JPH03261113A - Magnetic thin film transformer - Google Patents

Magnetic thin film transformer

Info

Publication number
JPH03261113A
JPH03261113A JP5812390A JP5812390A JPH03261113A JP H03261113 A JPH03261113 A JP H03261113A JP 5812390 A JP5812390 A JP 5812390A JP 5812390 A JP5812390 A JP 5812390A JP H03261113 A JPH03261113 A JP H03261113A
Authority
JP
Japan
Prior art keywords
magnetic thin
thin film
primary
coil
secondary coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5812390A
Other languages
Japanese (ja)
Inventor
Kazuyuki Yamaguchi
一幸 山口
Fumio Takeda
武田 文雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMORPHOUS DENSHI DEVICE KENKYUSHO KK
Original Assignee
AMORPHOUS DENSHI DEVICE KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMORPHOUS DENSHI DEVICE KENKYUSHO KK filed Critical AMORPHOUS DENSHI DEVICE KENKYUSHO KK
Priority to JP5812390A priority Critical patent/JPH03261113A/en
Publication of JPH03261113A publication Critical patent/JPH03261113A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the operating frequency of a transformer by providing an insulator ball between the primary and secondary coil metal layers, between magnetic thin films, or between either one or more between the primary and secondary coil metal layers and magnetic thin films to insulate them. CONSTITUTION:After a support 5 is overlaid successively with a magnetic thin film 6, an insulating layer 7, and further the primary and secondary coils 1 and 2, a suitable number of insulator balls 14 with a diameter larger than the thickness of a coil, e.g. several microns to several tens microns diameter are dotted between the primary coil 1 and the secondary coil 2, and the balls are overspread with a magnetic thin film 19 formed on a support 15 to insulate the primary and secondary coils 1 and 2 from the magnetic thin film 19. Another way is dot insulator balls 14 between the magnetic thin films 6, 9 or between the primary and secondary coil metal layers and the magnetic thin films 6, 19. This design can reduce stray capacitance to increase the operating frequency of a transformer.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は性能を向上した高周波数領域で使用する磁性薄
膜トランスに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic thin film transformer for use in a high frequency region with improved performance.

[従来の技術] 第3図は従来の磁性薄膜トランス(電気学会マグネティ
ックス研究会資料WAG−87−78,89(1911
7))の1次コイル1.2次コイル2を示す。1次コイ
ル1と2次コイル2を交換しても薄膜トランスの性能は
変わらない。コイルの中央部から絶縁層を介して引き出
し線3でコイル外部の端子部4へ接続する。第3図のA
−A’部分のトランス完成断面を第4図に示した。支持
体5、磁性薄膜6が形成され、絶縁層7を介して1次コ
イル1と2次コイル2を配置する。コイル全体を絶縁層
8て覆い、その上に磁性薄膜層9を設けて、磁性薄膜ト
ランスはでき上がっている。トランスの周辺部10は下
の磁性薄膜6と上の磁性薄膜9が閉磁路を構成するよう
に接している。
[Prior art] Figure 3 shows a conventional magnetic thin film transformer (IEEJ Magnetics Study Group material WAG-87-78, 89 (1911
7)) shows the primary coil 1 and secondary coil 2. Even if the primary coil 1 and secondary coil 2 are replaced, the performance of the thin film transformer remains unchanged. A lead wire 3 is connected from the center of the coil to a terminal portion 4 outside the coil via an insulating layer. A in Figure 3
-A' section of the completed transformer is shown in Figure 4. A support 5 and a magnetic thin film 6 are formed, and a primary coil 1 and a secondary coil 2 are arranged with an insulating layer 7 in between. A magnetic thin film transformer is completed by covering the entire coil with an insulating layer 8 and providing a magnetic thin film layer 9 thereon. In the peripheral portion 10 of the transformer, the lower magnetic thin film 6 and the upper magnetic thin film 9 are in contact with each other so as to form a closed magnetic path.

[発明が解決しようとする課題] 従来の磁性薄膜トランスでは、浮遊容量が大きいので、
トランスの高周波数化が難かしいという問題があり、そ
れを解決することが課題である。
[Problem to be solved by the invention] Conventional magnetic thin film transformers have large stray capacitance, so
There is a problem that it is difficult to increase the frequency of the transformer, and the challenge is to solve this problem.

