JPH06124843A - High frequency use thin film transformer - Google Patents

High frequency use thin film transformer

Info

Publication number
JPH06124843A
JPH06124843A JP4274715A JP27471592A JPH06124843A JP H06124843 A JPH06124843 A JP H06124843A JP 4274715 A JP4274715 A JP 4274715A JP 27471592 A JP27471592 A JP 27471592A JP H06124843 A JPH06124843 A JP H06124843A
Authority
JP
Japan
Prior art keywords
conductor
thin film
magnetic
conductors
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4274715A
Other languages
Japanese (ja)
Inventor
Masato Mino
正人 三野
Toshiaki Yanai
利明 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4274715A priority Critical patent/JPH06124843A/en
Publication of JPH06124843A publication Critical patent/JPH06124843A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • H01F19/04Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2809Printed windings on stacked layers

Abstract

PURPOSE:To miniaturize a high frequency use thin film transformer and improve the performance by suppressing inductance reduction and the rapid increase of high frequency conductor resistance and improving the coupling between primary and secondary conductors. CONSTITUTION:Top and bottom magnetic layers 8 and 14 are connected at a through hole 15 and a primary and a secondary conductors 10 and 12 are permitted to be covered vertically and horizontally in the longitudinal direction by a magnetic body which has a closed magnetic circuit. The closed magnetic circuit structure remarkably reduces diamagnetic field, which causes inductance deterioration, in the magnetic layers 8 and 14, permits the interval between the adjacent conductors to be extremely small and the thin film transformer is miniaturized. At the same time, leakage flux is reduced, a rapid increase of the high frequency conductor resistance due to eddy current generated by the interlinkage of the leakage flux and the conductors 10 and 12 is suppressed and a high Q value is allowed. Primary side and secondary side conductors 8 and 14 are arranged in the closed magnetic circuit structured magnetic body and a high coupling coefficient is allowed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コンバータやスイッチ
ング電源等に好適で、小形に構成された高周波特性に優
れるインダクタ・トランスに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inductor / transformer which is suitable for a converter, a switching power supply, etc. and has a small size and excellent high frequency characteristics.

【0002】[0002]

【従来の技術】近年、電子機器構成部品の小形化・軽量
化の要請は厳しく、高品質な電力が得られるスイッチン
グ電源等においても小形化は必須の課題であり、スイッ
チング周波数の高周波化により、トランス、コンデンサ
等の部品を小さくすることで小形化が進められてきた。
半導体部品やコンデンサ部品では、LSIや積層セラミ
ックコンデンサに代表されるように、早くから薄膜技術
が用いられ、構成部品小形化の要請に十分応えてきた。
一方、トランスはこれまでに最も小形化しにくく、また
高周波化に伴う損失増加を抑えることが難しいため、電
源の小形化を妨げる第一の原因であった。このため、現
在、高周波スイッチング電源の体積は、トランスによっ
て決定されると言っても過言ではない。そこで近年、高
周波化に対応すべく薄膜形成技術を用いた薄膜トランス
の研究が進められ、スイッチング周波数をMHz帯域ま
で高めた小形電源の開発が強く望まれるようになった。
(例えば、T.YACHI,M.MINO,A.TAG
O,and K.YANAGISAWA,PESC’9
1 RECORDS,pp.20−26,1991や、
山口,大沼,今川,鳥生,電気学会研究会資料,MAG
−91−62,1991.)図8に従来の薄膜形成技術
で作製されたつづら折れ形薄膜トランスの平面図(a)
およびその平面図のX−X′断面構造模式図(b)を示
す。図中、1は基板、2は下部磁性層、3は1次側導
体、4は2次側導体、5は上部磁性層であり、各層とも
絶縁層を介して成膜されており、互いに絶縁されてい
る。従来、この種の薄膜トランスの作製は、以下のよう
に行われていた。すなわち、表面が絶縁性である基板1
上に、パーマロイ,CoZrRe,CoZrNb,Co
FeSiB等の磁性層をスパッタ法等の薄膜形成手法で
成膜し、これをパターニングして平板状の下部磁性層2
を形成し、この上に絶縁層をフォトレジスト,Si
2,SiO,Al23,ポリイミド樹脂等で形成し、
これを平坦化したのちCu,Ag,Al等の導体層を電
子ビーム蒸着法やスパッタ法等で形成し、パターニング
してつづら折れ形状の1次側導体3とする。さらにこの
上にふたたび絶縁層を形成し平坦化を行う。そして、1
次側導体3の外部接続用端子部分にイオンビームエッチ
ング法等によりスルーホールを形成し、端子部の窓開け
を行う。さらに、導体層を電子ビーム蒸着法やスパッタ
法等で形成し、上記スルーホール部を充填するととも
に、パターニングしてつづら折れ形状の2次側導体4と
する。そして、この上に絶縁層を形成し、平坦化したの
ち、磁性層を形成し、パターニングで平板状の上部磁性
層5を作製する。最後に1次側、2次側導体層の外部端
子部分にイオンビームエッチング法等により窓開けを行
い完成する。こうして作製された薄膜トランスでは、1
次側導体3と2次側導体4との結合は、上下磁性層2,
5間の漏れ磁束によって結合する構造となっている。
2. Description of the Related Art In recent years, demands for downsizing and weight reduction of electronic equipment components are strict, and downsizing is an essential issue even in switching power supplies and the like that can obtain high-quality power. Miniaturization has been promoted by making components such as transformers and capacitors smaller.
In semiconductor components and capacitor components, thin film technology has been used for a long time, as represented by LSI and multilayer ceramic capacitors, and has sufficiently met the demand for miniaturization of component parts.
On the other hand, transformers are the most difficult to miniaturize so far, and it is difficult to suppress the increase in loss due to higher frequencies, which was the first cause of hindering the miniaturization of power supplies. Therefore, it is no exaggeration to say that the volume of the high-frequency switching power supply is currently determined by the transformer. Therefore, in recent years, research on a thin film transformer using a thin film forming technique has been advanced in order to cope with higher frequencies, and development of a small power source in which a switching frequency is increased to a MHz band has been strongly desired.
(For example, T.YACHI, M.MINO, A.TAG
O, and K. YANAGISWAWA, PESC'9
1 RECORDS, pp. 20-26, 1991,
Yamaguchi, Onuma, Imagawa, Torio, The Institute of Electrical Engineers of Japan, MAG
-91-62, 1991. FIG. 8 is a plan view of a zigzag folded thin film transformer manufactured by a conventional thin film forming technique (a).
And a schematic view (b) taken along the line XX 'of the plan view. In the figure, 1 is a substrate, 2 is a lower magnetic layer, 3 is a primary-side conductor, 4 is a secondary-side conductor, 5 is an upper magnetic layer, and each layer is formed through an insulating layer and is insulated from each other. Has been done. Conventionally, the fabrication of this type of thin film transformer has been performed as follows. That is, the substrate 1 having an insulating surface
On top of Permalloy, CoZrRe, CoZrNb, Co
A magnetic layer of FeSiB or the like is formed by a thin film forming method such as a sputtering method, and is patterned to form a flat lower magnetic layer 2
Forming an insulating layer on top of which a photoresist, Si
Made of O 2 , SiO, Al 2 O 3 , polyimide resin, etc.,
After this is flattened, a conductor layer of Cu, Ag, Al or the like is formed by an electron beam evaporation method, a sputtering method or the like, and patterned to form a zigzag-shaped primary conductor 3. Further, an insulating layer is again formed on this and flattening is performed. And 1
A through hole is formed in the external connection terminal portion of the secondary conductor 3 by an ion beam etching method or the like, and a window of the terminal portion is opened. Further, a conductor layer is formed by an electron beam vapor deposition method, a sputtering method or the like, and the through hole portion is filled and patterned to form a zigzag-shaped secondary conductor 4. Then, an insulating layer is formed thereon and planarized, then a magnetic layer is formed and patterned to form a flat upper magnetic layer 5. Finally, a window is opened in the external terminal portion of the primary side and secondary side conductor layers by an ion beam etching method or the like to complete. In the thin film transformer manufactured in this way, 1
The coupling between the secondary conductor 3 and the secondary conductor 4 is performed by connecting the upper and lower magnetic layers 2, 2.
The structure is such that they are coupled by the leakage flux between the five.

