JPH0254658B2 - - Google Patents

Info

Publication number
JPH0254658B2
JPH0254658B2 JP11151882A JP11151882A JPH0254658B2 JP H0254658 B2 JPH0254658 B2 JP H0254658B2 JP 11151882 A JP11151882 A JP 11151882A JP 11151882 A JP11151882 A JP 11151882A JP H0254658 B2 JPH0254658 B2 JP H0254658B2
Authority
JP
Japan
Prior art keywords
aluminum
semiconductor substrate
ultrafine particles
ultrafine
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11151882A
Other languages
Japanese (ja)
Other versions
JPS593952A (en
Inventor
Takashi Yahano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11151882A priority Critical patent/JPS593952A/en
Publication of JPS593952A publication Critical patent/JPS593952A/en
Publication of JPH0254658B2 publication Critical patent/JPH0254658B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 (1) 発明の技術分野 本発明は半導体装置の製造におけるアルミニウ
ム配線層の形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a method for forming an aluminum wiring layer in the manufacture of semiconductor devices.

(2) 従来技術と問題点 IC、LSI等の半導体装置の相互配線は一般にア
ルミニウム(AL)でもつて半導体装置製造工程
での最終工程に近いところで形成されている。こ
の配線形成がアルミニウムの真空蒸着又はスパツ
タによつて行なわれるわけであるが、半導体基板
の表面は様々な工程をへていくごとに凹凸の段差
が形成されているので、その段差部分にてアルミ
ニウムの蒸着膜又はスパツタ膜が薄くなつたり段
切れを生じ易い。その結果として、相互配線の断
線が生じることもあり、歩留り低下の原因となつ
ている。
(2) Prior art and problems The interconnections of semiconductor devices such as ICs and LSIs are generally made of aluminum (AL) and are formed near the final step of the semiconductor device manufacturing process. This wiring formation is performed by vacuum evaporation or sputtering of aluminum, but since uneven steps are formed on the surface of the semiconductor substrate as it goes through various processes, aluminum is formed at the step portions. The vapor deposited film or sputtered film tends to become thin or break. As a result, interconnections may be disconnected, causing a decrease in yield.

(3) 発明の目的 本発明の目的は、半導体基板表面の凹凸段差部
にて段切れの生じないアルミニウム膜を形成する
方法を提案し、段差に起因する配線の断線を防止
することである。
(3) Purpose of the Invention The purpose of the present invention is to propose a method for forming an aluminum film that does not cause breakage at uneven step portions on the surface of a semiconductor substrate, and to prevent disconnection of wiring caused by the step portions.

(4) 発明の構成 上述の目的が、アルミニウムの超微粒子を低圧
の不活性雰囲気中で生成し、この雰囲気中で水平
方向に振動させた段差表面を有する半導体基板上
に堆積し、次に100ないし400℃の温度への加熱に
よつて堆積した超微粒子を溶融し冷却してアルミ
ニウム膜を形成することからなるアルミニウム配
線層の形成方法を提供することによつて達成され
る。
(4) Structure of the invention The above-mentioned object is to produce ultrafine particles of aluminum in a low-pressure inert atmosphere, deposit them on a semiconductor substrate having a stepped surface that is horizontally vibrated in this atmosphere, and then This is achieved by providing a method for forming an aluminum wiring layer, which comprises heating the deposited ultrafine particles by heating to a temperature of 400 to 400° C. to form an aluminum film by melting and cooling the deposited ultrafine particles.

アルミニウムの超微粒子はガス蒸発法によつて
粒径10ないし100nmのものが不活性ガスの圧力
(1ないし50Torr)下で得られる(例えば、斉藤
弥八:技術ノート(超微粒子の製法)金属微粒
子、応用物理、第50巻、第2号(1981)、pp.149
−150参照)。
Ultrafine particles of aluminum with a particle size of 10 to 100 nm can be obtained by a gas evaporation method under an inert gas pressure (1 to 50 Torr) (for example, Yahachi Saito: Technical Note (Production of Ultrafine Particles) Metal Fine Particles , Applied Physics, Volume 50, No. 2 (1981), pp.149
-150).

(5) 発明の実施態様 以下本発明の実施態様例を図面を参照して説明
する。
(5) Embodiments of the invention Examples of embodiments of the present invention will be described below with reference to the drawings.