第4図に示した従来の磁性薄膜トランスの1次コイル周
辺の浮遊容量を考える。1次コイル1と下の磁性7sl
I!6との間11の容量をC+   1次コイル1と隣
接する2次コイル2との間12の容量をC2,1次コイ
ル1と上の磁性薄膜層9との間13の容量をC1とする
と、1次コイル1の浮遊容量は容量CI  C2、’C
Iが重畳した形になっている。容量CI  C2、C3
は次式で書き表わされる。
Consider the stray capacitance around the primary coil of the conventional magnetic thin film transformer shown in FIG. Primary coil 1 and lower magnetic 7sl
I! If the capacitance of 11 between the primary coil 1 and the adjacent secondary coil 2 is C2, and the capacitance of 13 between the primary coil 1 and the upper magnetic thin film layer 9 is C1, then , the stray capacitance of the primary coil 1 is the capacitance CI C2, 'C
It has a superimposed shape. Capacity CI C2, C3
is written as the following equation.

ここでε。は真空中の誘電率で、T1は絶縁層7の比誘
電率である。Slは1次コイル1と下の磁性薄膜6の対
向している面積で、dlは両者間の間隔である。同様に
、C2は絶縁層8の比誘電率、Slは1次コイル1と2
次コイル2との対向面積、d2はそれらの間隔である。
Here ε. is the dielectric constant in vacuum, and T1 is the dielectric constant of the insulating layer 7. Sl is the area where the primary coil 1 and the lower magnetic thin film 6 face each other, and dl is the distance between them. Similarly, C2 is the dielectric constant of the insulating layer 8, and Sl is the primary coil 1 and 2.
The area facing the secondary coil 2, d2, is the interval therebetween.

S、は1次コイル1と上の磁性薄膜9との対向面積、d
3はそれらの間隔である。2次コイル2の浮遊容量は1
次コイル1の場合と全く同様であるから省略する。
S is the facing area of the primary coil 1 and the upper magnetic thin film 9, d
3 is their spacing. The stray capacitance of secondary coil 2 is 1
Since it is exactly the same as the case of the next coil 1, it will be omitted.

以上のように、浮遊容量の大きさは、絶縁層7.8の材
料の比誘電率に依存していることが明確である。一般に
絶縁層として用いられている材料の比誘電率は、二酸化
ケイ素が4、フォトレジストが3〜4、アルミナが8.
5である。気体の比誘電率は1,0であるから、それに
比較して、現在用いられている材料の比誘電率は非常に
大きい。
As described above, it is clear that the magnitude of the stray capacitance depends on the dielectric constant of the material of the insulating layer 7.8. The dielectric constants of materials commonly used as insulating layers are 4 for silicon dioxide, 3 to 4 for photoresist, and 8. for alumina.
It is 5. Since the dielectric constant of gas is 1.0, the dielectric constant of the materials currently used is very large compared to that.

磁性薄膜トランスは自己共振周波数以下の周波数帯域で
動作させる。従って、動作周波数帯域の上限の目安は自
己共振周波数f。で、それは次式%式% これまで述べてきた1次コイル1を例に説明すると、L
とCは1次コイルのインダクタンスと浮遊容量である。
The magnetic thin film transformer is operated in a frequency band below the self-resonant frequency. Therefore, the guideline for the upper limit of the operating frequency band is the self-resonant frequency f. So, it is the following formula % Formula % To explain it using the primary coil 1 mentioned so far as an example, L
and C are the inductance and stray capacitance of the primary coil.

(4)式から浮遊容量が大きいほど、foが低下し、磁
性薄膜トランスの動作周波数の上限が低下することがわ
かる。従って磁性薄膜トランスの動作周波数の高周波数
化を実現するためには、浮遊容量をいかに小さくするか
ということが一つの課題である。
From equation (4), it can be seen that as the stray capacitance increases, fo decreases, and the upper limit of the operating frequency of the magnetic thin film transformer decreases. Therefore, in order to realize a higher operating frequency of a magnetic thin film transformer, one of the issues is how to reduce the stray capacitance.

本発明は上記の事情に鑑みてなされたちのて、浮遊容量
を小さくすることにより、トランスの動作周波数の高周
波化を実現し得る磁性薄膜トランスを提供することを目
的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a magnetic thin film transformer that can realize a higher operating frequency of the transformer by reducing stray capacitance.

