JP2862727B2 - Sputtering target for forming metal thin film and method for producing the same - Google Patents

Sputtering target for forming metal thin film and method for producing the same

Info

Publication number
JP2862727B2
JP2862727B2 JP11895392A JP11895392A JP2862727B2 JP 2862727 B2 JP2862727 B2 JP 2862727B2 JP 11895392 A JP11895392 A JP 11895392A JP 11895392 A JP11895392 A JP 11895392A JP 2862727 B2 JP2862727 B2 JP 2862727B2
Authority
JP
Japan
Prior art keywords
weight
thin film
purity
metal thin
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11895392A
Other languages
Japanese (ja)
Other versions
JPH05311424A (en
Inventor
諭 藤原
栄二 清水
勇 西野
長寿 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOWA KOGYO KK
Original Assignee
DOWA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOWA KOGYO KK filed Critical DOWA KOGYO KK
Priority to JP11895392A priority Critical patent/JP2862727B2/en
Publication of JPH05311424A publication Critical patent/JPH05311424A/en
Application granted granted Critical
Publication of JP2862727B2 publication Critical patent/JP2862727B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば電機配線として
使用する金属薄膜をスパッタリング法によって形成する
場合等に適した金属薄膜形成用スパッタリング・ターゲ
ット並びにその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sputtering target for forming a metal thin film suitable for, for example, forming a metal thin film used as electric wiring by a sputtering method, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】これまで、LSI等の半導体素子では、
配線材料として、Al(アルミニウム)合金が広く使用
されてきた。また、衛生放送や自動車通信等の普及によ
り需要が高まった高周波用ハイブリッドICの分野で
は、高速信号処理や配線の高密度化といった要求のため
に、配線長の短縮化や薄膜技術の利用による配線の微細
化,高精度化が必要とされており、この高周波用ハイブ
リッドICの内部配線等には、低抵抗配線材料であるC
u(銅)の薄膜が広く使用されている。
2. Description of the Related Art Heretofore, in semiconductor devices such as LSIs,
Al (aluminum) alloys have been widely used as wiring materials. In the field of high-frequency hybrid ICs, whose demand has increased due to the spread of satellite broadcasting and automobile communications, demands for high-speed signal processing and high-density wiring have led to shortening of wiring lengths and the use of thin-film technology. Therefore, the internal wiring and the like of the high-frequency hybrid IC are required to have a low-resistance wiring material such as C.
A thin film of u (copper) is widely used.

【0003】なお、Cuの薄膜は、通常、純度99.9
9%の純銅を用いて形成するが、SiO2 等の素子基板
に対する付着強度が弱いことから、従来では、予め基板
上にCr(クロム)の薄膜を形成しておいて、そのCr
膜の上にCuの薄膜を成膜することとしている。また、
電気配線として使用する金属薄膜の形成には、旧来から
の印刷技術だけでなく、配線材料による成形体をターゲ
ットとして使うスパッタリング法なども応用されるよう
になってきた。
A Cu thin film usually has a purity of 99.9.
It is formed using 9% pure copper. However, since the adhesion strength to an element substrate such as SiO 2 is weak, conventionally, a thin film of Cr (chromium) is formed on a substrate in advance and the Cr is used.
A thin film of Cu is formed on the film. Also,
In order to form a metal thin film used as an electric wiring, not only a conventional printing technique but also a sputtering method using a molded body made of a wiring material as a target has been applied.

【0004】[0004]

【発明が解決しようとする課題】しかし、近年のLSI
製作技術の進歩はめざましく、配線幅の微細化の実現に
よってLSIから超LSIへ、さらに超々LSIへと急
速に発展し、高集積化のために配線幅の微細化が進むに
つれて、従来の配線材料では、抵抗増加による信号遅延
などの問題が懸念されるようになってきた。
However, recent LSIs
The progress of manufacturing technology is remarkable, and the realization of finer wiring width has led to rapid development from LSI to ultra-LSI and further to ultra-super LSI. Then, a problem such as a signal delay due to an increase in resistance has become a concern.

【0005】特に、チップ面積に対して配線面積の大き
なロジック系の半導体素子では、抵抗増加による信号遅
延が深刻な問題になりつつある。従って、次世代VLS
Iを実現するには、さらに低抵抗でしかも信頼性の高い
配線材料が必要になる。
In particular, in a logic semiconductor device having a large wiring area with respect to a chip area, signal delay due to an increase in resistance is becoming a serious problem. Therefore, next generation VLS
In order to realize I, a wiring material having lower resistance and higher reliability is required.

【0006】前述したように、現在では、Al合金やC
uの薄膜が配線材料として広く利用されているが、Al
合金による配線は、純金属Alと比較して比抵抗が高
く、更に、エレクロトマイグレーションやストレスマイ
グレーションによる断線、コンタクト部でのSi(ケイ
素)の析出、熱処理によるヒロックの発生といった不安
材料もあり、今後の高集積化、高速化を進めていく上で
は、問題が多い。
As described above, at present, Al alloys and C
u thin film is widely used as a wiring material.
The wiring made of the alloy has a higher specific resistance than pure metal Al. In addition, there are uneasy materials such as disconnection due to electromigration and stress migration, precipitation of Si (silicon) at contact portions, and generation of hillocks due to heat treatment. There are many problems in promoting high integration and high speed in the future.

【0007】このようなAl合金に変る配線材料とし
て、高融点金属やCuが再検討されているが、高融点金
属は一般的に比抵抗が高いという問題がある。一方、C
uは素子基板となるSiO2 に対する付着強度が弱く、
前述したように、従来では素子基板上にCr薄膜を介し
て成膜するようにしているが、このような構造では、C
uの薄膜が高抵抗のCrの影響を受け、周波数特性の改
善が困難になるという問題も指摘されていた。また、C
u薄膜は、耐食性が劣るという問題も指摘されていた。
High melting point metals and Cu have been reconsidered as wiring materials that can be converted to such Al alloys, but high melting point metals generally have a problem of high specific resistance. On the other hand, C
u has low adhesion strength to SiO 2 serving as an element substrate,
As described above, conventionally, a film is formed on an element substrate via a Cr thin film.
It has also been pointed out that the thin film of u is affected by high-resistance Cr, making it difficult to improve the frequency characteristics. Also, C
The problem that the u thin film has poor corrosion resistance has also been pointed out.

【0008】しかし、Cuは、バルク抵抗が低く、しか
もAlに較べてエレクロトマイグレーション等にも強い
など、配線材料として優れた特性も備えており、容易に
は捨てがたい。そこで、Cuの耐食性や素子基板への付
着強度を改善することから、合金化等も検討されてきた
が、合金を鋳造した場合の鋳塊における添加元素の偏析
や、鋳造時の引け巣、鋳塊の結晶粒の粗大化等の多くの
課題が残されていたため、実用化には至らなかった。
However, Cu has excellent properties as a wiring material, such as low bulk resistance and resistance to electromigration and the like as compared with Al, and Cu is not easily discarded. Therefore, alloying and the like have been studied to improve the corrosion resistance of Cu and the adhesion strength to the element substrate, but segregation of additional elements in the ingot when casting the alloy, shrinkage cavities during casting, Since many problems such as coarsening of the crystal grains of the lump were left, they were not put to practical use.