アルミニウム膜を形成すべき半導体基板を搭載
する振動支持台を公知の超微粒子製造装置に組込
んでアルミニウム膜形成装置(図示せず)とす
る。アルミニウムの超微粒子を生成するために、
蒸発室を10-6Torrまで減圧し、不活性ガス
(He、Ar又はXe)を1ないし50Torrの圧力まで
導入し、そして、高純度のアルミニウム源(ソー
ス)を加熱して粒径が10ないし100nmの超微粒
子を生成する。この超微粒子1を振動支持台2
(第1図)に搭載した半導体基板3上に堆積させ
るわけであるが、その際に振動支持台2を0.1〜
1KHzの振動数で、0.1mm以下の振動幅にて水平方
向に振動させて半導体基板表面の凹部4内に超微
粒子を集めるようにする。この凹部4は、例え
ば、半導体基板3のSiO2などの絶縁層5に設け
られたコンタクトホールであつて、シリコンウエ
ハ6又は配線層(図示せず)が凹所4の底となつ
ている。なお、振動支持台2は電磁石を利用する
などの公知の振動手段によつて振動させることが
できる。
A vibration support stand on which a semiconductor substrate on which an aluminum film is to be formed is mounted is incorporated into a known ultrafine particle manufacturing apparatus to form an aluminum film forming apparatus (not shown). To produce ultrafine particles of aluminum,
The evaporation chamber is depressurized to 10 -6 Torr, an inert gas (He, Ar or Xe) is introduced to a pressure of 1 to 50 Torr, and the high purity aluminum source is heated to reduce the particle size to 10 to 50 Torr. Generates ultrafine particles of 100nm. This ultrafine particle 1 is placed on a vibration support table 2.
(Fig. 1) is deposited on the semiconductor substrate 3 mounted on the substrate.
The ultrafine particles are collected in the recess 4 on the surface of the semiconductor substrate by horizontally vibrating at a frequency of 1 KHz and a vibration width of 0.1 mm or less. This recess 4 is, for example, a contact hole provided in an insulating layer 5 such as SiO 2 of the semiconductor substrate 3, and the silicon wafer 6 or a wiring layer (not shown) serves as the bottom of the recess 4. Note that the vibration support base 2 can be vibrated by a known vibration means such as using an electromagnet.

アルミニウム超微粒子の堆積を上述した振動を
与えながら継続してほぼ平坦な所定厚さの超微粒
子層7(第2図)を凹凸表面の半導体基板3上に
形成する。
The deposition of ultrafine aluminum particles is continued while applying the above-mentioned vibration to form a substantially flat ultrafine particle layer 7 (FIG. 2) having a predetermined thickness on the semiconductor substrate 3 having an uneven surface.

次に、超微粒子層を溶融してアルミニウム膜8
(第3図)とするために100ないし400℃の温度へ
の加熱処理を行なう。この加熱処理は例えば振動
支持台にニクロム線などの電熱線を配置して抵抗
加熱によりおこなう。加熱処理後冷却してから半
導体基板3をアルミニウム膜形成装置から取出
す。金属超微粒子はその材料の融点と比べて極め
て低温にて溶融する特色がある(例えば寺倉清
之:表面融解、日本物理学会誌、第37巻、第2号
(1982)、pp.148参照)。アルミニウム配線をオミ
ツクコンタクトとするために400℃程度の温度に
てアニールすることが望ましい。超微粒子を溶融
状態にしてそのまま400℃まで加熱するとアルミ
ニウムとシリコン基板のシリコンとの合金化が進
むので、なるべく低い温度にて溶融化しそして冷
却凝固したアルミニウム膜をアニールすることが
望ましい。
Next, the ultrafine particle layer is melted to form an aluminum film 8.
(Fig. 3), heat treatment is performed to a temperature of 100 to 400°C. This heat treatment is carried out by resistance heating, for example, by placing a heating wire such as a nichrome wire on a vibrating support. After cooling after the heat treatment, the semiconductor substrate 3 is taken out from the aluminum film forming apparatus. Ultrafine metal particles have the characteristic of melting at extremely low temperatures compared to the melting point of the material (for example, see Kiyoyuki Terakura: Surface Melting, Journal of the Physical Society of Japan, Vol. 37, No. 2 (1982), pp. 148). . It is desirable to anneal the aluminum wiring at a temperature of about 400°C in order to form an omic contact. If the ultrafine particles are heated to 400°C in a molten state, alloying between the aluminum and the silicon of the silicon substrate will proceed, so it is desirable to melt the ultrafine particles at as low a temperature as possible and then anneal the cooled and solidified aluminum film.

上述した超微粒子の堆積および加熱処理は、ア
ルミニウムの酸化を防止するために、超微粒子生
成時の低圧不活性ガス雰囲気中にて行なう。
The above-described deposition of ultrafine particles and heat treatment are performed in a low-pressure inert gas atmosphere during the generation of ultrafine particles in order to prevent oxidation of aluminum.

このように形成したアルミニウム膜を従来と同
様にホトエツチングして所定の配線パターンを形
成する。
The aluminum film thus formed is photoetched in a conventional manner to form a predetermined wiring pattern.