[課題を解決するための手段と作用コ 本発明は上記目的を達成するために、支持体で支持され
た複数の磁性薄膜間に、金属層よりなる1次コイル及び
2次コイルが設けられた磁性薄膜トランスにおいて、1
次コイル及び2次コイルの金属層の相互間、磁性薄膜の
相互間、及び1次コイル及び2次コイルの金属層と磁性
薄膜との間の少なくともいずれか1つ以上の間に、絶縁
体球を点在させて絶縁したことを特徴とするもので、1
次コイル及び2次コイルの金属層の相互間、磁性薄膜の
相互間、及び1次コイル及び2次コイルの金属層と磁性
薄膜との間の少なくともいずれか1つ以上の間に、絶縁
体球を設けて絶縁することにより、浮遊容量を小さくし
て、トランスの動作周波数の高周波化を実現したもので
ある。
[Means and effects for solving the problems] In order to achieve the above object, the present invention provides a primary coil and a secondary coil made of a metal layer are provided between a plurality of magnetic thin films supported by a support. In a magnetic thin film transformer, 1
An insulating ball is provided between the metal layers of the primary coil and the secondary coil, between the magnetic thin films, and at least between the metal layers and the magnetic thin film of the primary coil and the secondary coil. It is characterized by being insulated by interspersing it with 1
An insulating ball is provided between the metal layers of the primary coil and the secondary coil, between the magnetic thin films, and at least between the metal layers and the magnetic thin film of the primary coil and the secondary coil. By providing insulation by providing insulation, stray capacitance is reduced and the operating frequency of the transformer is increased.

[実施例] 以下図面を参照して本発明の実施例を詳細に説明する。[Example] Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例を示す。第1図の実施例では
、下の支持体5上に磁性薄膜6、絶縁層7、更に金属層
よりなる1次コイル1及び2次コイル2を順次積層して
形成した後に、1次コイル1と2次コイル2の間にコイ
ルの厚さより、直径が大きい例えば直径数ミクロンから
数十ミクロンの絶縁体球14を適当数点在させた。点在
は不規則でよい。絶縁体球14は市販の真球形硬質プラ
スチック球である。その上に支持体15に形成した磁性
薄膜1つをのせて、1次コイル1及び2次コイル2と上
の磁性薄膜19間を絶縁する。封止用樹脂21を磁性薄
膜トランスの周辺部に塗布し、電子部品の封止技術で真
空に封止する。または、コイルや磁性薄膜が、酸化や腐
食などの経時変化を起こさないような不活性のガスを封
入し、封止する。封入ガスは、ネオン、アルゴン、ヘリ
ウムなどの不活性ガスや、窒素のように、金属との反応
性が無視できるような気体が適当である。真空状態の比
誘電率は、その定義から当然1.0である。気体のネオ
ン、アルゴン、ヘリウム、窒素の比誘電率も1.0であ
る。従って、本発明によって(2)式と(3)式のC2
−1,0となり、浮遊容量は絶縁層が二酸化)1イ素の
場合の1/4となり、自己共振周波数は増大し、磁性薄
膜トランスの動作周波数の高周波数化ができる。気体封
入の方法としては、気体雰囲気、例えばアルゴン雰囲気
の中で、磁性薄膜トランスの外周を封止用樹脂21で封
止して、アルゴン16を封入した磁性薄膜トランスを作
製する。封入気体がネオン、ヘリウム、窒素の場合も、
封入方法はこの方法でよい。
FIG. 1 shows an embodiment of the invention. In the embodiment shown in FIG. 1, a magnetic thin film 6, an insulating layer 7, and a primary coil 1 and a secondary coil 2 each made of a metal layer are sequentially laminated on a lower support 5, and then the primary coil 1 A suitable number of insulating balls 14 having a diameter larger than the thickness of the coil, for example, from several microns to several tens of microns, are scattered between the secondary coil 2 and the secondary coil 2. The dots may be irregular. The insulator sphere 14 is a commercially available true spherical hard plastic sphere. One magnetic thin film formed on the support 15 is placed thereon to insulate the primary coil 1, the secondary coil 2, and the magnetic thin film 19 above. A sealing resin 21 is applied to the periphery of the magnetic thin film transformer, and the transformer is sealed in a vacuum using an electronic component sealing technique. Alternatively, the coil or magnetic thin film is sealed with an inert gas that does not cause oxidation, corrosion, or other changes over time. The filler gas is suitably an inert gas such as neon, argon, or helium, or a gas whose reactivity with metals can be ignored, such as nitrogen. Naturally, the dielectric constant in a vacuum state is 1.0 from its definition. The dielectric constants of gases such as neon, argon, helium, and nitrogen are also 1.0. Therefore, according to the present invention, C2 in formulas (2) and (3)
-1,0, and the stray capacitance is 1/4 of that in the case where the insulating layer is 1 ion dioxide, the self-resonant frequency increases, and the operating frequency of the magnetic thin film transformer can be increased. As for the gas filling method, the outer periphery of the magnetic thin film transformer is sealed with a sealing resin 21 in a gas atmosphere, for example, an argon atmosphere, to produce a magnetic thin film transformer in which argon 16 is sealed. Even when the enclosed gas is neon, helium, or nitrogen,
This method may be used as the encapsulation method.