【0009】本発明は、前記事情に鑑みてなされたもの
で、スパッタリング法によって電気配線として使用する
金属薄膜を形成する場合に、耐食性が高く、しかも素子
基板等への付着強度も強く、エレクロトマイグレーショ
ン等にも強い銅合金薄膜を形成することができ、今後の
半導体素子等の配線の微細化等を担う配線材料として好
適な金属薄膜形成用スパッタリング・ターゲット並びに
その製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and when forming a metal thin film to be used as an electric wiring by a sputtering method, it has a high corrosion resistance, a high adhesion strength to an element substrate, etc. An object of the present invention is to provide a sputtering target for forming a metal thin film and a method for manufacturing the same, which can form a copper alloy thin film that is resistant to migration and the like, and is suitable as a wiring material for miniaturization of wiring of semiconductor elements and the like in the future. And

【0010】[0010]

【課題を解決するための手段】請求項1に記載の金属薄
膜形成用スパッタリング・ターゲットは、純度が99.
9999重量%以上の高純度銅を基体金属とし、この基
体金属に純度が99.9重量%以上のチタンを0.04
〜0.15重量%添加することによって高純度銅合金製
のターゲット材としたことを特徴とする。
The sputtering target for forming a metal thin film according to claim 1 has a purity of 99.
High-purity copper of 9999% by weight or more is used as a base metal, and titanium having a purity of 99.9% by weight or more is added to the base metal by 0.04%.
It is characterized in that a target material made of a high-purity copper alloy is obtained by adding about 0.15% by weight.

【0011】請求項2に記載の金属薄膜形成用スパッタ
リング・ターゲットは、純度が99.9999重量%以
上の高純度銅を基体金属とし、この基体金属に純度が9
9.9999重量%以上の亜鉛を0.014〜0.02
1重量%添加することによって高純度銅合金製のターゲ
ット材としたことを特徴とする。
[0011] The sputtering target for forming a metal thin film according to the second aspect is characterized in that high purity copper having a purity of 99.9999% by weight or more is used as a base metal, and the base metal has a purity of 9%.
9.9999% by weight or more of zinc in 0.014 to 0.02
A target material made of a high-purity copper alloy is obtained by adding 1% by weight.

【0012】請求項3に記載の金属薄膜形成用スパッタ
リング・ターゲットの製造方法は、請求項1または2に
記載の高純度銅合金の組成比に合わせて基体金属と添加
元素とを混合して溶解槽に投入し、真空中または不活性
ガス雰囲気下で溶湯を連続鋳造することによって、所定
の断面形状をしたターゲット母材を形成し、このターゲ
ット母材から金属薄膜形成用スパッタリング・ターゲッ
トに加工することを特徴とする。
According to a third aspect of the present invention, there is provided a method for manufacturing a sputtering target for forming a metal thin film, comprising mixing and melting a base metal and an additive element in accordance with the composition ratio of the high-purity copper alloy according to the first or second aspect. A target base material having a predetermined cross-sectional shape is formed by charging the molten metal in a tank and continuously casting the molten metal in a vacuum or under an inert gas atmosphere, and processing the target base material into a sputtering target for forming a metal thin film. It is characterized by the following.

【0013】[0013]

【作用】請求項1および請求項2に記載の金属薄膜形成
用スパッタリング・ターゲットは、スパッタリング法に
よって電気配線として使用する金属薄膜を形成に使用し
た場合に、耐食性が高く、しかも素子基板等への付着強
度も強く、エレクロトマイグレーション等にも強い銅合
金薄膜を提供することができ、今後の半導体素子等の配
線の微細化等を担うに好適な配線材料となる。
The sputtering target for forming a metal thin film according to the first and second aspects has a high corrosion resistance when used for forming a metal thin film to be used as an electric wiring by a sputtering method, and furthermore, has a high resistance to element substrates and the like. It is possible to provide a copper alloy thin film having a high adhesion strength and a high resistance to electromigration and the like, and it is a wiring material suitable for miniaturization of wiring of semiconductor elements and the like in the future.

【0014】また、請求項3に記載の金属薄膜形成用ス
パッタリング・ターゲットの製造方法によれば、添加元
素の偏析や引け巣等の鋳造欠陥を防止して、請求項1あ
るいは請求項2に係る高品位な金属薄膜形成用スパッタ
リング・ターゲットを製造することが可能になる。
Further, according to the method for manufacturing a sputtering target for forming a metal thin film according to the third aspect, casting defects such as segregation of an additional element and shrinkage cavities are prevented. It is possible to manufacture a high quality sputtering target for forming a metal thin film.

【0015】[0015]

【実施例】【Example】

[第1実施例]図1は、本発明に係る金属薄膜形成用ス
パッタリング・ターゲットの製造方法の第1実施例の処
理手順を示し、図2は、この第1実施例に使用した装置
の概略を示したものである。
[First Embodiment] FIG. 1 shows a processing procedure of a first embodiment of a method of manufacturing a sputtering target for forming a metal thin film according to the present invention, and FIG. 2 is a schematic diagram of an apparatus used in the first embodiment. It is shown.

【0016】この第1実施例は、純度が99.9999
重量%以上の高純度銅を基体金属とし、この基体金属に
純度が99.9重量%以上のTi(チタン)を0.04
〜0.15重量%添加した高純度銅合金製の金属薄膜形
成用スパッタリング・ターゲットを得るものである。
The first embodiment has a purity of 99.99999.
% Or more of high-purity copper as a base metal, and 0.04% by weight of Ti (titanium) having a purity of 99.9% by weight or more.
A sputtering target for forming a metal thin film made of a high-purity copper alloy to which 0.15% by weight is added.

【0017】まず、図2に基づいて、使用する装置につ
いて説明する。この装置は、連続鋳造用の鋳造装置で、
図2において、符号1は銅合金の溶湯を得るための溶解
槽であるカーボンるつぼ、2はカーボンるつぼ1内に投
入された合金材料を溶解させるためのヒーター、3は連
続鋳造するために前記カーボンるつぼ1の低部に設置さ
れたカーボン鋳型、4は鋳込みを開始時にカーボンるつ
ぼ1内の溶湯をカーボン鋳型3に導くためのスターター
バー(ダミーバー)、5は鋳込んだ溶湯の冷却を促進す
るための水冷ジャケット、6はカーボン鋳型3で鋳造し
た鋳造品(連続した板状の鋳塊)を徐々に引出してゆく
引出しロール、8は連続鋳造を所定の雰囲気下で行うた
めに周囲を気密に囲った装置本体である。装置本体8
は、鋳造品の引出し口として真空シール9が装備され、
さらに、囲った空間内を真空雰囲気とするための真空系
接続部10や、不活性ガス雰囲気とするための不活性ガ
ス供給部11がバルブ12を介して接続されている。
First, an apparatus to be used will be described with reference to FIG. This device is a casting device for continuous casting.
In FIG. 2, reference numeral 1 denotes a carbon crucible as a melting tank for obtaining a molten copper alloy, 2 denotes a heater for melting the alloy material charged in the carbon crucible 1, and 3 denotes the carbon for continuous casting. A carbon mold placed in the lower part of the crucible 1, 4 is a starter bar (dummy bar) for guiding the molten metal in the carbon crucible 1 to the carbon mold 3 at the time of starting casting, and 5 is to promote cooling of the molten molten metal. A water-cooled jacket, 6 is a drawer roll for gradually drawing a cast product (continuous plate-shaped ingot) cast with the carbon mold 3, and 8 is a hermetically-sealed periphery for performing continuous casting under a predetermined atmosphere. The main body of the device. Device body 8
Is equipped with a vacuum seal 9 as a casting outlet.
Further, a vacuum connection unit 10 for providing a vacuum atmosphere in the enclosed space and an inert gas supply unit 11 for providing an inert gas atmosphere are connected via a valve 12.