【0003】[0003]

【発明が解決しようとする課題】図9は、上記の従来例
のつづら折れ形薄膜トランスの磁界分布を示す断面図で
あり、1次側導体3に電流を流した時に発生する磁束分
布を矢印で示したものである。なお、図中の
FIG. 9 is a cross-sectional view showing the magnetic field distribution of the above-mentioned zigzag-shaped thin film transformer of the conventional example. The magnetic flux distribution generated when a current is passed through the primary side conductor 3 is indicated by arrows. It is shown in. In addition, in the figure

【0004】[0004]

【数1】 [Equation 1]

【0005】は、前者が紙面の鉛直方向に紙面の裏側か
ら表側に流れる電流の向きを表わし、後者がその逆の向
きを表わしている。このような薄膜トランスにおいて
は、図中に示すように、隣合う導体には互いに反平行な
電流が流れるため、導体3,4からの磁界によって、磁
性層2,5中は、互いに反平行な磁界が発生する領域に
分割され、そのため、反磁界によるインダクタンス低下
が現出する。したがって、導体間隔が大きい場合には問
題は比較的小さいが、小形化するために隣接導体の間隔
を狭めていくと、インダクタンスは著しく低下し、小形
のつづら折れ形薄膜トランスを開発する上で極めて大き
な問題となっていた。また、上下の磁性層2,5間を漏
れる磁束が導体3,4と錯交することにより、導体3,
4中に渦電流が発生し、高周波における導体抵抗の急増
をまねき、性能特性値Q値(ωL/R)を減少させる要
因となっていた。さらに、ギャップの大きい上下磁性層
2,5間を流れる磁束により、1次側導体3と2次側導
体4が結合するため、トランスとしての結合が小さい欠
点を持っている。そのため、小形薄膜トランスにはつづ
ら折れ構造は適さず、研究開発は小形化効果の大きい螺
旋構造薄膜トランスやスパイラルコイル形薄膜トランス
を中心として進められているのが、現状である。(例え
ば、T.YACHI,M.MINO,and K.YA
NAGISAWA,PESC’91 RECORDS,
pp.20−26,1991.や、山口,大沼,今川,
鳥生,電気学会研究会資料,MAG−91−62,19
91.)。
The former represents the direction of current flowing from the back side of the paper to the front side in the vertical direction of the paper surface, and the latter represents the opposite direction. In such a thin-film transformer, as shown in the figure, since currents antiparallel to each other flow in the adjacent conductors, the magnetic fields from the conductors 3 and 4 cause the magnetic layers 2 and 5 to be antiparallel to each other. It is divided into regions where a magnetic field is generated, so that the inductance reduction due to the demagnetizing field appears. Therefore, if the conductor spacing is large, the problem is relatively small, but if the spacing between adjacent conductors is narrowed in order to reduce the size, the inductance will drop significantly, which is extremely important in developing a small zigzag thin film transformer. It was a big problem. In addition, the magnetic flux leaking between the upper and lower magnetic layers 2 and 5 intersects with the conductors 3 and 4, whereby
The eddy current was generated during the period 4, causing a rapid increase of the conductor resistance at high frequency, and was a factor of decreasing the performance characteristic value Q value (ωL / R). Further, since the primary side conductor 3 and the secondary side conductor 4 are coupled by the magnetic flux flowing between the upper and lower magnetic layers 2 and 5 having a large gap, the coupling as a transformer is small. For this reason, the zigzag structure is not suitable for small thin film transformers, and research and development is currently being carried out mainly on spiral structure thin film transformers and spiral coil thin film transformers, which have a large effect on downsizing. (For example, T.YACHI, M.MINO, and K.YA
NAGISAWA, PESC'91 RECORDS,
pp. 20-26, 1991. Yamaguchi, Onuma, Imagawa,
Toriu, The Institute of Electrical Engineers of Japan Material, MAG-91-62, 19
91. ).

【0006】本発明は、上記問題点を克服し、薄膜トラ
ンスを小形化・高性能化するために、インダクタンスの
減少ならびに高周波における導体抵抗の急増を抑え、か
つ、1次側・2次側導体間の結合を向上でき、特につづ
ら折れ形薄膜トランスに好適な新規の構造を提案するこ
とを目的とするものである。
In order to overcome the above-mentioned problems and to reduce the size and improve the performance of the thin film transformer, the present invention suppresses the reduction of the inductance and the rapid increase of the conductor resistance at high frequency, and the primary and secondary side conductors. It is an object of the present invention to propose a new structure which can improve the coupling between the two and is particularly suitable for a zigzag thin film transformer.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の高周波用薄膜トランスにおいては、トラン
スを構成する磁性体すなわち磁性層の形状に凹凸を付
け、上下の磁性層により導体長手方向の上下左右を取り
囲み、導体が閉磁路構造を持つ磁性体に包まれる構造を
持たせることを特徴とするとともに、さらに、上記の構
成において、1次側・2次側導体間の結合を高めるため
に、1次側導体あるいは2次側導体が、2次側導体ある
いは1次側導体の長手方向の上下左右を取り囲む矩形の
同軸断面構造を持つことを特徴としている。
In order to achieve the above object, in the high frequency thin film transformer of the present invention, the shape of the magnetic body, that is, the magnetic layer forming the transformer is made uneven, and the upper and lower magnetic layers form a conductor longitudinal direction. The upper and lower left and right sides of the conductor are surrounded by a magnetic body having a closed magnetic circuit structure, and further, in the above-mentioned configuration, to enhance the coupling between the primary and secondary side conductors. In addition, the primary side conductor or the secondary side conductor has a rectangular coaxial cross-section structure surrounding the upper and lower sides of the secondary side conductor or the primary side conductor in the longitudinal direction.

