜上に堆積形成し、スパッタリング後すぐに80°C
/秒以上の冷却速度で急冷することを特徴とするアルミ
ニウム系薄膜の形成方法によって達成される。
The above purpose is to deposit an aluminum-based thin film for electrode wiring of a semiconductor device on an insulating film of a semiconductor substrate by a sputtering method, and immediately heat it to 80°C after sputtering.
This is achieved by a method for forming an aluminum-based thin film, which is characterized by rapid cooling at a cooling rate of 1/2 seconds or more.

スパッタリング後すぐの急冷を行うためには、スパッタ
リング装置の半導体基板搭載用担持台の近くに、■冷媒
(冷却水、液体窒素など)で冷却されている強制冷却担
持台、および/または、■冷却用不活性ガスを吹き付け
るガス噴出器を付設しである形成装置を用いる。
In order to perform rapid cooling immediately after sputtering, place a forced cooling support that is cooled with a coolant (cooling water, liquid nitrogen, etc.) near the semiconductor substrate mounting support of the sputtering equipment, and/or ■ cooling. A forming device equipped with a gas blower for spraying inert gas is used.

〔作用] 本発明では、スパッタリングでアルごニウム系薄膜を形
成下稜すぐに急冷しているので、グレインサイズは徐冷
の場合よりも小さく、グレインハンダリーの際立ちが小
さくなって、ボイドが発生しにくくなり、さらに、剪断
応力も高められている。冷却速度が80”C/秒以上で
あれば、上述した効果があり、これ以下では改善効果が
小さい。
[Function] In the present invention, since the argonium-based thin film is formed by sputtering and is immediately rapidly cooled, the grain size is smaller than in the case of gradual cooling, and the grain solder becomes less conspicuous and voids occur. Moreover, the shear stress is also increased. If the cooling rate is 80''C/sec or more, the above-mentioned effect is obtained, and if the cooling rate is less than 80''C/sec, the improvement effect is small.

スパッタリングのために形成している真空状態下で急冷
しているので、従来と同様に形成したアルミニウム系’
fiiMの表面が酸化されることは無い。
Because the process is rapidly cooled under the vacuum conditions created for sputtering, aluminum-based
The surface of fiiM is never oxidized.

[実施例] 以下、添付図面を参照して、本発明の実施態様例によっ
て本発明の詳細な説明する。
[Examples] Hereinafter, the present invention will be described in detail by way of embodiments of the present invention with reference to the accompanying drawings.

第1図は、公知のスパッタリング装置に付設する強制冷
却担持台1の概略断面図であり、該強制冷却担持台はス
パッタリング装置の加熱担持台の近くに設置されかつ熱
伝導率の大きな金属(例えば、銅)で造られた担持台(
ステージ)であって、その内部に冷媒(冷却水または液
体窒素)2が流されるようになっている。
FIG. 1 is a schematic cross-sectional view of a forced cooling support 1 attached to a known sputtering apparatus. , copper)
stage) into which a refrigerant (cooling water or liquid nitrogen) 2 is allowed to flow.

本発明の形成方法に従って、アルミニウム系薄膜を次の
ようにして形成する。
According to the formation method of the present invention, an aluminum-based thin film is formed as follows.

先ず、絶縁膜を形成した半導体基板を公知のスパッタリ
ング装置の加熱担持台の上に載せて、例えは、250″
Cに予熱し、スパッタリング装置内を排気して真空状態
にする。減圧状態を保ちながらアルゴンガスを流し、純
アルミニウムのターゲットと加熱担持台との間に電圧を
印加して、アルゴンイオンをターゲットに衝突させてタ
ーゲットをスパッタし、スパッタされたアルミニウム原
子が絶縁膜上に飛着堆積される。このように堆積して形
成下アルミニウム系薄膜はその厚さが、例えば、0.5
〜1.5μmとなる。スパッタリング時の飛着て半導体
基板はその温度が300″Cになる。
First, a semiconductor substrate on which an insulating film has been formed is placed on a heating support table of a known sputtering device, and
The sputtering apparatus is preheated to C and the inside of the sputtering apparatus is evacuated to a vacuum state. Argon gas is flowed while maintaining a reduced pressure state, and a voltage is applied between the pure aluminum target and the heating support table to cause argon ions to collide with the target and sputter the target, causing the sputtered aluminum atoms to form on the insulating film. It is deposited by air. The thickness of the aluminum-based thin film thus deposited and formed is, for example, 0.5
~1.5 μm. During sputtering, the temperature of the semiconductor substrate becomes 300''C.