第2図は本発明の他の実施例を示し、下の磁性薄膜26
と上の磁性薄膜29が閉磁路を形成するように支持体5
に突部17を設けると共に、支持体15に突部27を設
け、磁性薄膜26.29の周縁部を盛り上げた。突部1
7.27はフォトレジストを用いているのて、周縁部に
数ケ所、フォトリソグラフィで気体の流通口を作って、
ガス圧が、コイル部18と磁性薄膜の外部1つか同じに
なるようにしである。その他の作製方法は、第1図の作
製法と同じである。
FIG. 2 shows another embodiment of the invention, in which the lower magnetic thin film 26
The support body 5 is arranged so that the upper magnetic thin film 29 forms a closed magnetic path.
At the same time, a protrusion 17 was provided on the support body 15, and a protrusion 27 was provided on the support body 15, and the peripheral edges of the magnetic thin films 26 and 29 were raised. Projection 1
7.27 uses photoresist, so we created several gas flow holes on the periphery using photolithography.
The gas pressure is set to be the same between the coil portion 18 and the outside of the magnetic thin film. The other manufacturing methods are the same as the manufacturing method shown in FIG.

本実施例によって上記(2)式と(3)式の比誘電率ε
2−1.0となる。この値は、酸化ケイ素やフォトレジ
スト、またはアルミナを絶縁層とした場合の比誘電率に
比較して非常に小さい。
In this example, the relative dielectric constant ε of the above equations (2) and (3) is
2-1.0. This value is very small compared to the dielectric constant when silicon oxide, photoresist, or alumina is used as an insulating layer.

具体例として、現在絶縁層として、広範囲な電子部品に
応用されている酸化ケイ素(比誘電率ε2−4)と本実
施例のアルゴン(比誘電率ε2−1.0)16を封入し
た場合を比較すると、本実施例によって、上記(2)式
の02と(3)式のC9は従来の1/4に低減できる。
As a specific example, consider a case in which silicon oxide (relative dielectric constant ε2-4), which is currently used in a wide range of electronic components, and argon (relative dielectric constant ε2-1.0) 16 of this example are sealed as an insulating layer. By comparison, according to this embodiment, 02 in the above equation (2) and C9 in the equation (3) can be reduced to 1/4 of the conventional value.

(1)式の01は従来の値と変わらないが、C1、C2
、C5の重畳された浮遊容量は従来の約1/3になる。
01 in equation (1) is the same as the conventional value, but C1, C2
, C5, the superimposed stray capacitance is about 1/3 that of the conventional one.

それらは1次コイル1.2次コイル2とも同じである。They are the same as the primary coil 1 and the secondary coil 2.

従って、上記(4)式の自己共振周波数は1.7倍に増
加する。その結果、磁性薄膜トランスの稼動周波数帯域
は1.7倍高周波側へ伸び、本実施例によって、磁性薄
膜トランスの高周波数化が実現できる。
Therefore, the self-resonant frequency in equation (4) above increases by 1.7 times. As a result, the operating frequency band of the magnetic thin film transformer is extended to the higher frequency side by a factor of 1.7, and this embodiment can realize a higher frequency of the magnetic thin film transformer.

なお、絶縁体球をコイルの上に点在させてもよい。Note that insulating balls may be scattered on the coil.

[発明の効果] 以上述べたように本発明によれば、1次コイル及び2次
コイルの金属層の相互間、磁性薄膜の相互間、及び1次
コイル及び2次コイルの金属層と磁性薄膜との間の少な
くともいずれか1つ以上の間に、絶縁体球を設けて絶縁
することにより、浮遊容量を小さくして、トランスの動
作周波数の高周波化を実現することができる。
[Effects of the Invention] As described above, according to the present invention, there is a gap between the metal layers of the primary coil and the secondary coil, between the magnetic thin films, and between the metal layers of the primary coil and the secondary coil and the magnetic thin film. By providing insulation by providing an insulating ball between at least one of the transformers and the transformer, stray capacitance can be reduced and the operating frequency of the transformer can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す一部欠載断面図、第2
図は本発明の他の実施例を示す一部欠載断面図、第3図
は従来の磁性薄膜トランスのコイルの平面図、第4図は
第3図A−A’部の断面図である。 1・・・1次コイル、2・・・2次コイル、3・・・引
き出し線、4・・・端子部、5.15・・・支持体、6
・・・下の磁性薄膜、7.8・・絶縁層、1つ・・・上
の磁性薄膜。
FIG. 1 is a partially cutaway cross-sectional view showing one embodiment of the present invention, and FIG.
3 is a plan view of a coil of a conventional magnetic thin film transformer, and FIG. 4 is a sectional view taken along line A-A' in FIG. 3. . DESCRIPTION OF SYMBOLS 1... Primary coil, 2... Secondary coil, 3... Outgoing wire, 4... Terminal part, 5.15... Support body, 6
... lower magnetic thin film, 7.8 ... insulating layer, one ... upper magnetic thin film.