【0008】[0008]

【作用】本発明の高周波用薄膜トランスにおいては、構
成する磁性層の形状に凹凸を付け、上下の磁性層により
導体長手方向の上下左右を取り囲み、導体が閉磁路構造
を持つ磁性体に包まれている構造を持たせる。これによ
り、これまでインダクタンス低下の原因となっていた磁
性層中での反磁界を、閉磁路構造とすることで著しく減
少させ、隣接導体間隔を極端に小さくして、つづら折れ
形薄膜トランスの小形化を可能にする。同時に、磁性体
を閉磁路構造とすることで、漏れ磁束を減少させ、漏れ
磁束と導体が錯交することにより発生した渦電流による
高周波での導体抵抗急増を抑えて、高いQ値を持つトラ
ンスを提供可能とする。一方、開磁路構造を持つ上下の
磁性層間の漏れ磁束によりトランスの1次側・2次側導
体間を結合させていた従来の薄膜トランスに比べて、閉
磁路構造の磁性体中に1次側・2次側導体を設置する構
造とすることで、薄膜トランスの結合係数を向上させ
る。さらに、導体の構造を矩形の同軸断面形状とするこ
とにより、1次側・2次側間の結合をより一層向上させ
る。
In the high frequency thin film transformer of the present invention, the magnetic layers to be formed are made uneven, and the upper and lower magnetic layers surround the upper and lower sides of the conductor in the longitudinal direction, and the conductor is surrounded by a magnetic material having a closed magnetic circuit structure. Have a structure. As a result, the demagnetizing field in the magnetic layer, which has been a cause of inductance reduction, is significantly reduced by using a closed magnetic circuit structure, and the spacing between adjacent conductors is made extremely small, reducing the size of the zigzag thin film transformer. Enable At the same time, by making the magnetic body a closed magnetic circuit structure, the leakage flux is reduced, and the surge of the conductor resistance at high frequencies due to the eddy current generated by the leakage flux and the conductor intersecting each other is suppressed, and the transformer having a high Q value is suppressed. Can be provided. On the other hand, in comparison with the conventional thin film transformer in which the primary and secondary conductors of the transformer are coupled by the leakage magnetic flux between the upper and lower magnetic layers having the open magnetic circuit structure, the primary in the magnetic body of the closed magnetic circuit structure is increased. The coupling coefficient of the thin film transformer is improved by adopting a structure in which the side / secondary side conductors are installed. Furthermore, by making the structure of the conductor a rectangular coaxial sectional shape, the coupling between the primary side and the secondary side is further improved.

【0009】[0009]

【実施例】以下、本発明の一実施例を、図面を参照して
詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.

【0010】〔実施例1〕図1は本発明の第1の実施例
を示す薄膜トランスの平面図(a)およびその平面図の
Y−Y′断面構造模式図(b)である。図中、6は基
板、7は絶縁層、8は下部磁性層、9は絶縁層、10は
1次側導体、11は絶縁層、12は2次側導体、13は
絶縁層、14は上部磁性層、15は磁性層のスルーホー
ル部、16,17は1次側外部接続用端子、18,19
は2次側外部接続用端子である。
[Embodiment 1] FIG. 1 is a plan view (a) of a thin film transformer showing a first embodiment of the present invention and a schematic view (b) taken along the line YY 'of the plan view. In the figure, 6 is a substrate, 7 is an insulating layer, 8 is a lower magnetic layer, 9 is an insulating layer, 10 is a primary side conductor, 11 is an insulating layer, 12 is a secondary side conductor, 13 is an insulating layer, and 14 is an upper part. Magnetic layer, 15 is a through hole of the magnetic layer, 16 and 17 are primary side external connection terminals, 18 and 19
Is a secondary side external connection terminal.

【0011】引き続き本実施例の作製方法について詳細
に述べる。初めに基板6上にスパッタ法等によりSiO
2等の絶縁層7を形成する。その上にパーマロイ,Co
ZrRe,CoFeSiB等の磁性膜をスパッタ法等で
堆積し、イオンビームエッチング法等でパターニングし
て下部磁性層8を作製する。その後、上記と同様にSi
2等を堆積し、平坦化処理を行い絶縁層9を作製す
る。引き続いて絶縁層9上にCu等の導体層を電子ビー
ム蒸着法等で成膜し、この導体層をイオンビームエッチ
ング法等でパターニングしてつづら折れ形状の1次側導
体10を形成する。この時、1次側外部接続用端子1
6,17を同時に作製する。その後、上記と同様にSi
2等を堆積し、平坦化処理を行い絶縁層11とする。
この時、1次側導体10の外部接続用端子16,17部
分に絶縁層11を貫通するスルーホールをイオンビーム
エッチング法等により作製する。その後、絶縁層11上
にCu等の導体層を電子ビーム蒸着法等で成膜し、前記
スルーホールを充填するとともに、この導体層をイオン
ビームエッチング法等でパターンニングしてつづら折れ
形状の2次側導体12を形成する。この時、2次側導体
の外部接続用端子18,19を同時に作製する。さら
に、上記と同様にSiO2等を堆積し、平坦化処理を行
い絶縁層13とする。そして、上下の磁性層を接続する
ために、導体12の隣接する空隙部分ならび導体外周部
に絶縁層9,11,13を貫通するスルーホール部15
をイオンビームエッチング等により形成する。図2に上
記スルーホール部15のパターン図を示す。さらに、磁
性膜をスパッタリング法等により成膜し、上記スルーホ
ール部15中に磁性層を形成するとともに、磁性層をパ
ターンニングして上部磁性層14とする。最後に、つづ
ら折れ形状の導体10,12の端子16〜19部分に絶
縁層13を貫通するスルーホールを開けて外部端子と
し、本発明の薄膜トランスを得る。
Next, the manufacturing method of this embodiment will be described in detail. First, SiO 2 is formed on the substrate 6 by sputtering or the like.
An insulating layer 7 such as 2 is formed. On top of that Permalloy, Co
A magnetic film of ZrRe, CoFeSiB or the like is deposited by a sputtering method or the like and patterned by an ion beam etching method or the like to form the lower magnetic layer 8. Then, the same as above
O 2 or the like is deposited and a flattening process is performed to form the insulating layer 9. Subsequently, a conductor layer of Cu or the like is formed on the insulating layer 9 by an electron beam vapor deposition method or the like, and the conductor layer is patterned by an ion beam etching method or the like to form a primary conductor 10 having a zigzag shape. At this time, the primary side external connection terminal 1
6 and 17 are manufactured at the same time. Then, the same as above
O 2 or the like is deposited and flattening treatment is performed to form the insulating layer 11.
At this time, through holes penetrating the insulating layer 11 are formed in the external connection terminals 16 and 17 of the primary side conductor 10 by an ion beam etching method or the like. After that, a conductor layer of Cu or the like is formed on the insulating layer 11 by an electron beam evaporation method or the like to fill the through holes, and the conductor layer is patterned by an ion beam etching method or the like to form a zigzag shape. The secondary conductor 12 is formed. At this time, the external connection terminals 18 and 19 of the secondary conductor are simultaneously manufactured. Further, similarly to the above, SiO 2 or the like is deposited and flattened to form the insulating layer 13. Then, in order to connect the upper and lower magnetic layers, a through hole portion 15 penetrating the insulating layers 9, 11, and 13 in the adjacent void portion of the conductor 12 and the outer peripheral portion of the conductor.
Are formed by ion beam etching or the like. FIG. 2 shows a pattern diagram of the through hole portion 15. Further, a magnetic film is formed by a sputtering method or the like to form a magnetic layer in the through hole portion 15 and the magnetic layer is patterned to form the upper magnetic layer 14. Finally, through holes penetrating the insulating layer 13 are formed in the terminals 16 to 19 of the zigzag-shaped conductors 10 and 12 as external terminals to obtain the thin film transformer of the present invention.