スパッタリング処理終了後直ちに、半導体基板冷めない
うちに、第1図に示すように、アルミニウム系薄膜5の
付いた半導体基板4を冷却水2で水冷されている銅製担
持台1の上に搬送して載せて、半導体基板4、即ち、ア
ルミニウム系薄膜5を急冷する。この急冷の冷却速度は
80″C/秒以上である。そして、冷却後に、半導体基
板4を強制冷却担持台1から持ち上げ、ロードロックを
経由してスパッタリング装置から取り出す。このように
して、アルミニウム系薄膜を形成するわけである。
Immediately after the sputtering process is completed, and before the semiconductor substrate has cooled down, as shown in FIG. Then, the semiconductor substrate 4, that is, the aluminum-based thin film 5 is rapidly cooled. The cooling rate of this rapid cooling is 80"C/sec or more. After cooling, the semiconductor substrate 4 is lifted from the forced cooling support 1 and taken out from the sputtering apparatus via a load lock. In this way, the aluminum This forms a thin film.

上述の強制冷却担持台1(第1図)の代わりに、第2図
に示すようなガス噴出器6をスパッタリング装置の加熱
担持台の近くに設置してもよい。ガス噴出器6はその底
面が多孔板7であって、スパッタリング後の搬送途中で
空中保持されている半導体基板4の上方に位置し、形成
したアルミニウム系薄膜5全体に不活性ガス(アルゴン
ガス)8を吹き付けるようになっている。この吹き付け
る不活性ガスで未だ冷めていないアルミニウム系EN膜
を急冷することができ、冷却速度を80°C/秒以上に
して行う。なお、この場合に、不活性ガス噴出量が多く
なると、スパッタリング装置の真空度が低下するので、
あまり多くしては連続スパッタリング処理にとって好ま
しくない。
Instead of the above-mentioned forced cooling support table 1 (FIG. 1), a gas blower 6 as shown in FIG. 2 may be installed near the heating support table of the sputtering apparatus. The gas ejector 6 has a porous plate 7 on the bottom and is located above the semiconductor substrate 4 which is held in the air during transportation after sputtering, and injects an inert gas (argon gas) over the entire formed aluminum thin film 5. It is designed to spray 8. This sprayed inert gas can rapidly cool the aluminum-based EN film that has not yet cooled down, and is carried out at a cooling rate of 80° C./second or higher. In this case, if the amount of inert gas ejected increases, the degree of vacuum in the sputtering equipment will decrease.
If the amount is too large, it is not preferable for continuous sputtering processing.

また、強制冷却担持台1 (第1図)とガス噴出器6(
第2図)とを組み合わせてもよい。
In addition, the forced cooling carrier 1 (Fig. 1) and the gas blower 6 (
(Fig. 2) may be combined.

本発明の形成方法に従って形成したアルミニウム系薄膜
を、−船釣な半導体装置の製造工程でのりソグラフィ法
でバターニングして所定の電極配線に微細加工し、その
上全面に絶縁膜を形成する。
The aluminum-based thin film formed according to the formation method of the present invention is finely processed into a predetermined electrode wiring by patterning using lamination lithography in the process of manufacturing a semiconductor device by boat, and then an insulating film is formed on the entire surface.

そして、ストレスマイグレーションを調べるために半導
体基板を加熱・冷却したところ、急冷処理しないで従来
どおりに形成したアルミニウム系薄膜配線の場合と比べ
て、グレインハンダリー〇際立ちが小さく、ボイドの発
生数が少なくなるため断線不良が少なくなる。
When the semiconductor substrate was heated and cooled to investigate stress migration, it was found that the grain solder was less noticeable and fewer voids were formed compared to the case of aluminum-based thin film wiring formed conventionally without quenching. As a result, disconnection defects are reduced.

る。Ru.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、半導体基板を急冷するための強制象、冷担持
台の概略断面図であり、 第2図は、半導体基板を急冷するための冷却用不活性ガ
スの噴出器である。 1・・・ 強制冷却担持台 2・・・ 冷媒 4・・・ 半導体基板 5・・・ アルミニウム系薄膜 6・・・ ガス噴出器 7・・・ 多孔板 8・・・ 不活性ガス 〔発明の効果]
FIG. 1 is a schematic cross-sectional view of a cold support stage and a forced stage for rapidly cooling a semiconductor substrate, and FIG. 2 is a cooling inert gas jet for rapidly cooling a semiconductor substrate. 1... Forced cooling support stand 2... Refrigerant 4... Semiconductor substrate 5... Aluminum thin film 6... Gas blower 7... Porous plate 8... Inert gas [Effects of the invention ]

Claims (3)