【0018】次に、第1実施例の製造方法を、図1に基
づいて説明する。まず、純度が99.9999重量%以
上の高純度銅と純度が99.9%以上のTiとを前述し
た高純度銅合金の組成比に合わせて混合する(ステップ
101)。そして、混合した材料をカーボン鋳型3に投
入し、Arガスによる不活性ガス雰囲気下(真空度:1
×10-4Torr)で溶湯を連続鋳造することによって
所定の断面形状をしたターゲット母材を形成する(ステ
ップ102)。
Next, the manufacturing method of the first embodiment will be described with reference to FIG. First, high-purity copper having a purity of 99.9999% by weight or more and Ti having a purity of 99.9% or more are mixed according to the composition ratio of the high-purity copper alloy described above (step 101). Then, the mixed material is put into the carbon mold 3 and is placed under an inert gas atmosphere with an Ar gas (degree of vacuum: 1).
A target base material having a predetermined cross-sectional shape is formed by continuously casting a molten metal at (× 10 −4 Torr) (Step 102).

【0019】一般的に、添加元素を均一に分散させたタ
ーゲット材としての銅合金を鋳造法によって得ること
は、非常に困難とされてきた。しかし、前記水冷ジャケ
ット5等の冷却効果によって溶湯を急冷凝固させること
によって添加元素の偏析を防止することができ、また、
連続鋳造することによって、引け巣や結晶粒の粗大化等
といった鋳造欠陥の発生を防止することが可能になる。
実際、前述の製造工程によって得たターゲット母材(鋳
塊)は、引け巣がなく、また、添加元素の偏析も防止さ
れた健全なものであった。
Generally, it has been very difficult to obtain a copper alloy as a target material in which an additive element is uniformly dispersed by a casting method. However, segregation of additional elements can be prevented by rapidly solidifying the molten metal by the cooling effect of the water cooling jacket 5 and the like.
Continuous casting makes it possible to prevent casting defects such as shrinkage cavities and coarse crystal grains.
In fact, the target base material (ingot) obtained by the above-mentioned manufacturing process was a sound material having no shrinkage cavities and preventing the segregation of added elements.

【0020】次いで、必要に応じて圧延または研削加工
等の機械加工を実施して(ステップ103)、前記ター
ゲット母材から金属薄膜形成用スパッタリング・ターゲ
ットを切り出す(ステップ104)。
Next, if necessary, mechanical processing such as rolling or grinding is performed (step 103), and a sputtering target for forming a metal thin film is cut out from the target base material (step 104).

【0021】この第1実施例では、以上のような製造工
程によって、直径が5インチ、厚さが5ミリの金属薄膜
形成用スパッタリング・ターゲットを得た。そして、こ
のターゲットをスパッタリング装置に装着し、Arガス
圧が3×10-3Torr、入力電力が1500Wの条件
下におけるスパッタリングで、SiO2 等の素子基板上
に高純度Cu−Ti合金膜(以下、単に、Cu−Ti膜
と記述する)を成膜した。膜厚は、3000オングスト
ロームとした。
In the first embodiment, a sputtering target for forming a metal thin film having a diameter of 5 inches and a thickness of 5 mm was obtained by the above manufacturing steps. Then, this target was mounted on a sputtering apparatus, and sputtering was performed under the conditions of an Ar gas pressure of 3 × 10 −3 Torr and an input power of 1500 W, and a high-purity Cu—Ti alloy film (hereinafter referred to as “SiO 2” ) was formed on an element substrate such as SiO 2. , Simply referred to as a Cu-Ti film). The film thickness was 3000 Å.

【0022】このように形成したCu−Ti膜につい
て、抵抗率(単位:μΩcm)の測定を行った。また、
本願発明者等は、Tiの添加による抵抗率への影響を調
べるために、Tiの添加率のみを0.02〜0.2重量
%の範囲で種々に変化させて、前記第1実施例と同様の
製造方法で金属薄膜形成用スパッタリング・ターゲット
を製造し、それらのスパッタリング・ターゲットに対し
ても、同様にCu−Ti膜の形成を行って、抵抗率の測
定を行った。抵抗率の測定は、20℃で4mAの電流を
印加することによって行った。次の表1は、その測定結
果を示したものである。なお、この抵抗率測定におい
て、アニール条件は、Arガス雰囲気下で、250℃、
1時間とした。また、表1では、スパッタリング・ター
ゲットの金属組成として、Tiの添加率が0.029重
量%のもの、0.040重量%のもの、0.110重量
%ものにおける測定結果を示した。さらに、参考とし
て、純度が99.99重量%の純銅(表1では、4Nと
記述している)、純度が99.9999重量%の純銅
(表1では、6Nと記述している)、純金属Alについ
ても、同じ条件による測定結果を示した。
The resistivity (unit: μΩcm) of the thus formed Cu—Ti film was measured. Also,
In order to investigate the effect of the addition of Ti on the resistivity, the inventors of the present application varied the addition ratio of Ti variously in the range of 0.02 to 0.2% by weight, and Sputtering targets for forming a metal thin film were manufactured by the same manufacturing method, and a Cu—Ti film was formed on those sputtering targets in the same manner, and the resistivity was measured. The measurement of the resistivity was performed by applying a current of 4 mA at 20 ° C. Table 1 below shows the measurement results. In this resistivity measurement, the annealing condition was set at 250 ° C. in an Ar gas atmosphere.
1 hour. Further, Table 1 shows the measurement results when the addition ratio of Ti is 0.029% by weight, 0.040% by weight, and 0.110% by weight as the metal composition of the sputtering target. Further, for reference, pure copper having a purity of 99.99% by weight (described as 4N in Table 1), pure copper having a purity of 99.9999% by weight (described as 6N in Table 1), pure copper The measurement results of the metal Al under the same conditions were also shown.