【0012】以上のように構成した実施例の作用を図8
の従来例と比較して述べる。本実施例では、スルーホー
ル部15によって1次側・2次側導体の長手方向の上下
左右を囲うように、上下磁性層8,14が連続し、閉磁
路構造が形成される。図3は薄膜トランスを構成する磁
性層の磁性膜透磁率、導体幅、導体厚さ、磁性膜厚さを
一定とし、左右に隣接する1次側あるいは2次側の導体
間隔を変化させたときのインダクタンス値と導体間隔の
関係を計算により求めた図で、本実施例と従来例の場合
を併せて示している。
The operation of the embodiment configured as described above is shown in FIG.
This will be described in comparison with the conventional example. In this embodiment, the upper and lower magnetic layers 8 and 14 are continuous with each other so as to surround the primary and secondary side conductors vertically and horizontally in the longitudinal direction by the through hole portion 15 to form a closed magnetic circuit structure. FIG. 3 shows a case where the magnetic film permeability, the conductor width, the conductor thickness, and the magnetic film thickness of the magnetic layer constituting the thin film transformer are constant and the conductor spacing on the left and right adjacent primary or secondary sides is changed. FIG. 6 is a diagram in which the relationship between the inductance value and the conductor spacing is calculated, and the cases of the present embodiment and the conventional example are shown together.

【0013】インダクタンスの計算は、各導体を周回す
る磁路を仮定し、その磁気抵抗Rを求め、その和の逆数
から求めている。なお、磁気抵抗Rは以下の式で表せ
る。
In the calculation of the inductance, a magnetic path that circulates around each conductor is assumed, the magnetic resistance R thereof is calculated, and the reciprocal of the sum thereof is calculated. The magnetic resistance R can be expressed by the following equation.

【0014】[0014]

【数2】 [Equation 2]

【0015】ただし、ιは磁性体の長さ、μ0は真空の
透磁率、
Where ι is the length of the magnetic material, μ 0 is the magnetic permeability of the vacuum,

【0016】[0016]

【数3】 [Equation 3]

【0017】は磁性体の比透磁率、Aは磁性体の断面積
である。さらに、計算では1次側導体のみとし、2次側
導体の影響は無視した。
Is the relative permeability of the magnetic material, and A is the cross-sectional area of the magnetic material. Further, in the calculation, only the primary side conductor was used and the influence of the secondary side conductor was ignored.

【0018】まず、従来構造のつづら折れ形薄膜トラン
スで、図10(a)のように磁路を仮定し、磁気抵抗R
1〜R4を求める。
First, in a zigzag thin film transformer having a conventional structure, a magnetic path is assumed as shown in FIG.
Calculate 1 to R 4 .

【0019】[0019]

【数4】 [Equation 4]

【0020】となり、導体101は2N本あるため、求
めるインダクタンスLは、
Since there are 2N conductors 101, the required inductance L is

【0021】[0021]

【数5】 [Equation 5]

【0022】であらわせる。ただし、Nは導体101の
つづら折れターン数、aは正方形のつづら折れ形薄膜ト
ランスの一辺の長さ、tmは磁性層102の磁性膜の厚
さ、gは絶縁層100を介した上下磁性層102のギャ
ップ、μ0は真空の透磁率、
It is expressed as follows. Where N is the number of zigzag turns of the conductor 101, a is the length of one side of the zigzag square thin film transformer, t m is the thickness of the magnetic film of the magnetic layer 102, and g is the upper and lower magnetism through the insulating layer 100. The gap of the layer 102, μ 0 is the magnetic permeability of the vacuum,

【0023】[0023]

【数6】 [Equation 6]

【0024】は磁性層102の比透磁率である。Is the relative magnetic permeability of the magnetic layer 102.

【0025】また、本発明構造の場合では、図10
(b)のように磁路を仮定し、磁性層102を被った長
さ2aNの導体101と近似して計算する。
Further, in the case of the structure of the present invention, FIG.
Assuming a magnetic path as shown in (b), the calculation is performed by approximating the conductor 101 with a length of 2 aN covering the magnetic layer 102.

【0026】[0026]

【数7】 [Equation 7]

【0027】となり、Then,

【0028】[0028]

【数8】 [Equation 8]

【0029】ただし、Nは導体101のつづら折れター
ン数、aは正方形のつづら折れ形薄膜トランスの一辺の
長さ、tは磁性層102の被り厚さ、g′は導体101
と絶縁層100の厚さの和、μ0は真空の透磁率、
Here, N is the number of zigzag turns of the conductor 101, a is the length of one side of the zigzag square thin film transformer, t is the covering thickness of the magnetic layer 102, and g ′ is the conductor 101.
And the thickness of the insulating layer 100, μ 0 is the magnetic permeability of the vacuum,

【0030】[0030]

【数9】 [Equation 9]

【0031】は磁性層102の比透磁率、dは導体10
1を囲む絶縁層100の幅である。
Is the relative permeability of the magnetic layer 102, and d is the conductor 10.
1 is the width of the insulating layer 100 that surrounds 1.