(6) 発明の効果 以上説明したように、本発明に係る方法によつ
て形成されたアルミニウム膜は第3図に示すよう
に段差部にて薄くなつたり段切れが生じることは
ないので、配線の断線は生じない。したがつて、
相互配線の歩留りが向上して製品歩留りが良くな
る。
(6) Effects of the Invention As explained above, the aluminum film formed by the method according to the present invention does not become thinner or break at the stepped portions as shown in FIG. No disconnection occurs. Therefore,
The yield of mutual wiring is improved and the product yield is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、振動している半導体基板上へのアル
ミニウム超微粒子の堆積を示す概略断面図であ
り、第2図は、堆積したアルミニウムの超微粒子
層を示す概略断面図であり、第3図は、本発明の
方法によつて形成したアルミニウム膜を示す概略
断面図である。 1……アルミニウムの超微粒子、2……振動支
持台、3……半導体基板、4……凹部、7……超
微粒子層、8……アルミニウム膜。
FIG. 1 is a schematic cross-sectional view showing the deposition of ultrafine aluminum particles on a vibrating semiconductor substrate, FIG. 2 is a schematic cross-sectional view showing the deposited ultrafine aluminum particle layer, and FIG. 1 is a schematic cross-sectional view showing an aluminum film formed by the method of the present invention. DESCRIPTION OF SYMBOLS 1... Ultrafine particles of aluminum, 2... Vibration support base, 3... Semiconductor substrate, 4... Concave portion, 7... Ultrafine particle layer, 8... Aluminum film.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミニウムの超微粒子を低圧の不活性雰囲
気中で生成し、この雰囲気中で水平方向に振動さ
せた段差表面を有する半導体基板上に堆積し、次
に100ないし400℃の温度への加熱によつて堆積し
た超微粒子を溶融し冷却してアルミニウム膜を前
記半導体基板上に形成することからなるアルミニ
ウム配線層の形成方法。
1 Ultrafine particles of aluminum are generated in a low-pressure inert atmosphere, deposited on a semiconductor substrate with a stepped surface that is horizontally vibrated in this atmosphere, and then heated to a temperature of 100 to 400°C. A method for forming an aluminum wiring layer, which comprises melting and cooling ultrafine particles deposited on the semiconductor substrate to form an aluminum film on the semiconductor substrate.
JP11151882A 1982-06-30 1982-06-30 Formation of aluminum wiring layer Granted JPS593952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11151882A JPS593952A (en) 1982-06-30 1982-06-30 Formation of aluminum wiring layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11151882A JPS593952A (en) 1982-06-30 1982-06-30 Formation of aluminum wiring layer

Publications (2)

Publication Number Publication Date
JPS593952A JPS593952A (en) 1984-01-10
JPH0254658B2 true JPH0254658B2 (en) 1990-11-22

Family

ID=14563346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11151882A Granted JPS593952A (en) 1982-06-30 1982-06-30 Formation of aluminum wiring layer

Country Status (1)

Country Link
JP (1) JPS593952A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208244A (en) * 1987-02-24 1988-08-29 Nec Corp Manufacture of semiconductor device
JPH01298169A (en) * 1988-05-27 1989-12-01 Tokyo Electron Ltd Film formation
JPH1197392A (en) * 1997-09-16 1999-04-09 Ebara Corp Method and system for filling fine recess
US6730596B1 (en) 1999-10-15 2004-05-04 Ebara Corporation Method of and apparatus for forming interconnection
JP4578755B2 (en) * 2000-05-02 2010-11-10 日揮触媒化成株式会社 Integrated circuit manufacturing method
CN1768001A (en) * 2003-02-07 2006-05-03 纳米簇设备公司 Templated cluster assembled wires

Also Published As

Publication number Publication date
JPS593952A (en) 1984-01-10

Similar Documents

Publication Publication Date Title
US6041735A (en) Inductively coupled plasma powder vaporization for fabricating integrated circuits
US4713157A (en) Combined integrated circuit/ferroelectric memory device, and ion beam methods of constructing same
US3566207A (en) Silicon-to-gold bonded structure and method of making the same
JPH0254658B2 (en)
JP2718842B2 (en) Method for manufacturing wiring metal film for semiconductor integrated circuit
JPH03225829A (en) Manufacture of semiconductor device
JPS6130028B2 (en)
JP3066673B2 (en) Dry etching method
JPH0813141A (en) Sputtering target and its production
JP2000138206A (en) Electrode plate for plasma etching system enabling formation of uniformly etched surface
JPS5856457A (en) Manufacture of semiconductor device
JPH07252655A (en) Thin film forming device
JPH029530B2 (en)
JP2892321B2 (en) Semiconductor device and manufacturing method thereof
JP2760988B2 (en) Hybrid board
JPH03261135A (en) Apparatus for forming thin film of aluminum
JPS6148920A (en) Manufacture of semiconductor device
JPS61144029A (en) Method and apparatus for manufacturing silicon oxide film containing phosphorus
JPS589902A (en) Production of fine metallic particle
JPS6329504A (en) Bias sputtering
JPH02308538A (en) Method and apparatus for manufacture of semiconductor device
KR20040043847A (en) A machine for manufacturing a sputtering target and A method for manufacturing a sputtering target
JPH04234124A (en) Semiconductor device
JPS60160623A (en) Method and apparatus for manufacturing semiconductor device
RU2083025C1 (en) Method for producing supporting layer of silicon-on-insulator semiconductor structure