【0023】[0023]

【表1】 この表1に示されているように、高純度銅にTiを添加
したスパッタリング・ターゲットによって形成したCu
−Ti膜では、アニール条件では、Tiの添加率の増大
に応じて抵抗率が増加するという傾向がみられるもの
の、いずれの添加率においても、Alの場合よりも、よ
い抵抗率が得られることが確認された。
[Table 1] As shown in Table 1, Cu formed by a sputtering target obtained by adding Ti to high-purity copper.
-In the case of the Ti film, under the annealing conditions, the resistivity tends to increase in accordance with the increase in the addition rate of Ti, but at any addition rate, a better resistivity than that in the case of Al is obtained. Was confirmed.

【0024】さらに、前述の各Cu−Ti膜について、
Arガス雰囲気中において250℃で1時間の熱処理を
施した後、液温35℃の1Nの食塩水中に一定時間浸漬
して、そのときの反射率の経時変化を測定することによ
って、Ti添加率の異なる各Cu−Ti膜について耐食
性を評価した。図3は、その耐食性の評価結果を示した
ものである。
Further, for each of the above-mentioned Cu-Ti films,
After performing a heat treatment at 250 ° C. for 1 hour in an Ar gas atmosphere, the sample is immersed in a 1N saline solution at a liquid temperature of 35 ° C. for a certain period of time, and the change with time of the reflectance at that time is measured. The corrosion resistance of each of the different Cu—Ti films was evaluated. FIG. 3 shows the evaluation results of the corrosion resistance.

【0025】図3において、縦軸は反射率の変化(食塩
水中に浸漬させた後の反射率Rcと評価試験前の反射率
Riとの比率)を示し、横軸は時間の経過を示してい
る。また、図中において、曲線20は純金属Alによる
金属薄膜に対するもの、曲線21はTiの添加率が0.
11重量%のターゲットで形成したCu−Ti膜に対す
るもの、曲線22はTiの添加率が0.040重量%の
ターゲットで形成したCu−Ti膜に対するもの、曲線
23は純度が99.99重量%の純銅による金属薄膜に
対するもの、曲線24はTiの添加率が0.029重量
%のターゲットで形成したCu−Ti膜に対するもの、
曲線25は純度が99.9999重量%の高純度の純銅
による金属薄膜に対するもの、曲線26はTiの添加率
が0.26重量%のターゲットで形成したCu−Ti膜
に対するものである。
In FIG. 3, the vertical axis indicates the change in the reflectance (the ratio between the reflectance Rc after immersion in a saline solution and the reflectance Ri before the evaluation test), and the horizontal axis indicates the passage of time. I have. In the figure, curve 20 is for a metal thin film made of pure metal Al, and curve 21 is for the case where the Ti addition rate is 0.1 mm.
Curve 22 is for a Cu-Ti film formed with a target having a Ti addition rate of 0.040% by weight, and curve 23 is for a Cu-Ti film formed with an 11% by weight target. Curve 24 for a Cu-Ti film formed with a target having a Ti addition rate of 0.029% by weight;
Curve 25 is for a metal thin film of high purity pure copper having a purity of 99.9999% by weight, and curve 26 is for a Cu—Ti film formed with a target having a Ti addition rate of 0.26% by weight.

【0026】図3にも示しているように、Tiの添加率
が0.040重量%および0.11重量%のターゲット
で形成したCu−Ti膜は、いずれも、純度が99.9
9重量%の純銅によって形成した金属薄膜よりも高い耐
食性を示し、Tiの添加率の0.11重量%の場合で
は、純金属Alによる金属薄膜の場合にかなり接近して
いる。しかし、Tiの添加率が更に増大した0.26重
量%の場合には、逆に耐食性が低下してしまった。
As shown in FIG. 3, the Cu—Ti films formed with the targets having the Ti addition rates of 0.040% by weight and 0.11% by weight all have a purity of 99.9%.
It shows higher corrosion resistance than a metal thin film formed by 9% by weight of pure copper, and at a Ti addition rate of 0.11% by weight, it is quite close to a metal thin film of pure metal Al. However, when the addition ratio of Ti was further increased to 0.26% by weight, the corrosion resistance was reduced.

【0027】本願発明者等は、Tiの添加率と耐食性と
の関係をさらに究明するため、より細かくTiの添加率
を変化させて、同様の耐食性の評価を行った。その結
果、純度が99.9999重量%以上の高純度銅を基体
金属とし、この基体金属に純度が99.9重量%以上の
Tiを0.04〜0.15重量%添加した高純度銅合金
製の金属薄膜形成用スパッタリング・ターゲットの場合
には、何れも、純度99.99重量%の純銅による金属
薄膜よりも耐食性が優れ、純金属Alによる金属薄膜に
近い耐食性を持った金属薄膜が得られることを確認し
た。
In order to further investigate the relationship between the Ti addition rate and the corrosion resistance, the present inventors conducted similar evaluations of the corrosion resistance by changing the Ti addition rate more finely. As a result, a high-purity copper alloy obtained by using high-purity copper having a purity of 99.9999% by weight or more as a base metal and adding 0.04 to 0.15% by weight of Ti having a purity of 99.9% by weight or more to the base metal In the case of a sputtering target for forming a metal thin film made of a metal, the corrosion resistance is superior to that of a metal thin film made of pure copper having a purity of 99.99% by weight, and a metal thin film having a corrosion resistance close to that of a metal thin film made of pure metal Al is obtained. I confirmed that

【0028】また、純度が99.9999重量%以上の
高純度銅を基体金属とし、この基体金属に純度が99.
9重量%以上のTiを0.04〜0.15重量%添加し
た高純度銅合金製の金属薄膜形成用スパッタリング・タ
ーゲットについては、スパッタリング法によってガラス
基板上にCu−Ti膜を成膜させ、そのCu−Ti膜に
ついて、引っ張り法によって付着強度の評価を行った。
純度99.99重量%の純銅による金属薄膜の付着強度
は約89kg/cm2 、純度99.9999重量%の純
銅による金属薄膜の付着強度は約102kg/cm2
あったのに対し、Cu−Ti膜の場合は、何れの添加率
の場合においても、150kg/cm2以上の付着強度
が得られ、付着強度も大幅に改善されていることが確認
できた。以下の表2は、以上の評価結果をまとめたもの
である。表2において、「4N」とは純度99.99重
量%の純銅による金属薄膜を示し、「6N」とは純度9
9.9999重量%の純銅による金属薄膜を示し、「C
u−Ti」とはTiの添加率が0.04〜0.15重量
%のターゲットで形成したCu−Ti膜を示し、「Cu
−Zn」とは後述の第2実施例で説明するZnを添加元
素としたターゲットで形成した金属薄膜を示している。
High purity copper having a purity of 99.9999% by weight or more is used as a base metal, and the base metal has a purity of 99.9999% by weight or more.
For a sputtering target for forming a metal thin film made of a high-purity copper alloy to which 0.04 to 0.15% by weight of Ti of 9% by weight or more is added, a Cu—Ti film is formed on a glass substrate by a sputtering method. The adhesion strength of the Cu—Ti film was evaluated by a tensile method.
The adhesion strength of a metal thin film made of pure copper having a purity of 99.99% by weight was about 89 kg / cm 2 , and the adhesion strength of a metal thin film made of pure copper having a purity of 99.9999% by weight was about 102 kg / cm 2. In the case of the Ti film, an adhesion strength of 150 kg / cm 2 or more was obtained at any addition ratio, and it was confirmed that the adhesion strength was significantly improved. Table 2 below summarizes the above evaluation results. In Table 2, "4N" indicates a metal thin film made of pure copper having a purity of 99.99% by weight, and "6N" indicates a metal thin film having a purity of 99.99% by weight.
A metal thin film made of 9.9999% by weight pure copper is shown.
"u-Ti" refers to a Cu-Ti film formed with a target having a Ti addition rate of 0.04 to 0.15% by weight, and "Cu-Ti film"
"-Zn" indicates a metal thin film formed using a target containing Zn as an additional element described in a second embodiment described later.