【0032】上記の式により求めた図3の導体間隔〔m
m〕とインダクタンス〔H〕との関係を示すグラフにお
いて、実線は本発明技術によるインダクタンスの計算値
を示し、●印は実測値を示している。一方、破線は、従
来技術によるインダクタンスの計算値を示している。従
来技術では、隣合う導体には互いに反平行な電流が流
れ、そのため、導体からの磁界によって、磁性層中は互
いに反平行な磁界が発生する領域に分割されるため、イ
ンダクタンスは導体間隔が狭くなるにつれ著しく減少す
る。一方、本実施例では、従来技術に見られる磁性層中
の反磁界に起因するインダクタンスの低下は見られず、
逆に、導体間隔が20μm程度までインダクタンスは増
加する。実測データが計算値よりもやや大きな値を示し
ているのは、計算では空心のインダクタンスを考慮して
いないためである。
The conductor spacing [m in FIG. 3 obtained from the above equation
In the graph showing the relationship between [m] and the inductance [H], the solid line indicates the calculated value of the inductance according to the technique of the present invention, and the ● mark indicates the measured value. On the other hand, the broken line indicates the calculated value of the inductance according to the conventional technique. In the prior art, currents that are antiparallel to each other flow in adjacent conductors, and therefore the magnetic field from the conductors divides the magnetic layer into regions where magnetic fields that are antiparallel to each other are generated. It will decrease significantly. On the other hand, in this example, the decrease in inductance due to the demagnetizing field in the magnetic layer, which is seen in the prior art, is not seen,
On the contrary, the inductance increases until the conductor spacing is about 20 μm. The actual measurement data shows a value slightly larger than the calculated value because the calculation does not consider the inductance of the air core.

【0033】また、1次側・2次側間の結合係数を比較
した結果、従来技術では0.1〜0.2程度であった
が、本実施例では0.90〜0.96という極めて高い
値が得られた。
Further, as a result of comparing the coupling coefficient between the primary side and the secondary side, it was about 0.1 to 0.2 in the prior art, but it is extremely high from 0.90 to 0.96 in this embodiment. A high value was obtained.

【0034】以上のように、測定したすべての範囲で従
来技術に比べ本技術が優れており、従来技術では困難で
あった導体間隔を狭くした狭ピッチ化による小形化が可
能である。また同時に、上下磁性層間の漏れ磁束が著し
く減少するため、漏れ磁束に起因した導体抵抗の急増も
少なく、結合係数が著しく向上する。
As described above, the present technique is superior to the conventional technique in all measured ranges, and it is possible to reduce the size by narrowing the conductor pitch, which is difficult with the conventional technique, and narrowing the pitch. At the same time, since the leakage flux between the upper and lower magnetic layers is significantly reduced, the conductor resistance is not sharply increased due to the leakage flux, and the coupling coefficient is significantly improved.

【0035】〔実施例2〕以下、本発明の第2の実施例
を、図面を参照して詳細に説明する。図4はその構成を
示す薄膜トランスの平面図(a)およびその平面図のZ
−Z′断面構造模式図(b)である。図中、20は基
板、21は絶縁層、22は下部磁性層、23は絶縁層、
24は1次側導体、25は2次側導体、26は絶縁層、
27は上部磁性膜、28は磁性層のスルーホール部、5
0,51は1次側外部接続用端子、52,53は2次側
外部接続用端子である。第1の実施例と同様に上下磁性
層を接続するためのスルーホール部28のパターン図を
図5に示す。第1の実施例との差異は、1次側導体と2
次側導体の配置を上下配置から水平配置に変え、導体形
成工程を簡略化したことであり、上下磁性層22,27
をスルーホール部28により連続させて、1次側・2次
側導体24,25の長手方向の上下左右を囲う閉磁路構
造とする点は共通である。
[Second Embodiment] A second embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 4 is a plan view (a) of the thin film transformer showing the configuration and Z of the plan view.
It is a schematic diagram (b) of a -Z 'sectional structure. In the figure, 20 is a substrate, 21 is an insulating layer, 22 is a lower magnetic layer, 23 is an insulating layer,
24 is a primary side conductor, 25 is a secondary side conductor, 26 is an insulating layer,
27 is an upper magnetic film, 28 is a through hole portion of the magnetic layer, 5
Reference numerals 0 and 51 are primary side external connection terminals, and 52 and 53 are secondary side external connection terminals. A pattern diagram of the through hole portion 28 for connecting the upper and lower magnetic layers is shown in FIG. 5 as in the first embodiment. The difference from the first embodiment is that the primary conductor and
The arrangement of the next-side conductor is changed from the vertical arrangement to the horizontal arrangement to simplify the conductor forming process.
Is common by a through hole portion 28 to form a closed magnetic circuit structure that surrounds the upper and lower sides of the primary and secondary side conductors 24 and 25 in the longitudinal direction.

【0036】以上のように構成した実施例では、第1の
実施例に比べ若干インダクタンス値は減少するものの、
トランスの結合係数は第1の実施例と同じく0.90〜
0.96の値が得られる。このように、1次側・2次側
導体を水平配置し、工程を簡略しても本発明の効果が得
られ、従来技術では困難であった導体間隔を狭した狭ピ
ッチ化による小形化が可能である。また同時に、上下磁
性層22,27間の漏れ磁束が著しく減少するため、漏
れ磁束に起因した導体抵抗の急増も少なく、結合係数が
著しく向上する。
In the embodiment constructed as described above, although the inductance value is slightly reduced as compared with the first embodiment,
The coupling coefficient of the transformer is 0.90 as in the first embodiment.
A value of 0.96 is obtained. As described above, the effects of the present invention can be obtained even if the primary side / secondary side conductors are horizontally arranged and the process is simplified, and miniaturization can be achieved by narrowing the conductor spacing and narrowing the pitch, which has been difficult in the prior art. It is possible. At the same time, the leakage flux between the upper and lower magnetic layers 22 and 27 is remarkably reduced, so that the conductor resistance is not sharply increased due to the leakage flux and the coupling coefficient is remarkably improved.