Claims (2)

【特許請求の範囲】[Claims] (1)支持体で支持された複数の磁性薄膜間に、金属層
よりなる1次コイル及び2次コイルが設けられた磁性薄
膜トランスにおいて、1次コイル及び2次コイルの金属
層の相互間、磁性薄膜の相互間、及び1次コイル及び2
次コイルの金属層と磁性薄膜との間の少なくともいずれ
か1つ以上の間に、絶縁体球を点在させて絶縁したこと
を特徴とする磁性薄膜トランス。
(1) In a magnetic thin film transformer in which a primary coil and a secondary coil made of a metal layer are provided between a plurality of magnetic thin films supported by a support, between the metal layers of the primary coil and the secondary coil, between the magnetic thin films, and between the primary coil and the secondary coil.
A magnetic thin film transformer characterized in that insulating balls are interspersed between at least one of the metal layer of the secondary coil and the magnetic thin film for insulation.
(2)請求項1記載の磁性薄膜トランスにおいて、絶縁
体球を介して絶縁されている金属層間の空間を真空に封
止し、もしくは気体を封入して封止したことを特徴とす
る磁性薄膜トランス。
(2) The magnetic thin film transformer according to claim 1, characterized in that the space between the metal layers insulated via the insulating sphere is sealed in a vacuum or sealed with gas. Trance.
JP5812390A 1990-03-12 1990-03-12 Magnetic thin film transformer Pending JPH03261113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5812390A JPH03261113A (en) 1990-03-12 1990-03-12 Magnetic thin film transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5812390A JPH03261113A (en) 1990-03-12 1990-03-12 Magnetic thin film transformer

Publications (1)

Publication Number Publication Date
JPH03261113A true JPH03261113A (en) 1991-11-21

Family

ID=13075204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5812390A Pending JPH03261113A (en) 1990-03-12 1990-03-12 Magnetic thin film transformer

Country Status (1)

Country Link
JP (1) JPH03261113A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196812A (en) * 2005-01-17 2006-07-27 Matsushita Electric Ind Co Ltd Common-mode filter
JP2012135112A (en) * 2010-12-21 2012-07-12 Tohoku Ricoh Co Ltd High voltage inverter device and output voltage adjustment method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196812A (en) * 2005-01-17 2006-07-27 Matsushita Electric Ind Co Ltd Common-mode filter
JP2012135112A (en) * 2010-12-21 2012-07-12 Tohoku Ricoh Co Ltd High voltage inverter device and output voltage adjustment method thereof

Similar Documents

Publication Publication Date Title
US7365627B2 (en) Metal-insulator-metal transformer and method for manufacturing the same
KR20090015975A (en) Inductive component and method for manufacturing an inductive component
JP2004311944A (en) Chip power inductor
JP3359099B2 (en) Thin film inductor and thin film transformer
US6992556B2 (en) Inductor part, and method of producing the same
JPH03261113A (en) Magnetic thin film transformer
JPH09270334A (en) Plane type magnetic element and switching power source using thereof
US6788183B2 (en) I-inductor as high-frequency microinductor
JPH0389548A (en) Semiconductor integrated circuit
JPH06124843A (en) High frequency use thin film transformer
JPH0786507A (en) Semiconductor device and fabrication thereof
JPH05109557A (en) High frequency thin film transformer and high frequency thin film inductor
JP3162692B2 (en) Inductors and transformers
JPS6229115A (en) Planar coil body
JPH0677055A (en) Plane magnetic element
JPH0358164B2 (en)
JPS58184710A (en) Shield type transformer
JPH0521243A (en) High frequency thin film transformer and high frequency thin film inductor
JP2000114046A (en) Thin film transformer
JPH0484404A (en) Inductor and transformer for integrated circuit
JPH06151203A (en) Coil device
JPH05101937A (en) Semiconductor chip mounting electromagnetic apparatus
JPS5898906A (en) Iron core
JPH0883717A (en) Transformer element
JPH0666193B2 (en) Magnetic thin film transformer