【0029】[0029]

【表2】 以上に説明したように、この第1実施例で製造した金属
薄膜形成用スパッタリング・ターゲットは、スパッタリ
ング法によって電気配線として使用する金属薄膜を形成
に使用した場合に、耐食性が高く、しかも素子基板等へ
の付着強度も強く、エレクロトマイグレーション等にも
強い銅合金薄膜を提供することができ、今後の半導体素
子等の配線の微細化等を担うに好適な配線材料となる。
[Table 2] As described above, the sputtering target for forming a metal thin film manufactured in the first embodiment has high corrosion resistance when used for forming a metal thin film to be used as an electric wiring by a sputtering method, and furthermore has an element substrate and the like. It is possible to provide a copper alloy thin film which has a high adhesive strength to the substrate and is resistant to electromigration and the like, and is a wiring material suitable for miniaturization of wiring of semiconductor elements and the like in the future.

【0030】[第2実施例]本願発明者等は、本発明に
係る金属薄膜形成用スパッタリング・ターゲットの製造
方法の第2実施例として、添加元素としてZn(亜鉛)
を用いた高純度銅合金製の金属薄膜形成用スパッタリン
グ・ターゲットを製造した。
[Second Embodiment] The present inventors of the present invention, as a second embodiment of the method of manufacturing a sputtering target for forming a metal thin film according to the present invention, use Zn (zinc) as an additive element.
A sputtering target for forming a metal thin film made of a high-purity copper alloy using the above method was manufactured.

【0031】この第2実施例の場合、製造する金属薄膜
形成用スパッタリング・ターゲットは、純度が99.9
999重量%以上の高純度銅を基体金属とし、この基体
金属に純度が99.9999重量%以上のZnを0.0
14〜0.021重量%添加したものである。
In the case of the second embodiment, the sputtering target for forming a metal thin film to be manufactured has a purity of 99.9.
High-purity copper of 999% by weight or more is used as a base metal, and Zn having a purity of 99.9999% by weight or more is added to the base metal by 0.0%.
14 to 0.021% by weight was added.

【0032】添加元素が純度が99.9999重量%以
上のZnで、添加率が0.014〜0.021重量%に
変更されたことを除けば、製造上のそれ以外の条件は、
すべて第1実施例の場合に準じて製造した。
Except that the additive element is Zn having a purity of 99.9999% by weight or more and the addition rate is changed to 0.014 to 0.021% by weight, other conditions in the production are as follows.
All were manufactured according to the first embodiment.

【0033】即ち、まず、純度が99.9999重量%
以上の高純度銅と純度が99.9999%以上のZnと
を前述した高純度銅合金の組成比に合わせて混合する。
次いで、混合した材料をカーボン鋳型3に投入し、Ar
ガスによる不活性ガス雰囲気下で溶湯を連続鋳造するこ
とによって所定の断面形状をしたターゲット母材を形成
する。
That is, first, the purity is 99.9999% by weight.
The high-purity copper and Zn having a purity of 99.9999% or more are mixed in accordance with the composition ratio of the high-purity copper alloy described above.
Next, the mixed material is put into the carbon mold 3, and Ar
A target base material having a predetermined cross-sectional shape is formed by continuously casting a molten metal under an inert gas atmosphere.

【0034】次いで、必要に応じて圧延または研削加工
等の機械加工を実施して、前記ターゲット母材から金属
薄膜形成用スパッタリング・ターゲットを切り出す。
Then, if necessary, mechanical processing such as rolling or grinding is performed to cut out a sputtering target for forming a metal thin film from the target base material.

【0035】この第2実施例では、以上のような製造工
程によって、直径が5インチ、厚さが5ミリの金属薄膜
形成用スパッタリング・ターゲットを得た。そして、こ
のターゲットをスパッタリング装置に装着し、Arガス
圧が3×10-3Torr、入力電力が1500Wの条件
下におけるスパッタリングで、SiO2 等の素子基板上
に高純度Cu−Zn合金膜(以下、単に、Cu−Zn膜
と記述する)を成膜した。膜厚は、3000オングスト
ロームとした。
In the second embodiment, a sputtering target for forming a metal thin film having a diameter of 5 inches and a thickness of 5 mm was obtained by the above manufacturing steps. Then, wearing the target in a sputtering apparatus, Ar gas pressure 3 × 10 -3 Torr, a sputtering input power under the condition of 1500 W, a high-purity Cu-Zn alloy layer on the element substrate of SiO 2 or the like (hereinafter , Simply referred to as a Cu-Zn film). The film thickness was 3000 Å.

【0036】このように形成したCu−Zn膜につい
て、第1実施例と同様に、抵抗率(単位:μΩcm)の
測定を行った。Znの添加による抵抗率への影響を調べ
るために、Znの添加率のみを0.005〜0.050
重量%の範囲で種々に変化させて、前記第2実施例と同
様の製造方法で金属薄膜形成用スパッタリング・ターゲ
ットを製造し、それらのスパッタリング・ターゲットに
対しても、同様にCu−Zn膜の形成を行って、抵抗率
の測定を行った。抵抗率の測定は、20℃で4mAの電
流を印加することによって行った。次の表3は、その測
定結果を示したものである。なお、この抵抗率測定にお
いて、アニール条件は、Arガス雰囲気下で、250
℃、1時間とした。また、表3では、スパッタリング・
ターゲットの金属組成として、Znの添加率が0.01
4重量%のもの、0.021重量%のもの、0.0.0
40重量%ものにおける測定結果を示した。さらに、参
考として、純度が99.99重量%の純銅(表3では、
4Nと記述している)、純度が99.9999重量%の
純銅(表3では、6Nと記述している)、純金属Alに
ついても、同じ条件による測定結果を示した。
The resistivity (unit: μΩcm) of the Cu—Zn film thus formed was measured in the same manner as in the first embodiment. In order to investigate the effect of the addition of Zn on the resistivity, only the Zn addition rate was set to 0.005 to 0.050.
The sputtering target for forming a metal thin film is manufactured by the same manufacturing method as that of the second embodiment while changing variously in the range of the weight%, and the Cu-Zn film is similarly formed on those sputtering targets. After the formation, the resistivity was measured. The measurement of the resistivity was performed by applying a current of 4 mA at 20 ° C. Table 3 below shows the measurement results. In this resistivity measurement, the annealing condition was set to 250 under an Ar gas atmosphere.
C. and 1 hour. In Table 3, sputtering
As the metal composition of the target, the addition rate of Zn is 0.01
4% by weight, 0.021% by weight, 0.0%
The measurement results at 40% by weight are shown. Further, for reference, pure copper having a purity of 99.99% by weight (in Table 3,
4N), pure copper having a purity of 99.9999% by weight (described as 6N in Table 3), and pure metal Al also showed measurement results under the same conditions.