【0037】〔実施例3〕以下、本発明の第3の実施例
を、図面を参照して詳細に説明する。図6はその構成を
示すつづら折れ薄膜トランスの平面図(a)およびその
平面図のα−α′断面模式図(b)である。本実施例
は、第1の実施例と同じ磁性体構造を持つことは共通で
あり、1次側、2次側導体の構造を矩形の同軸断面形状
としていることを特徴としている。図中、30は基板、
31は絶縁層、32は下部磁性層、33は絶縁層、34
は1次側導体、35は2次側導体、36は絶縁層、37
は上部磁性層、38は磁性層スルーホール部、39,4
2は1次側外部接続用端子、40,41は2次側外部接
続用端子である。
[Embodiment 3] A third embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 6 is a plan view (a) of the zigzag folded thin film transformer showing the structure and a schematic sectional view (b) taken along the line α-α ′ of the plan view. The present embodiment is common in having the same magnetic structure as the first embodiment, and is characterized in that the structure of the primary side and secondary side conductors has a rectangular coaxial sectional shape. In the figure, 30 is a substrate,
31 is an insulating layer, 32 is a lower magnetic layer, 33 is an insulating layer, 34
Is a primary side conductor, 35 is a secondary side conductor, 36 is an insulating layer, 37
Is an upper magnetic layer, 38 is a magnetic layer through hole portion, 39, 4
Reference numeral 2 is a primary side external connection terminal, and 40 and 41 are secondary side external connection terminals.

【0038】引き続き本実施例の作製方法について詳細
に述べる。初めに基板30上にスパッタ法等によりSi
2等の絶縁層31を形成する。その上にパーマロイ、
CoZrRe、CoFeSiB等の磁性膜をスパッタリ
ング法等で堆積し、イオンビームエッチング法等でパタ
ーンニングして下部磁性層32を作製する。その後、上
記と同様にSiO2等を堆積し、平坦化処理を行い絶縁
層33を作製する。引き続いて絶縁層33上にCu等の
導体層を電子ビーム蒸着法等で成膜し、この導体層をイ
オンビームエッチング法等でパターンニングしてつづら
折れ形状の2次側導体35の矩形下辺部ならびに2次側
外部接続用端子39,42を形成する。その後、上記と
同様にSiO2等を堆積し、平坦化処理を行い絶縁層3
6とする。次に絶縁層36において2次側導体35の、
矩形側壁部を形成する領域と1次側導体部分にイオンビ
ームエッチング法等によりスルーホールを形成する。そ
して、Cu等の導体層を電子ビーム蒸着法等で成膜した
のち、イオンビームエッチング法等によりパターンニン
グを行い、2次側導体35の矩形側壁部、1次側導体3
4ならびに1次側外部接続用端子40、41を形成す
る。その上に上記と同様に絶縁層を形成し平坦化を行っ
たのち、パターンニングを行い、1次側導体34上部に
絶縁層を作製したのち、2次側導体35の矩形側壁部に
イオンビームエッチング法等によりスルーホールを作製
する。その後、Cu等の導体層を電子ビーム蒸着法等で
成膜したのち、イオンビームエッチング法等によりパタ
ーンニングを行い、2次側導体35の矩形上辺部を作製
する。そして、隣接する同軸導体の空隙部分ならびに導
体外周部に図7に示すようなスルーホール部38をイオ
ンビームエッチング法等により形成する。そして、上記
スルーホール部38中に磁性層を形成するとともに、こ
の磁性層をパターンニングして上部磁性層37とする。
最後に接続用端子39〜42部分に絶縁膜を貫通するス
ルーホールを開けて外部端子とし、本発明薄膜トランス
を得る。
Next, the manufacturing method of this embodiment will be described in detail. First, Si is sputtered on the substrate 30.
An insulating layer 31 such as O 2 is formed. Permalloy on it,
A magnetic film of CoZrRe, CoFeSiB, or the like is deposited by a sputtering method or the like and patterned by an ion beam etching method or the like to form the lower magnetic layer 32. After that, SiO 2 or the like is deposited in the same manner as above and a planarization process is performed to form the insulating layer 33. Subsequently, a conductor layer of Cu or the like is formed on the insulating layer 33 by an electron beam evaporation method or the like, and the conductor layer is patterned by an ion beam etching method or the like to form a rectangular lower side portion of the secondary conductor 35 having a zigzag shape. In addition, terminals 39 and 42 for secondary side external connection are formed. After that, SiO 2 or the like is deposited in the same manner as above, and a flattening process is performed to form the insulating layer 3
6 Next, in the insulating layer 36, of the secondary conductor 35,
Through holes are formed by ion beam etching or the like in the region where the rectangular side wall is formed and the primary side conductor portion. Then, after forming a conductor layer of Cu or the like by an electron beam evaporation method or the like, patterning is performed by an ion beam etching method or the like, and a rectangular side wall portion of the secondary side conductor 35 and the primary side conductor 3 are formed.
4 and primary side external connection terminals 40 and 41 are formed. An insulating layer is formed thereon and flattened in the same manner as above, followed by patterning to form an insulating layer on the upper part of the primary side conductor 34, and then on the rectangular side wall of the secondary side conductor 35 with an ion beam. A through hole is formed by an etching method or the like. Then, after forming a conductor layer of Cu or the like by an electron beam evaporation method or the like, patterning is performed by an ion beam etching method or the like to produce a rectangular upper side portion of the secondary side conductor 35. Then, through holes 38 as shown in FIG. 7 are formed in the void portions of the adjacent coaxial conductors and the conductor outer peripheral portion by an ion beam etching method or the like. Then, a magnetic layer is formed in the through hole portion 38, and this magnetic layer is patterned to form an upper magnetic layer 37.
Finally, through holes penetrating the insulating film are opened in the connecting terminals 39 to 42 to form external terminals to obtain the thin film transformer of the present invention.

【0039】こうして作製した実施例のつづら折れ形薄
膜トランスでは、インダクタンスの値は実施例1とほぼ
同じ値を持ち、従来例と比べて大幅に向上している。一
方、結合係数は、導体構造が同軸断面形状を持つため、
結合係数はさらに向上し、0.97〜0.99の値が得
られた。
In the zigzag folded thin-film transformer of the example thus manufactured, the value of the inductance is almost the same as that of the example 1, which is significantly improved as compared with the conventional example. On the other hand, the coupling coefficient is
The coupling coefficient was further improved and values of 0.97-0.99 were obtained.