【特許請求の範囲】[Claims] 1.半導体装置の電極配線のためのアルミニウム系薄膜
(5)をスパッタリング法によって半導体基板(4)の
絶縁膜上に堆積形成し、スパッタリング後すぐに80℃
/秒以上の冷却速度で急冷することを特徴とするアルミ
ニウム系薄膜の形成方法。
1. An aluminum-based thin film (5) for electrode wiring of a semiconductor device is deposited on the insulating film of the semiconductor substrate (4) by sputtering, and heated to 80°C immediately after sputtering.
A method for forming an aluminum-based thin film, characterized by rapid cooling at a cooling rate of /second or more.
2.半導体基板を搭載する担持台を備えたスパッタリン
グ装置を含んでなり、該担持台の近くに、スパッタリン
グ後の該半導体基板(4)が載せられる強制冷却担持台
(1)を付設してあることを特徴とするアルミニウム系
薄膜の形成装置。
2. The sputtering apparatus includes a sputtering apparatus equipped with a carrier on which a semiconductor substrate is mounted, and a forced cooling carrier (1) on which the semiconductor substrate (4) after sputtering is placed is attached near the carrier. Characteristics of aluminum-based thin film forming equipment.
3.半導体基板を搭載する担持台を備えたスパッタリン
グ装置を含んでなり、該担持台の近くに、スパッタリン
グ後の該半導体基板に冷却用不活性ガス(8)を吹き付
けるガス噴出器(6)を付設してあることを特徴とする
アルミニウム系薄膜の形成装置。
3. The apparatus includes a sputtering apparatus equipped with a supporting table on which a semiconductor substrate is mounted, and a gas jetter (6) is attached near the supporting table to blow a cooling inert gas (8) onto the semiconductor substrate after sputtering. An apparatus for forming an aluminum-based thin film, characterized in that:
JP5787690A 1990-03-12 1990-03-12 Apparatus for forming thin film of aluminum Pending JPH03261135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5787690A JPH03261135A (en) 1990-03-12 1990-03-12 Apparatus for forming thin film of aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5787690A JPH03261135A (en) 1990-03-12 1990-03-12 Apparatus for forming thin film of aluminum

Publications (1)

Publication Number Publication Date
JPH03261135A true JPH03261135A (en) 1991-11-21

Family

ID=13068187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5787690A Pending JPH03261135A (en) 1990-03-12 1990-03-12 Apparatus for forming thin film of aluminum

Country Status (1)

Country Link
JP (1) JPH03261135A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010280A (en) * 2013-06-27 2015-01-19 深▲セン▼富泰宏精密工業有限公司 Workpiece and manufacturing method thereof
JP2020027864A (en) * 2018-08-10 2020-02-20 株式会社デンソー Manufacturing method of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010280A (en) * 2013-06-27 2015-01-19 深▲セン▼富泰宏精密工業有限公司 Workpiece and manufacturing method thereof
JP2020027864A (en) * 2018-08-10 2020-02-20 株式会社デンソー Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
KR0169270B1 (en) Method for manufacturing a semiconductor
JP4237742B2 (en) Manufacturing method of sputtering target
CN100439558C (en) Copper alloy sputtering target process for producing the same and semiconductor element wiring
KR100610533B1 (en) Method of forming interconnect film
JP2862727B2 (en) Sputtering target for forming metal thin film and method for producing the same
JP3224793B2 (en) Electronic circuit manufacturing method
US6136159A (en) Method for depositing metal
US5597458A (en) Method for producing alloy films using cold sputter deposition process
JPS63162854A (en) Formation of metallic film
US5219790A (en) Method for forming metallization layer of wiring in semiconductor integrated circuits
KR0183729B1 (en) Metal layer forming method of pole thin film and wiring method using it
JPH03261135A (en) Apparatus for forming thin film of aluminum
US6627547B2 (en) Hot metallization process
JP3683741B2 (en) Low temperature deposition method for copper metal
JPH05102147A (en) Method for forming amorphous metal and semiconductor device with amorphous metal film
US20210189545A1 (en) Methods and apparatus for depositing aluminum by physical vapor deposition (pvd) with controlled cooling
US9909196B2 (en) High-purity copper-cobalt alloy sputtering target
JPH0254658B2 (en)
JPH05186868A (en) Method and device for forming amorphous metal and semiconductor device having amorphous metal film
JPS63161161A (en) Target made al-si alloy and its production
KR19980081058A (en) Method and apparatus for preventing initial wafer failure
JPH10172923A (en) Forming mehtod for metallic wiring for semiconductor device
JP4213699B2 (en) Manufacturing method of liquid crystal display device
JPS63308914A (en) Forming method for aluminum alloy wiring
KR100258983B1 (en) Manufacturing method of thin film for semiconductor device