【0037】[0037]

【表3】 この表3に示されているように、高純度銅にZnを添加
したスパッタリング・ターゲットによって形成したCu
−Zn膜では、いずれの添加率においても、純銅の場合
よりは高いがAlの場合よりも、よい抵抗率が得られる
ことが確認された。
[Table 3] As shown in Table 3, Cu formed by a sputtering target obtained by adding Zn to high-purity copper.
It was confirmed that the -Zn film provided higher resistivity than that of pure copper but better resistivity than that of Al at any addition ratio.

【0038】さらに、前述の各Cu−Zn膜について、
Arガス雰囲気中において250℃で1時間の熱処理を
施した後、液温35℃の1Nの食塩水中に一定時間浸漬
して、そのときの反射率の経時変化を測定することによ
って、Zn添加率の異なる各Cu−Zn膜について耐食
性を評価した。図4は、その耐食性の評価結果を示した
ものである。
Further, for each of the aforementioned Cu-Zn films,
After performing a heat treatment at 250 ° C. for 1 hour in an Ar gas atmosphere, the sample is immersed in a 1N saline solution at a liquid temperature of 35 ° C. for a certain period of time, and the time-dependent change in the reflectance at that time is measured. The corrosion resistance of each of the Cu—Zn films different from each other was evaluated. FIG. 4 shows the evaluation results of the corrosion resistance.

【0039】図4において、縦軸は反射率の変化(食塩
水中に浸漬させた後の反射率Rcと評価試験前の反射率
Riとの比率)を示し、横軸は時間の経過を示してい
る。また、図中において、曲線30は純金属Alによる
金属薄膜に対するもの、曲線31はZnの添加率が0.
014重量%のターゲットで形成したCu−Zn膜に対
するもの、曲線32はZnの添加率が0.021重量%
のターゲットで形成したCu−Zn膜に対するもの、曲
線33はZnの添加率が0.040重量%のターゲット
で形成したCu−Zn膜に対するもの、曲線34はZn
の添加率が0.009重量%のターゲットで形成したC
u−Zn膜に対するもの、曲線35は純度が99.99
重量%の純銅による金属薄膜に対するもの、曲線36は
純度が99.9999重量%の高純度の純銅による金属
薄膜に対するものである。
In FIG. 4, the vertical axis indicates the change in the reflectance (the ratio between the reflectance Rc after immersion in a saline solution and the reflectance Ri before the evaluation test), and the horizontal axis indicates the passage of time. I have. In the figure, a curve 30 is for a thin metal film made of pure metal Al, and a curve 31 is for a case where the Zn addition rate is 0.1 mm.
Curve 32 for a Cu—Zn film formed with a target of 014% by weight shows that the Zn addition rate is 0.021% by weight.
Curve 33 is for a Cu—Zn film formed with a target having a Zn addition rate of 0.040% by weight, and curve 34 is for a Cu—Zn film formed with the target No.
Formed with a target having an addition rate of 0.009% by weight of C
For the u-Zn film, curve 35 shows a purity of 99.99.
Curve 36 is for a thin metal film of pure copper with a purity of 99.9999% by weight, for a metal thin film of pure copper at weight%.

【0040】図4にも示しているように、Znの添加率
が0.009重量%および0.040重量%のターゲッ
トで形成したCu−Zn膜は、純度が99.99重量%
の純銅によって形成した金属薄膜よりも経過時間の一部
においては高い耐食性を示す。これに対して、Znの添
加率が0.014重量%および0.021重量%のター
ゲットで形成したCu−Zn膜は、純度が99.99重
量%の純銅によって形成した金属薄膜よりも経過時間の
全域で高い耐食性を示し、純金属Alによる金属薄膜の
場合に接近した様相が確認された。
As shown in FIG. 4, the Cu—Zn film formed by the targets having the Zn addition ratios of 0.009% by weight and 0.040% by weight has a purity of 99.99% by weight.
Shows higher corrosion resistance in part of the elapsed time than the metal thin film formed of pure copper. On the other hand, the Cu—Zn film formed by using targets having Zn addition rates of 0.014% by weight and 0.021% by weight has a longer elapsed time than a metal thin film formed by pure copper having a purity of 99.99% by weight. , A high corrosion resistance was exhibited in the entire region, and an appearance close to that of a metal thin film made of pure metal Al was confirmed.

【0041】本願発明者等は、Znの添加率と耐食性と
の関係をさらに究明するため、より細かくSiの添加率
を変化させて、同様の耐食性の評価を行った。その結
果、純度が99.9999重量%以上の高純度銅を基体
金属とし、この基体金属に純度が99.9999重量%
以上のZnを0.014〜0.021重量%添加した高
純度銅合金製の金属薄膜形成用スパッタリング・ターゲ
ットの場合には、何れも、純度99.99重量%の純銅
による金属薄膜よりも耐食性が優れ、純金属Alによる
金属薄膜に近い耐食性を持った金属薄膜が得られること
を確認した。
In order to further investigate the relationship between the Zn addition rate and the corrosion resistance, the present inventors conducted similar evaluations of the corrosion resistance by changing the Si addition rate more finely. As a result, high-purity copper having a purity of 99.9999% by weight or more is used as the base metal, and the purity of the base metal is 99.9999% by weight.
In the case of a sputtering target for forming a metal thin film made of a high-purity copper alloy to which 0.014 to 0.021% by weight of Zn is added, the corrosion resistance is higher than that of a metal thin film made of pure copper having a purity of 99.99% by weight. It was confirmed that a metal thin film having excellent corrosion resistance and a corrosion resistance close to that of a metal thin film made of pure metal Al was obtained.

【0042】また、純度が99.9999重量%以上の
高純度銅を基体金属とし、この基体金属に純度が99.
9999重量%以上のZnを0.014〜0.021重
量%添加した高純度銅合金製の金属薄膜形成用スパッタ
リング・ターゲットについては、スパッタリング法によ
ってガラス基板上にCu−Zn膜を成膜させ、そのCu
−Zn膜について、引っ張り法によって付着強度の評価
を行った。Cu−Zn膜の場合は、何れの添加率の場合
においても、150kg/cm2 以上の付着強度が得ら
れ(前述の表2参照00)、付着強度も大幅に改善され
ていることが確認できた。
Further, high-purity copper having a purity of 99.9999% by weight or more is used as a base metal.
For a sputtering target for forming a metal thin film made of a high-purity copper alloy to which 0.014 to 0.021% by weight of Zn of 9999% by weight or more is added, a Cu—Zn film is formed on a glass substrate by a sputtering method. The Cu
-The adhesion strength of the Zn film was evaluated by a tensile method. In the case of the Cu—Zn film, an adhesive strength of 150 kg / cm 2 or more was obtained at any of the addition rates (see Table 2 above), and it was confirmed that the adhesive strength was also significantly improved. Was.