【0040】なお、以上の3つの実施例では、つづら折
れ回数N回の薄膜トランスとして1次側・2次側導体を
設けているが、1次側導体と2次側導体とを外部端子部
分で直列接続し、つづら折れ回数2Nの薄膜インダクタ
として使用することも可能である。また、導体構造の同
軸断面形状化による結合係数の向上は、つづら折れ構造
薄膜トランスのみらず、スパイラル構造薄膜トランスに
おいても同等の効果を与えることは言うまでもない。
In the above three embodiments, the primary side / secondary side conductors are provided as the thin film transformer with the number of foldings N times. However, the primary side conductor and the secondary side conductor are connected to the external terminal portion. It is also possible to connect them in series with each other and use them as a thin film inductor having a number of folds of 2N. Needless to say, the improvement of the coupling coefficient due to the coaxial cross-sectional shape of the conductor structure has the same effect not only in the zigzag structure thin film transformer but also in the spiral structure thin film transformer.

【0041】[0041]

【発明の効果】以上の説明で明らかなように、本発明の
高周波用薄膜トランスによれば、従来構造の場合に顕著
に現れた導体間隔の狭間隔化に伴うインダクタンスの減
少は見られず、むしろ狭間隔化によりインダクタンスは
向上する特性を持つ。さらに、本発明構造により、1次
側・2次側導体間の結合係数が大幅に向上し、トランス
としての特性が著しく向上する。従って、本発明構造に
より、狭間隔化・高結合係数化が達成され、小形・高性
能化を同時に確保した薄膜トランスを提供することが可
能となる。なお、請求項2の発明によれば、特に、上記
結合係数をより一層向上させることができる。
As is clear from the above description, according to the high frequency thin film transformer of the present invention, there is no decrease in the inductance due to the narrowing of the conductor spacing, which is noticeable in the conventional structure. Rather, it has the characteristic that the inductance improves due to the narrow spacing. Furthermore, the structure of the present invention significantly improves the coupling coefficient between the primary and secondary conductors, and the characteristics of the transformer are significantly improved. Therefore, with the structure of the present invention, it is possible to provide a thin film transformer that achieves a narrower spacing and a higher coupling coefficient, and at the same time has a small size and high performance. According to the second aspect of the present invention, in particular, the coupling coefficient can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明実施例1の平面図、(b)はそ
の平面図のY−Y′断面構造模式図
1A is a plan view of a first embodiment of the present invention, and FIG. 1B is a schematic view of a YY ′ cross-sectional structure of the plan view.

【図2】本発明実施例1の磁性層のスルーホール部のパ
ターン図
FIG. 2 is a pattern diagram of a through hole portion of a magnetic layer of Example 1 of the present invention.

【図3】導体間隔とインダクタンスの関係を示す計算値
ならびに実測値(本発明薄膜トランスと従来技術による
薄膜トランス)を表わすグラフ
FIG. 3 is a graph showing a calculated value and a measured value (the thin film transformer of the present invention and the thin film transformer of the prior art) showing the relationship between the conductor spacing and the inductance.

【図4】(a)は本発明実施例2の平面図、(b)はそ
の平面図のZ−Z′断面構造模式図
4A is a plan view of a second embodiment of the present invention, and FIG. 4B is a schematic view of the ZZ ′ cross-sectional structure of the plan view.

【図5】本発明実施例2の磁性層のスルーホール部のパ
ターン図
FIG. 5 is a pattern diagram of a through hole portion of a magnetic layer of Example 2 of the present invention.

【図6】(a)は本発明実施例3の平面図、(b)はそ
の平面図のα−α′断面構造模式図
6A is a plan view of a third embodiment of the present invention, and FIG. 6B is a schematic sectional view taken along the line α-α ′ of the plan view.

【図7】本発明実施例3の磁性層のスルーホール部のパ
ターン図
FIG. 7 is a pattern diagram of a through hole portion of a magnetic layer of Example 3 of the invention.

【図8】(a)は従来技術によるつづら折れ形薄膜トラ
ンスの平面図、(b)はその平面図のX−X′断面構造
模式図
8A is a plan view of a zigzag folded thin film transformer according to the prior art, and FIG. 8B is a schematic view of a sectional structure taken along line XX ′ of the plan view.

【図9】従来技術によるつづら折れ形薄膜トランスの磁
界分布を示す断面模式図
FIG. 9 is a schematic sectional view showing a magnetic field distribution of a zigzag thin film transformer according to a conventional technique.

【図10】(a),(b)は計算に使用した磁路構造モ
デル図
10A and 10B are magnetic path structure model diagrams used for calculation.

【符号の説明】[Explanation of symbols]

6…基板 7,9,11,13…絶縁層 8…下部磁性層 10…1次側導体 12…2次側導体 14…上部磁性層 15…磁性層のスルーホール部 16,17…1次側外部接続用端子 18,19…2次側外部接続用端子 20…基板 21,23,26…絶縁層 22…下部磁性層 24…1次側導体 25…2次側導体 27…上部磁性層 28…磁性層のスルーホール部 50,51…1次側外部接続用端子 52,53…2次側外部接続用端子 30…基板 31,33,36…絶縁層 32…下部磁性層 34…1次側導体 35…2次側導体 37…上部磁性層 38…磁性層のスルーホール部 39,42…1次側外部接続用端子 40,41…2次側外部接続用端子 6 ... Substrate 7, 9, 11, 13 ... Insulating layer 8 ... Lower magnetic layer 10 ... Primary side conductor 12 ... Secondary side conductor 14 ... Upper magnetic layer 15 ... Through hole part of magnetic layer 16, 17 ... Primary side External connection terminals 18, 19 ... Secondary side external connection terminals 20 ... Substrates 21, 23, 26 ... Insulating layer 22 ... Lower magnetic layer 24 ... Primary conductor 25 ... Secondary conductor 27 ... Upper magnetic layer 28 ... Through hole portion of magnetic layer 50, 51 ... Primary side external connection terminal 52, 53 ... Secondary side external connection terminal 30 ... Substrate 31, 33, 36 ... Insulating layer 32 ... Lower magnetic layer 34 ... Primary conductor 35 ... Secondary-side conductor 37 ... Upper magnetic layer 38 ... Magnetic layer through-hole portion 39, 42 ... Primary-side external connection terminal 40, 41 ... Secondary-side external connection terminal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも2本以上の互いに平行に配置
された構造を持つ1次側および2次側導体の上下に磁性
層が配置されて構成される薄膜トランスにおいて、前記
磁性層が前記1次側および2次側導体の長手方向の上下
左右を取り囲む断面構造を持つことを特徴とする高周波
用薄膜トランス。
1. A thin film transformer comprising magnetic layers disposed above and below primary side and secondary side conductors having a structure in which at least two or more conductors are arranged in parallel with each other. A high-frequency thin-film transformer having a cross-sectional structure that surrounds the upper and lower sides and the left and right sides in the longitudinal direction of the conductor.
【請求項2】 請求項1記載の高周波用薄膜トランスに
おいて、1次側導体あるいは2次側導体が、前記2次側
導体あるいは1次側導体の長手方向の上下左右を取り囲
む断面構造を持つことを特徴とする高周波用薄膜トラン
ス。
2. The high frequency thin film transformer according to claim 1, wherein the primary-side conductor or the secondary-side conductor has a cross-sectional structure that surrounds the secondary-side conductor or the primary-side conductor in the longitudinal direction in the vertical direction. High frequency thin film transformer.
JP4274715A 1992-10-14 1992-10-14 High frequency use thin film transformer Pending JPH06124843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4274715A JPH06124843A (en) 1992-10-14 1992-10-14 High frequency use thin film transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4274715A JPH06124843A (en) 1992-10-14 1992-10-14 High frequency use thin film transformer

Publications (1)

Publication Number Publication Date
JPH06124843A true JPH06124843A (en) 1994-05-06

Family

ID=17545565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4274715A Pending JPH06124843A (en) 1992-10-14 1992-10-14 High frequency use thin film transformer

Country Status (1)

Country Link
JP (1) JPH06124843A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6815220B2 (en) 1999-11-23 2004-11-09 Intel Corporation Magnetic layer processing
US6856228B2 (en) 1999-11-23 2005-02-15 Intel Corporation Integrated inductor
US6856226B2 (en) 1999-11-23 2005-02-15 Intel Corporation Integrated transformer
US6891461B2 (en) 1999-11-23 2005-05-10 Intel Corporation Integrated transformer
JP2005150168A (en) * 2003-11-11 2005-06-09 Murata Mfg Co Ltd Laminated coil component
US7087976B2 (en) 1999-11-23 2006-08-08 Intel Corporation Inductors for integrated circuits
KR100680811B1 (en) * 2006-11-20 2007-02-09 주식회사 인성전자 Device having transformer able to prevention on eddy current loss
WO2010118297A1 (en) * 2009-04-09 2010-10-14 Qualcomm Incorporated Magnetic film enhanced transformer
US7852185B2 (en) 2003-05-05 2010-12-14 Intel Corporation On-die micro-transformer structures with magnetic materials
US8134548B2 (en) 2005-06-30 2012-03-13 Micron Technology, Inc. DC-DC converter switching transistor current measurement technique

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7332792B2 (en) 1999-11-23 2008-02-19 Intel Corporation Magnetic layer processing
US7064646B2 (en) 1999-11-23 2006-06-20 Intel Corporation Integrated inductor
US7982574B2 (en) 1999-11-23 2011-07-19 Intel Corporation Integrated transformer
US6870456B2 (en) 1999-11-23 2005-03-22 Intel Corporation Integrated transformer
US6891461B2 (en) 1999-11-23 2005-05-10 Intel Corporation Integrated transformer
US7299537B2 (en) 1999-11-23 2007-11-27 Intel Corporation Method of making an integrated inductor
US6940147B2 (en) 1999-11-23 2005-09-06 Intel Corporation Integrated inductor having magnetic layer
US6943658B2 (en) 1999-11-23 2005-09-13 Intel Corporation Integrated transformer
US6988307B2 (en) 1999-11-23 2006-01-24 Intel Corporation Method of making an integrated inductor
US6815220B2 (en) 1999-11-23 2004-11-09 Intel Corporation Magnetic layer processing
US6856226B2 (en) 1999-11-23 2005-02-15 Intel Corporation Integrated transformer
US6856228B2 (en) 1999-11-23 2005-02-15 Intel Corporation Integrated inductor
US7087976B2 (en) 1999-11-23 2006-08-08 Intel Corporation Inductors for integrated circuits
US7119650B2 (en) 1999-11-23 2006-10-10 Intel Corporation Integrated transformer
US7327010B2 (en) 1999-11-23 2008-02-05 Intel Corporation Inductors for integrated circuits
US7791447B2 (en) 1999-11-23 2010-09-07 Intel Corporation Integrated transformer
US7434306B2 (en) 1999-11-23 2008-10-14 Intel Corporation Integrated transformer
US7852185B2 (en) 2003-05-05 2010-12-14 Intel Corporation On-die micro-transformer structures with magnetic materials
US8471667B2 (en) 2003-05-05 2013-06-25 Intel Corporation On-die micro-transformer structures with magnetic materials
JP2005150168A (en) * 2003-11-11 2005-06-09 Murata Mfg Co Ltd Laminated coil component
US8482552B2 (en) 2005-06-30 2013-07-09 Micron Technology, Inc. DC-DC converter switching transistor current measurement technique
US9124174B2 (en) 2005-06-30 2015-09-01 Micron Technology, Inc. DC-DC converter switching transistor current measurement technique
US8134548B2 (en) 2005-06-30 2012-03-13 Micron Technology, Inc. DC-DC converter switching transistor current measurement technique
KR100680811B1 (en) * 2006-11-20 2007-02-09 주식회사 인성전자 Device having transformer able to prevention on eddy current loss
WO2010118297A1 (en) * 2009-04-09 2010-10-14 Qualcomm Incorporated Magnetic film enhanced transformer

Similar Documents

Publication Publication Date Title
JP2941484B2 (en) Plane transformer
US6593841B1 (en) Planar magnetic element
US7107666B2 (en) Method of manufacturing an ultra-miniature magnetic device
JP3441082B2 (en) Planar magnetic element
US6696744B2 (en) Integrated circuit having a micromagnetic device and method of manufacture therefor
US20060220776A1 (en) Thin film device
US20040239468A9 (en) Magnetic thin film inductors
JP3359099B2 (en) Thin film inductor and thin film transformer
JPH06124843A (en) High frequency use thin film transformer
CN109036798A (en) Through-hole and related system and method for magnetic core
JP3540733B2 (en) Planar magnetic element and semiconductor device using the same
El-Ghazaly et al. Gigahertz-band integrated magnetic inductors
JP3382215B2 (en) Planar magnetic element, method of manufacturing the same, and semiconductor device having flat magnetic element
JPH01282715A (en) Thin film head
JPH05109557A (en) High frequency thin film transformer and high frequency thin film inductor
JPH0582349A (en) Spiral thin film coil
US6529110B2 (en) Microcomponent of the microinductor or microtransformer type
US20070202359A1 (en) Magnetic Thin Film For High Frequency, and Method of Manufacturing Same, and Magnetic Device
JP2001196229A (en) Composite magnetic element
WO2000005734A1 (en) Ultra-miniature magnetic device
JPH0677055A (en) Plane magnetic element
JP2003347123A (en) Thin-film inductor and electronic device using the same
Shirakawa et al. Thin film inductor with multilayer magnetic core
JP2003133136A5 (en)
JP2007273803A (en) Thin-film device