【0043】以上に説明したように、この第2実施例で
製造した金属薄膜形成用スパッタリング・ターゲット
は、スパッタリング法によって電気配線として使用する
金属薄膜を形成に使用した場合に、耐食性が高く、しか
も素子基板等への付着強度も強く、エレクロトマイグレ
ーション等にも強い銅合金薄膜を提供することができ、
今後の半導体素子等の配線の微細化等を担うに好適な配
線材料となる。
As described above, the sputtering target for forming a metal thin film manufactured in the second embodiment has high corrosion resistance when used for forming a metal thin film to be used as an electric wiring by a sputtering method, and has a high corrosion resistance. Strong copper alloy thin film with high adhesion strength to element substrate etc.
It is a wiring material suitable for miniaturization of wiring of semiconductor elements and the like in the future.

【0044】[0044]

【発明の効果】請求項1および請求項2に記載の金属薄
膜形成用スパッタリング・ターゲットは、スパッタリン
グ法によって電気配線として使用する金属薄膜を形成に
使用した場合に、耐食性が高く、しかも素子基板等への
付着強度も強く、エレクロトマイグレーション等にも強
い銅合金薄膜を提供することができ、今後の半導体素子
等の配線の微細化等を担うに好適な配線材料となる。
According to the first and second aspects of the present invention, the sputtering target for forming a metal thin film has high corrosion resistance when used for forming a metal thin film used as an electric wiring by a sputtering method, and furthermore, an element substrate or the like. It is possible to provide a copper alloy thin film which has a high adhesive strength to the substrate and is resistant to electromigration and the like, and is a wiring material suitable for miniaturization of wiring of semiconductor elements and the like in the future.

【0045】また、請求項3に記載の金属薄膜形成用ス
パッタリング・ターゲットの製造方法によれば、添加元
素の偏析や引け巣等の鋳造欠陥を防止して、請求項1あ
るいは請求項2に係る高品位な金属薄膜形成用スパッタ
リング・ターゲットを製造することが可能になる。
Further, according to the method for manufacturing a sputtering target for forming a metal thin film according to the third aspect, casting defects such as segregation of additional elements and shrinkage cavities are prevented. It is possible to manufacture a high quality sputtering target for forming a metal thin film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る金属薄膜形成用スパッタリング・
ターゲットの製造方法の工程説明図である。
FIG. 1 shows a sputtering method for forming a metal thin film according to the present invention.
It is a process explanatory view of a manufacturing method of a target.

【図2】本発明に係る金属薄膜形成用スパッタリング・
ターゲットの製造方法で使用する鋳造装置の構成図であ
る。
FIG. 2 shows a sputtering method for forming a metal thin film according to the present invention.
It is a block diagram of the casting apparatus used by the manufacturing method of a target.

【図3】本発明の第1実施例で製造した高純度銅合金の
耐食特性図である。
FIG. 3 is a diagram showing the corrosion resistance of the high-purity copper alloy manufactured in the first embodiment of the present invention.

【図4】本発明の第2実施例で製造した高純度銅合金の
耐食特性図である。
FIG. 4 is a diagram showing the corrosion resistance of the high-purity copper alloy manufactured in the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 カーボンるつぼ 2 ヒーター 3 カーボン鋳型 4 スターターバー 5 水冷ジャケット 6 引き出しロール 8 装置本体 DESCRIPTION OF SYMBOLS 1 Carbon crucible 2 Heater 3 Carbon mold 4 Starter bar 5 Water cooling jacket 6 Drawer roll 8 Main unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永田 長寿 東京都千代田区丸の内一丁目8番2号 同和鉱業 株式会社内 (56)参考文献 特開 平5−125523(JP,A) 特開 平1−96376(JP,A) 特開 平1−96374(JP,A) 特開 昭61−272371(JP,A) 特開 平2−311394(JP,A) 特開 昭64−75144(JP,A) (58)調査した分野(Int.Cl.6,DB名) C23C 14/34 C22C 9/00──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Nagatoshi Nagata 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (56) References JP-A-5-125523 (JP, A) JP-A-1 JP-A-96376 (JP, A) JP-A-1-96374 (JP, A) JP-A-61-272371 (JP, A) JP-A-2-311394 (JP, A) JP-A-64-75144 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C23C 14/34 C22C 9/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 純度が99.9999重量%以上の高純
度銅を基体金属とし、この基体金属に純度が99.9重
量%以上のチタンを0.04〜0.15重量%添加する
ことによって高純度銅合金製のターゲット材としたこと
を特徴とする金属薄膜形成用スパッタリング・ターゲッ
ト。
1. A high purity copper having a purity of 99.9999% by weight or more is used as a base metal, and 0.04 to 0.15% by weight of titanium having a purity of 99.9% by weight or more is added to the base metal. A sputtering target for forming a metal thin film, wherein the sputtering target is a high-purity copper alloy target material.
【請求項2】 純度が99.9999重量%以上の高純
度銅を基体金属とし、この基体金属に純度が99.99
99重量%以上の亜鉛を0.014〜0.021重量%
添加することによって高純度銅合金製のターゲット材と
したことを特徴とする金属薄膜形成用スパッタリング・
ターゲット。
2. High purity copper having a purity of 99.9999% by weight or more is used as a base metal, and the base metal has a purity of 99.99% by weight.
0.014 to 0.021% by weight of 99% by weight or more of zinc
A sputtering method for forming a metal thin film, characterized in that a high-purity copper alloy target material is obtained by adding
target.
【請求項3】 請求項1または2に記載の高純度銅合金
の組成比に合わせて基体金属と添加元素とを混合して溶
解槽に投入し、真空中または不活性ガス雰囲気下で溶湯
を連続鋳造することによって、所定の断面形状をしたタ
ーゲット母材を形成し、このターゲット母材から金属薄
膜形成用スパッタリング・ターゲットに加工することを
特徴とする金属薄膜形成用スパッタリング・ターゲット
の製造方法。
3. A base metal and an additive element are mixed in accordance with the composition ratio of the high-purity copper alloy according to claim 1 or 2, and the mixture is put into a melting tank, and the molten metal is placed in a vacuum or under an inert gas atmosphere. A method of manufacturing a sputtering target for forming a metal thin film, comprising forming a target base material having a predetermined cross-sectional shape by continuous casting, and processing the target base material into a sputtering target for forming a metal thin film.
JP11895392A 1992-05-12 1992-05-12 Sputtering target for forming metal thin film and method for producing the same Expired - Fee Related JP2862727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11895392A JP2862727B2 (en) 1992-05-12 1992-05-12 Sputtering target for forming metal thin film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11895392A JP2862727B2 (en) 1992-05-12 1992-05-12 Sputtering target for forming metal thin film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05311424A JPH05311424A (en) 1993-11-22
JP2862727B2 true JP2862727B2 (en) 1999-03-03

Family

ID=14749352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11895392A Expired - Fee Related JP2862727B2 (en) 1992-05-12 1992-05-12 Sputtering target for forming metal thin film and method for producing the same

Country Status (1)

Country Link
JP (1) JP2862727B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041535A1 (en) 2006-10-03 2008-04-10 Nippon Mining & Metals Co., Ltd. Cu-Mn ALLOY SPUTTERING TARGET AND SEMICONDUCTOR WIRING
US7626665B2 (en) 2004-08-31 2009-12-01 Tohoku University Copper alloys and liquid-crystal display device

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3403918B2 (en) * 1997-06-02 2003-05-06 株式会社ジャパンエナジー High purity copper sputtering target and thin film
US6479389B1 (en) * 1999-10-04 2002-11-12 Taiwan Semiconductor Manufacturing Company Method of doping copper metallization
JP2001351823A (en) * 2000-06-08 2001-12-21 Mitsubishi Materials Corp Evaporation material, method of manufacturing the same, and method of evaporating the same
JP2002294437A (en) * 2001-04-02 2002-10-09 Mitsubishi Materials Corp Copper alloy sputtering target
EP2465969B1 (en) 2002-01-30 2016-05-11 JX Nippon Mining & Metals Corp. Copper alloy sputtering target
JP4794802B2 (en) 2002-11-21 2011-10-19 Jx日鉱日石金属株式会社 Copper alloy sputtering target and semiconductor device wiring
JP4223511B2 (en) 2003-03-17 2009-02-12 日鉱金属株式会社 Copper alloy sputtering target, method of manufacturing the same, and semiconductor element wiring
JP4421335B2 (en) * 2004-03-05 2010-02-24 株式会社東芝 Method for producing sputtering target and method for producing copper wiring film
US7940361B2 (en) 2004-08-31 2011-05-10 Advanced Interconnect Materials, Llc Copper alloy and liquid-crystal display device
JP4206403B2 (en) * 2005-07-22 2009-01-14 Dowaホールディングス株式会社 Manufacturing method of semiconductor internal wiring
JP2005330591A (en) * 2005-08-01 2005-12-02 Dowa Mining Co Ltd Sputtering target
JP4421586B2 (en) * 2006-09-21 2010-02-24 株式会社東芝 Method for producing sputtering target and method for producing copper wiring film
JP5207120B2 (en) * 2008-02-05 2013-06-12 三菱マテリアル株式会社 Wiring and electrodes for liquid crystal display devices with no thermal defects and excellent adhesion
JP5708315B2 (en) * 2011-07-05 2015-04-30 三菱マテリアル株式会社 Copper alloy sputtering target
JP5750393B2 (en) * 2012-03-28 2015-07-22 Jx日鉱日石金属株式会社 Cu-Ga alloy sputtering target and method for producing the same
CN104704139B (en) * 2012-11-13 2017-07-11 吉坤日矿日石金属株式会社 Cu Ga alloy sputtering targets and its manufacture method
JP5842806B2 (en) * 2012-12-28 2016-01-13 三菱マテリアル株式会社 Copper alloy hot rolled plate for sputtering target and sputtering target
JP6274026B2 (en) 2013-07-31 2018-02-07 三菱マテリアル株式会社 Copper alloy sputtering target and method for producing copper alloy sputtering target
JP5579314B1 (en) * 2013-09-02 2014-08-27 Jx日鉱日石金属株式会社 High purity ingot melting continuous casting apparatus and high purity ingot melting continuous casting method
JP5828350B2 (en) * 2014-04-11 2015-12-02 三菱マテリアル株式会社 Manufacturing method of material for cylindrical sputtering target
JP5783293B1 (en) 2014-04-22 2015-09-24 三菱マテリアル株式会社 Material for cylindrical sputtering target
JP2015047639A (en) * 2014-05-15 2015-03-16 Jx日鉱日石金属株式会社 Melting continuous casting apparatus and method for high purity ingot
JP6829179B2 (en) 2017-11-15 2021-02-10 Jx金属株式会社 Corrosion resistant CuZn alloy
CN114774864A (en) * 2022-03-23 2022-07-22 宁波建锡新材料有限公司 Preparation device, preparation method and application of high-purity copper alloy target

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7626665B2 (en) 2004-08-31 2009-12-01 Tohoku University Copper alloys and liquid-crystal display device
WO2008041535A1 (en) 2006-10-03 2008-04-10 Nippon Mining & Metals Co., Ltd. Cu-Mn ALLOY SPUTTERING TARGET AND SEMICONDUCTOR WIRING

Also Published As

Publication number Publication date
JPH05311424A (en) 1993-11-22

Similar Documents

Publication Publication Date Title
JP2862727B2 (en) Sputtering target for forming metal thin film and method for producing the same
JP4197579B2 (en) Sputtering target, Al wiring film manufacturing method using the same, and electronic component manufacturing method
JP4237742B2 (en) Manufacturing method of sputtering target
KR101376502B1 (en) Sputtering target
US20020014406A1 (en) Aluminum target material for sputtering and method for producing same
WO2004083482A1 (en) Copper alloy sputtering target process for producing the same and semiconductor element wiring
JP2004169136A (en) Copper alloy sputtering target and semiconductor element wiring
US6264813B1 (en) Cathodic sputtering targets made of aluminum alloy
JP3212024B2 (en) Target material for Al-based sputtering and method for producing the same
JP4237743B2 (en) Method for producing ingot for sputtering target
JPH11293454A (en) Target material for aluminum series sputtering and its production
JP3819487B2 (en) Manufacturing method of semiconductor device
JP2007063621A (en) Sputtering target material, method for producing aluminum material for sputtering target material, and aluminum material for sputtering target material
JP2006077295A (en) Cu-ALLOY WIRING MATERIAL AND Cu-ALLOY SPUTTERING TARGET
JPH1060636A (en) Aluminum base target for sputtering and its production
JP2004193553A (en) Copper alloy sputtering target for forming semiconductor device interconnect line seed layer and seed layer formed using that target
JP2004193552A (en) Copper alloy sputtering target for forming semiconductor device interconnect line seed layer
TWI612157B (en) High purity copper-cobalt alloy sputtering target
JP4213699B2 (en) Manufacturing method of liquid crystal display device
JP2004193546A (en) Copper alloy sputtering target for forming semiconductor device interconnect line seed layer
JP3509011B2 (en) Method for Refining Production Materials for Target Material for Al-based Sputtering
JPH06299354A (en) Thin al alloy film and its production, and thin al alloy film forming sputtering target
JP3410278B2 (en) Al-based target material for liquid crystal display and method for producing the same
JPH11176769A (en) Sputtering target and copper wiring film
JP2001223183A (en) Al-FAMILY ELECTRODE FILM AND LIQUID CRYSTAL DISPLAY

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071211

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20071211

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071211

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091211

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20101211

LAPS Cancellation because of no payment of annual fees